Electronic Supplementary Information

Superacidic Aluminum Azido Species and Reagent-Controlled Self-

Assembly of Triazolyl Dimers, Trimers and Tetramers†

Shaoying Ju,^{†a} Jingjie Tan,^{†a} Ting Chen,^{*a} Weili Yan,^b Ning Xi,^a Douglas W. Stephan^{*a,c} and Yile Wu^{*a}

^a Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.

E-mail: chenting2@nbu.edu.cn (T. Chen); wuyile@nbu.edu.cn (Y. Wu)

^b Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, Zhejiang, China

° Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.

E-mail: douglas.stephan@utoronto.ca (D. W. Stephan)

^{*†*}S.Y. Ju and J.J. Tan contributed equally to this work.

Table of Contents

General Considerations	.S2
Experimental Procedures	.S2
Synthesis of compound 1	S2
Synthesis of compound 2	S3
Synthesis of compound 3	S3
Synthesis of compound 4, 5 and 6	S4
Synthesis of compound 7, 8 and 9	
Gutmann - Beckett methods	S6
Spectroscopic Data	.S8
X-ray Crystallographic Data	523
Computational Details	530
ReferenceS	532
Cartesian Coordinates of the Optimized Geometries	533

General Considerations

All experiments were carried out under inert gas atmosphere by using Schlenk-type glassware or in an Ar-filled glove box. Toluene, n-Hexane and Deuterated solvents (C₆D₆) were dried with sodium/potassium alloy prior to use and stored with 3Å molecular sieves. All solvents were stored under argon atmosphere. Al(C₆F₅)₃^[S1], [HAl(C₆F₅)₂]₂^[S2] and ^{*i*}Pr-NHC^[S3](IPr) were synthesized according to the literature methods. NMR spectra were recorded on a Bruker Advance 500 (¹H: 500 MHz, ¹³C: 125 MHz, ¹⁹F: 470 MHz, ³¹P: 202 MHz) spectrometer at 298 K. Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in hertz (Hz), integration. HRMS were recorded on a Thermo Scientific TM Q-Exactive PlusTM mass spectrometer using Cu (60W, Diamond, μ K α = 12.894 mm⁻¹) micro-focus X-ray sources. Using Olex2^[S4], the structure was solved with the XT^[S5] structure solution program using Intrinsic Phasing and refined with the XL^[S6] refinement package using Least Squares minimization.

Experimental Procedures

Synthesis of compound 1

Scheme S1-1: Synthesis of 1

In the glovebox, a toluene solution (5 mL) of $[Al(C_6F_5)_3] \cdot 0.5$ tol (574 mg, 1 mmol) was added dropwisely into a toluene solution (5 mL) of TMS-N₃ (115 mg, 1 mmol) at room temperature. The reaction mixture was stirred at ambient temperature for 30 min. After removed solvent under vacuum, the resulting solids were washed with n-Hexane (3×2 mL). After evaporation to dryness, 1 was obtained as white solids (578 mg, 90% yield).

Single crystals (colorless) suitable for X-ray analysis were obtained from the toluene solution at -30 °C for 12 hours.

¹**H NMR** (500 MHz, C₆D₆, ppm): δ 0.27 (d, *J* = 2.4 Hz, 9H, Si(CH₃)₃).

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 2.38 (s, Si(CH₃)₃), 111.81 (br, Al-*C*), 136.47~138.44 (m, *m*-C₆F₅), 141.64~143.63 (m, *p*-C₆F₅), 149.51~151.37 (m, *o*-C₆F₅).

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, ppm): δ -123.0 (br, 4F, *o*-C₆*F*₅), -150.0 (t, J = 19.9 Hz, 2F, *p*-C₆*F*₅), -160.1 (br, 4F, *m*-C₆*F*₅).

HRMS(m/z): $[M+MeCN+H]^+$ calcd. for C₂₃H₁₃AlF₁₅N₄Si⁺, 685.0480; found: 685.0505. **FT-IR** (solid, cm⁻¹): 2170.3 (N=N stretching), 1643.6, 1510.9, 1442.1, 1358.2 (N=N stretching), 1263.8, 1192.6, 1068.9, 952.5, 835.5.

Synthesis of compound 2

Scheme S1-2: Synthesis of 2

Route A: In the glovebox, a toluene solution (2 mL) of TMS-N₃ (23mg, 0.2 mmol) was added dropwise into a toluene solution (2 mL) of $[\text{HAl}(C_6F_5)_2]_3$ (72.4 mg, 0.07 mmol). After stirring for 30 minutes at room temperature, the resulted solution was dried under vacuum to afford white powders of **2** in 90% yield (72.6 mg). The signal of TMS-H was monitored by NMR in situ.

Route B: In the glovebox, a toluene solution (5 mL) of **1** (128 mg, 0.2 mmol) was heated to 60 °C for 12 hours to afford white powders of **2** in 82% yield (66 mg). The signal of TMS-C₆F₅ was monitored by NMR in situ.

Single crystals (colorless) suitable for X-ray analysis were obtained by storing a toluene solution of **2** at -30 °C for 12 hours.

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 105.32 (br, Al-*C*), 134.60~136.31 (m, *m*-C₆F₅), 140.69~142.39 (m, *p*-C₆F₅), 147.08~148.55 (m, *o*-C₆F₅).

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, ppm): δ -124.3 (br, 4F, *o*-C₆*F*₅), -146.7 (br, 2F, *p*-C₆*F*₅), -157.7 (br, 4F, *m*-C₆*F*₅).

HRMS(m/z): [1/2M+H]⁺ calcd. for C₁₂HAlF₁₀N₃⁺: 403.9821, found: 403.9835.

FT-IR (solid, cm⁻¹): 2174.0 (N=N stretching), 1643.6, 1510.2, 1454.6, 1364.8 (N=N stretching), 1261.8, 1071.1, 955.5, 721.8.

Synthesis of compound 3

Scheme S1-3: Synthesis of 3

In the glovebox, a toluene solution (2 mL) of TMS-N₃ (11.5 mg, 0.1 mmol) was added dropwise into a toluene solution (5 mL) of **2** (80.5 mg, 0.1 mmol) and then the reaction mixture was heated at 80 °C for 3 days. The precipitate was collected and washed with n-Hexane (3×1.0 mL). After drying under vacuum, white solids of **3** (49.7 mg, 73% yield) were obtained.

Single crystals (colorless) suitable for X-ray analysis were obtained by storing a toluene

solution of **3** at -30 °C for 2 hours.

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 100.54 (td, J = 23.0, 3.6 Hz, Al-*C*), 136.57~138.57 (m, *m*-C₆F₅), 140.64~142.65 (m, *p*-C₆F₅), 145.11~147.08 (m, *o*-C₆F₅).

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, ppm): δ -139.1 (br, 4F, *o*-C₆*F*₅), -154.1 (t, J = 20.8 Hz, 2F, *p*-C₆*F*₅), -162.3 (br, 4F, *m*-C₆*F*₅).

HRMS(m/z): $[M-(C_6F_5)_2AIN_3+H]^+$ calcd. for $C_{24}HAl_3F_{20}N_{15}^+$: 959.9660, found: 959.9671. **FT-IR** (solid, cm⁻¹): 2168.9 (N=N stretching), 721.8, 1513.7, 1449.9, 1360.3 (N=N stretching), 1251.8, 1071.4, 952.6, 845.9.

Synthesis of compound 4, 5 and 6

Scheme S1-4: Synthesis of 4, 5 and 6

In the glovebox, a toluene solution (2 mL) of **D** (for 4, Ph₂P(O)H, 40.4 mg, 0.2 mmol; for 5, THF, 14.4 mg, 0.2 mmol; for 6, IDipp, 77.3 mg, 0.2 mmol) was added dropwise into a toluene solution (2 mL) of 2 (80.5 mg, 0.1 mmol). After stirring for 1 hour at room temperature, the resulting solutions were dried under vacuum to afford the corresponding adducts 4, 5 or 6 as white powders in good yield (4, 76%, 91.9 mg; 5, 83%, 78.8 mg; 6, 80%, 126.6 mg).

Single crystals (colorless) suitable for X-ray analysis were obtained by storing a toluene solution of 4, 5 and 6 at -30 °C for 12 hours.

4

¹**H NMR** (500 MHz, C₆D₆, ppm): δ 6.83(br, 4H, *o*-C6*H*₅), 6.95 (t, 2H, *p*-C₆*H*₅), 7.13 (d, *J* = 537.8 Hz, 1H, P-*H*), 7.13 (br, 4H, *m*-C₆*H*₅).

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): 122.63 (d, J = 109.8 Hz, P-*C*), 129.65 (d, J = 14.3 Hz, $o-C_6H_5$), 131.58 (d, J = 13.6 Hz, $m-C_6H_5$), 135.15 (d, J = 3.2 Hz, $p-C_6H_5$), 135.96~138.30 (m, $m-C_6F_5$), 140.74~142.95 (m, $p-C_6F_5$), 149.27~151.38 (m, $o-C_6F_5$).

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, ppm): δ -123.3 (br, 4F, *o*-C₆*F*₅), 153.3 (t, J = 19.8 Hz, 2F, *p*-C₆*F*₅), -161.5 (br, 4F, *m*-C₆*F*₅).

³¹P{¹H} NMR (202 MHz, C₆D₆, ppm): δ 34.5 (s, *P*-H).

³¹**P NMR** (202 MHz, C₆D₆, ppm): δ 34.5 (d, *J* = 539.7 Hz, *P*-H).

$$\label{eq:HRMS} \begin{split} \text{HRMS}(m/z):& [1/2M+2CH_3OH+Na]^+ \ \ \text{calcd.} \ \ \text{for} \ \ C_{26}H_{19}AlF_{10}N_3O_3PNa^+:692.0712, \ \ \text{found:} \\ & 692.0720. \end{split}$$

FT-IR (solid, cm⁻¹): 2134.8 (N=N stretching), 1640.7, 1508.2, 1438.4, 1356.5 (N=N stretching), 1286.0, 1144.8, 1054.9, 950.2.

5

¹**H NMR** (500 MHz, Tol-*d*₆, ppm): δ 0.98 (s, 4H, *CH*₂(THF)), 3.33(s, 4H, *CH*₂(THF)).

¹³C{¹H} NMR (125 MHz, Tol-*d*₆, ppm): 25.86 (s, *C*H₂(THF)), 71.56 (s, *C*H₂(THF)); Al(*C*₆F₅)₂ not listed.

¹⁹**F**{¹**H**} **NMR** (470 MHz, Tol-*d*₆, ppm): δ -123.5 (br, 4F, *o*-C₆*F*₅), 151.2 (br, 2F, *p*-C₆*F*₅), -160.4 (br, 4F, *m*-C₆*F*₅).

HRMS(m/z): $[1/2M+2CH_3CN+Na]^+$ calcd. for $C_{20}H_{14}AlF_{10}N_5ONa^+$: 580.0746, found: 580.0750.

FT-IR (solid, cm⁻¹): 2149.6 (N≡N stretching), 1640.9, 1510.7, 1446.0, 1358.7 (N=N stretching), 1270.7, 1068.4, 953.6, 842.4.

6

¹**H NMR** (500 MHz, C₆D₆, ppm): 0.80 (d, J = 6.1 Hz, 12H, CH(CH₃)₂), 1.17 (d, J = 6.7 Hz, 12H, CH(CH₃)₂), 2.68 (sept, J = 6.7 Hz, 4H, CH(CH₃)₂), 6.39 (s, 2H, N-CH-), 6.87 (d, J = 7.8 Hz, 4H, Ar-H), δ 7.08 (t, J = 7.8 Hz, 2H, Ar-H).

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm) δ 21.71, 26.48 (s, CH(CH₃)₂), 28.99 (s, CH(CH₃)₂), 124.24 (s, ArC), 126.14 (s, ArC), 128.35 (s, ArC), 131.59 (s, ArC), 133.23 (s, -N-CH-), 137.79~138.87 (m, *m*-C₆F₅), 140.60~142.40 (m, *p*-C₆F₅), 145.68 (s, -NCN), 148.09~149.08 (m, *o*-C₆F₅).

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, ppm): δ -120.4 (br, 4F, *o*-C₆*F*₅), -154.0 (t, J = 19.9 Hz, 2F, *p*-C₆*F*₅), -161.8 (br, 4F, *m*-C₆*F*₅).

HRMS(m/z): $[M+Na]^+$ calcd. for C₃₉H₃₆AlF₁₀N₅Na⁺: 814.2519, found: 814.2531.

FT-IR (solid, cm⁻¹): 2151.8 (N≡N stretching), 1637.5, 1509.2, 1441.9, 1387.7 (N=N stretching), 1387.7, 1118.4, 1059.0, 957.1.

Synthesis of compound 7, 8 and 9

Scheme S1-5: Synthesis of 7, 8 and 9

A mixture of **2** (40.3 mg, 0.05 mmol), $R^2C \equiv CR^1$ (for **7**, $R^1 = Ph$, $R^2 = CO_2Et 17.4mg$, 0.1mmol; for **8**, $R^1 = R^2 = CO_2Et 14.2mg$, 0.1mmol; for **9**, $R^1 = H$, $R^2 = CO_2Et 9.8mg$, 0.1mmol) and benzene

(2 mL) was stirred under ambient temperature for 1 hour. the resulting solutions were dried under vacuum to afford the Complexes as white powders in good yield (7, 85%, 49 mg; 8, 87%, 47.4 mg; 9, 76%, 38 mg).

Single crystals (colorless) suitable for X-ray analysis were obtained by storing a solution of Click products (**7**, **8** and **9**) in mixed solvent of benzene and n-Hexane at -30 $^{\circ}$ C for 2 hours.

7

¹**H NMR** (500 MHz, C₆D₆, ppm): δ 0.81 (t, *J* = 7.1 Hz, 3H, C*H*₃), 3.94 (q, *J* = 6.7 Hz, 2H, -C*H*₂-CH₃), 6.81 (t, *J* = 7.6 Hz, 2H, Ar-*H*), 6.89 (t, *J* = 7.6 Hz, 1H, Ar-*H*),7.22 (d, *J* = 7.5 Hz, 2H, Ar-*H*).

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 13.63 (s, CH₃), 64.40 (s, -CH₂-CH₃), 80.56 (s, C=C), 91.06 (s, C=C), 115.80 (br, Al-C), 118.87 (s, Ar-C), 128.81, (s, Ar-C), 131.44 (s, Ar-C), 133.28 (s, Ar-C), 136.29~138.33 (m, *m*-C₆F₅), 140.57~142.58 (m, *p*-C₆F₅), 149.11~151.14 (m, *o*-C₆F₅), 156.49 (s, C=O).

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, ppm): δ -123.1 (br, 4F, *o*-C₆*F*₅) -153.6 (t, J = 20.1 Hz, 2F, *p*-C₆*F*₅), -161.5 (br, 4F, *m*-C₆*F*₅).

HRMS(m/z): [1/2M+H]⁺calcd. for C₂₃H₁₁AlF₁₀N₃O₂⁺: 578.0502, found: 578.0516. **FT-IR** (solid, cm⁻¹): 1704.8, 1532.9, 1444.2, 1369.1, 1287.4, 1192.1, 1018.5, 948.6.

8

¹**H NMR** (500 MHz, C₆D₆, ppm): δ 3.02 (s, 18H, CH₃).

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 52.59 (*C*H₃), 75.05 (*C*=*C*), 152.09 (MeO₂*C*); Al(*C*₆F₅)₂ not listed.

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, ppm): δ -139.1 (br, 4F, *o*-C₆*F*₅), -154.0 (t, J = 20.1 Hz, 2F, *p*-C₆*F*₅), -162.3 (br, 4F, *m*-C₆*F*₅).

HRMS(m/z): $[1/3M+CH_3CN+Na]^+$ calcd. for $C_{20}H_9AlF_{10}N_4O_4Na^+$: 609.0172, found: 609.0181.

FT-IR (solid, cm⁻¹): 1614.9, 1509.9, 1434.2, 1380.2, 1263.2, 1133.1, 1066.3, 953.5.

9

¹**H NMR** (500 MHz, C₆D₆, ppm): δ 0.89 (t, *J* = 7.1 Hz, 3H, CH₃), 3.78, 4.11 (br, 2H, -CH₂-CH₃). 7.86 (s, 1H, *H*C=CCO₂Et).

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 13.34 (s, CH₃), 68.18 (s, -CH₂-CH₃), 112.96 (br, Al-C), 130.48 (s, HC=CCO₂Et), 136.23 (s, HC=CCO₂Et) 136.24~138.39 (m, *m*-C₆F₅), 140.66~143.13 (m, *p*-C₆F₅), 148.74~151.10 (m, *o*-C₆F₅), 167.86 (s, C=O).

¹⁹F{¹H} NMR (470 MHz, C₆D₆, ppm): δ -123.2, 125.34 (br, 4F, *o*-C₆*F*₅), -151.73, 156.20 (t, J = 19.7 Hz, 2F, *p*-C₆*F*₅), -160.11, 162.92 (br, 4F, *m*-C₆*F*₅).

HRMS(m/z): [1/4M+Na]⁺ calcd. for C₁₇H₆AlF₁₀N₃O₂Na⁺: 524.0008, found: 524.0021. **FT-IR** (solid, cm⁻¹): 1712.8, 1531.1, 1444.8, 1374.1, 1336.4, 1179.2, 1069.1, 953.6.

Gutmann–Beckett methods

Et₃PO (13.4 mg, 0.1mmol, 2.0 equiv) was added into a C_6D_6 (0.6 mL) solution of **2** (40 mg, 0.05mmol, 1.0 equiv). The resulting mixtures were transferred to a NMR tube and ³¹P NMR

spectrum was collected. The relationship AN={ $(\delta P_{sample} - \delta P_{ref (in hex)}(Et_3PO)$ } ×2.215 was used to calculate AN values according to the literature reported ^[S7]. ³¹P{¹H} NMR resonance of Et₃PO: $\delta P_{ref (in hex)}(Et_3PO)$ = 41 Induced ³¹P{¹H} NMR signal shift of $\delta P(Et_3PO)$ - **2** = 78.24, $\Delta \delta$ = 37.24. AN = 82.4

S7

Spectroscopic Data

Spectra of 1

---0.27

Figure S2-2. ${}^{13}C{}^{1}H$ NMR spectrum of 1 in C₆D₆

Figure S2-3. $^{19}F\{^1H\}$ NMR spectrum of 1 in C_6D_6

Spectra of 2

Figure S2-4. ${}^{13}C{}^{1}H$ NMR spectrum of 2 in C₆D₆

Figure S2-5. $^{19}F{^1H}$ NMR spectrum of **2** in C₆D₆

Figure S2-6. 19 F- 19 F DOSY NMR spectrum of **2** in C₆D₆

Figure S2-8. In-situ ${}^{19}F{}^{1}H$ NMR spectrum of **route B** in C₆D₆

Spectra of 3

- 0 10 h	400	70 / 20 / 0
$\overline{}$	- 00	000044
ດ່ດ່ວ່ວ	444	NNNNN
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ມີມີ	000000
	~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~
	\checkmark	

Figure S2-11 ¹H NMR spectrum of 4 in C_6D_6 (# = Toluene)

Figure S2-12 ¹³C{¹H} NMR spectrum of 4 in C_6D_6 (# = Toluene)

Figure S2-14 31 P NMR spectrum of 4 in C₆D₆

Figure S2-15 ${}^{31}P{}^{1}H$ NMR spectrum of 4 in C₆D₆

--34.50

Figure S2-16 1 H NMR spectrum of **5** in Toluene-d₈

Figure S2-18 $^{19}F\{^{1}H\}$ NMR spectrum of 5 in Toluene-d₈

Figure S2-20 $^{13}C{^{1}H}$ NMR spectrum of **6** in C₆D₆

Figure S2-22 1 H NMR spectrum of 7 in C₆D₆

S19

Spectra of 8

-3.02

Figure S2-25 1 H NMR spectrum of 8 in C₆D₆.

Figure S2-26 ${}^{13}C{}^{1}H$ NMR spectrum of 8 in C₆D₆.

-128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -170 -172 δ (ppm)

Figure S2-27 $^{19}F\{^1H\}$ NMR spectrum of $\boldsymbol{8}$ in C_6D_6

Figure S2-28 1 H NMR spectrum of **9** in C₆D₆

Figure S2-30 $^{19}F\{^1H\}$ NMR spectrum of 9 in C_6D_6

X-ray Crystallographic Data

Compounds	1	2	3
CCDC	2329988	2164107	2329987
Empirical formula	C21H9AlF15N3Si	C43H8Al3F30N9	$Al_4C_{36}F_{30}N_{18}$
Formula weight	643.38	1301.52	1362.46
Temperature, K	157.00	100.00	150.00
Crystal system	triclinic	triclinic	monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>C</i> 2/c
a, Å	10.2671(4)	10.2372(8)	16.9325(12)
b, Å	10.9361(4)	13.6057(11)	15.4312(11)
c, Å	11.5321(5)	19.0058(15)	18.9284(15)
α, deg	73.646(2)	105.775(3)	90
β, deg	81.9810(10)	93.636(4)	98.544(4)
γ, deg	83.748(2)	97.319(4)	90
$V, Å^{\bar{3}}$	1227.00(9)	2513.4(3)	4890.9(6)
Z	2	2	4
$D_{\text{calcd}}, \text{g/cm}^3$	1.741	1.720	1.850
µ/mm ^{-Ī}	2.457	2.151	2.467
F(000)	636.0	1276.0	2656.0
2θ range, °	8.042-136.676	4.856-142.432	7.79-149.466
Index ranges	$-12 \le h \le 12$	$-12 \le h \le 12$	$-21 \le h \le 21$
	$-13 \le k \le 13$	$-16 \le k \le 16$	$-17 \le k \le 19$
	$-13 \le l \le 13$	$-23 \le l \le 23$	$-23 \le l \le 21$
Reflections collected	38117	89652	32773
Independent reflections	4490	9605	4980
-	$R_{int} = 0.0494$	$R_{int} = 0.0842$	$R_{int} = 0.0583$
	$R_{sigma} = 0.0262$	$R_{sigma} = 0.0407$	$R_{sigma} = 0.0336$
Data/restraints/parameters	4490/0/373	9605/0/776	4980/0/398
Goodness-of-fit on F ²	1.053	1.064	1.071
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0348$	$R_1 = 0.0582$	$R_1 = 0.0417$
	$wR_2 = 0.0940$	$wR_2 = 0.1674$	$wR_2 = 0.1103$
Final R indexes [all data]	$R_1 = 0.0356$	$R_1 = 0.0636$	$R_1 = 0.0554$
	$wR_2 = 0.0947$	$wR_2 = 0.1731$	$wR_2 = 0.1193$
Largest diff. peak/hole, e/Å ⁻³	0.32/-0.25	0.69/-0.28	0.38/-0.30

Table S3-1. Crystal data and structure refinement details for compounds 1, 2 and 3.

Compounds	4	5	6
CCDC	2329992	2329990	2329991
Empirical formula	$C_{48}H_{22}Al_2F_{20}N_6O_2P_2$	$C_{32}H_{16}Al_2F_{20}N_6O_2$	C ₃₉ H ₃₆ AlF ₁₀ N ₅
Formula weight	1210.61	950.47	791.71
Temperature, K	300.00	150.00	150.00
Crystal system	monoclinic	triclinic	monoclinic
Space group	$P2_{1}/c$	<i>P</i> -1	$P2_1/n$
a, Å	10.9682(6)	9.2131(3)	19.2920(6)
b, Å	17.7358(10)	10.4091(3)	9.3783(3)
c, Å	14.8935(9)	11.8882(4)	22.1910(6)
α, deg	90	67.1200(1)	90
β, deg	107.531(4)	84.917(2)	108.446(2)
γ, deg	90	82.702(2)	90
$V, Å^{\overline{3}}$	2762.7(3)	1040.91(6)	3808.7(2)
Z	2	1	4
$D_{\text{calcd}}, \text{g/cm}^3$	1.455	1.516	1.381
µ/mm ⁻¹	2.037	1.819	1.218
F(000)	1208.0	472.0	1632.0
2θ range, °	8.454-133.89	9.268-136.658	5.302-133.174
Index ranges	$-13 \le h \le 13$	$-11 \le h \le 10$	$-22 \le h \le 22$
-	-21≤ k ≤21	$-12 \le k \le 12$	$-11 \le k \le 11$
	-17≤1≤17	$-14 \le l \le 14$	$-26 \le l \le 26$
Reflections collected	47777	17341	69159
Independent reflections	4894	3770	6671
	$R_{int} = 0.0997$	$R_{int} = 0.0403$	$R_{int} = 0.0626$
	$R_{sigma} = 0.0435$	$R_{sigma} = 0.0276$	$R_{sigma} = 0.0273$
Data/restraints/parameters	4894/0/365	3770/5/290	6671/18/534
Goodness-of-fit on F ²	1.027	1.170	1.042
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0434$	$R_1 = 0.0461$	$R_1 = 0.0381$
	$wR_2 = 0.1090$	$wR_2 = 0.1642$	$wR_2 = 0.0963$
Final R indexes [all data]	$R_1 = 0.0656$	$R_1 = 0.0491$	$R_1 = 0.0443$
	$wR_2 = 0.1214$	$wR_2 = 0.1672$	$wR_2 = 0.1005$
Largest diff. peak/hole, e/Å-3	0.15/-0.24	0.33/-0.32	0.28/-0.25

Table S3-2. Crystal data and structure refinement details for compounds 4, 5 and 6.

	$7 \cdot C_6 H_6$	8	9 (monomer)
CCDC	2356544	2329989	2359713
Empirical formula	$C_{52}H_{26}Al_2F_{20}N_6O_4$	$C_{66}H_{28}Al_3F_{32}N_9O_{12}$	$C_{17}H_6AlF_{10}N_3O_2$
Formula weight	1232.75	1827.91	501.23
Temperature, K	150.00	150.00	150.00
Crystal system	triclinic	orthorhombic	tetragonal
Space group	<i>P</i> -1	Pcca	P4/ncc
a, Å	9.6882(2)	18.8878(6)	21.4449(5)
b, Å	11.7436(3)	20.7586(7)	21.4449(5)
c, Å	12.2421(3)	19.2371(6)	20.4556(8)
α, deg	70.2630(10)	90	90
β, deg	81.3600(10)	90	90
γ, deg	76.2790(10)	90	90
$V, Å^3$	1269.85(5)	7542.6(4)	9407.2(6)
Z	1	4	16
$D_{\rm calcd}, {\rm g/cm^3}$	1.612	1.610	1.416
μ/mm^{-1}	1.681	1.790	1.677
F(000)	618.0	3640.0	3968.0
2 heta range, °	8.164 - 136.664	4.256-136.92	8.12 - 133.18
Index ranges	$-11 \le h \le 11$	$-22 \le h \le 19$	$-25 \le h \le 25$
	$-14 \le k \le 14$	$-21 \le k \le 25$	$-23 \le k \le 20$
	$-14 \le l \le 14$	$-17 \le 1 \le 23$	$-24 \le l \le 24$
Reflections collected	35775	48037	67395
Independent reflections	4558	6916	4336
	$R_{int} = 0.0423$	$R_{int} = 0.0905$	$R_{int} = 0.1320$
	$R_{sigma} = 0.0241$	$R_{sigma} = 0.0534$	$R_{sigma} = 0.0320$
Data/restraints/parameters	4558/0/380	6916/0/554	4336/0/299
Goodness-of-fit on F ²	1.065	1.027	1.058
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0392$	$R_1 = 0.0498$	$R_1 = 0.0618$
	$wR_2 = 0.1066$	$wR_2 = 0.1307$	$wR_2 = 0.1697$
Final R indexes [all data]	$R_1 = 0.0403$	$R_1 = 0.0724$	$R_1 = 0.0817$
	$wR_2 = 0.1074$	$wR_2 = 0.1446$	$wR_2 = 0.1928$
Largest diff. peak/hole, e/Å ⁻³	0.32/-0.32	0.36/-0.41	0.39/-0.36

Table S3-3. Crystal data and structure refinement details for compounds 7, 8 and 9

Figure S3-1. Solid-state structures of **1**. Hydrogen atoms omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-2. Solid-state structures of **2**. Thermal ellipsoids are set at the 50% probability level.

Figure S3-3. Solid-state structures of **3**. Thermal ellipsoids are set at the 50% probability level.

Figure S3-4. Solid-state structures of **4**. Hydrogen atoms except those on P atoms are omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-5. Solid-state structures of **5**. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-6. Solid-state structures of 6. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-7. Solid-state structures of 7. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-8. Solid-state structures of 8. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-9. Solid-state structures of **9**. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Computational Details

Geometry optimizations were carried out with the Gaussian 16 package^[S8] with the M06-2X functional and the def2-SVP basis set. The single-point energy calculations were performed at the M06-2X/def2-TZVP level of theory for solution-phase (toluene).

The gas-phase geometry was used for all the solution phase calculations. The SMD method was used with the corresponding solvent. The corrections of Gibbs free energy from frequency calculations were added to the single-point energies to obtain the Gibbs free energy in solution, respectively. Optimized structures were visualized by the Multiwfn^[9] program.

For gas phase FIA and HIA calculation, geometries and final electronic energies were obtained at the BP86-D3/def2-SVP level of theory. The FIA reaction enthalpies were calculated according to the scheme proposed by Krossing^[S10] using the given G3 anchor points and isodesmic reactions. For solvent corrected (toluene) FIA (FIA_{solv}) and HIA (HIA_{solv}), the PCM method was used on the BP86-D3/def2-SVP-level.

Species	Thermal Corrections of Gibbs Free Energies (Hartree)	Single Point Energy (Hartree) SMD (toluene)	Solvation Energies (Hartree) SMD (toluene)
2(monomer)	0.060307	-1862.42849468	-1862.368188
2(dimer)	0.143495	-3724.95521187	-3724.811717

Table S4-1. Energy of Intermediates for the trimerization of 2(monomer) and 2(dimer).

Figure S4-1. The trimerization of the monomers **2**(monomer) and **2**(dimer). Table S4-2. Computed energies of FIAs and HIAs.

	G (a.u.)	G _{solv} (a.u.)	ΔG _{solv} (kJ/mol)	FIA (kJ/mol)	FIA _{solv} (kJ/mol)	HIA (kJ/mol)	HIA _{solv} (kJ/mol)
SbF ₅	-739.254323	-739.257384	-8.0366555	483.23	383.48		
SbF ₆ -	-839.181431	-839.233795	-137.481682				
B(C ₆ F ₅) ₃	-2206.624189	-2206.625571	-3.628441	458.29	272.65	488.09	286.43
$B(C_6F_5)_3$ -F	-2306.575458	-2306.588818	-35.07668				
B(C ₆ F ₅) ₃ -H	-2207.346414	-2207.359579	-34.5647075				
2(monomer)	-1861.055953	-1861.058681	-7.162364	544.31	405.04	487.96	330.66
2-F	-1961.01058	-1961.042945	-84.9743075				
2-Н	-1861.750005	-1861.781413	-82.461704				
2(dimer)	-3722.189903	-3722.189903	-13.458313	545.1	387.62	487.66	324.49
2-F	-3822.139918	-3822.139918	-73.0702905				
2-Н	-3722.879106	-3722.879106	-67.3782065				
F-	-99.698735	-99.781419	-217.086842				
H-	-0.498737	-0.58733	-232.6009215				

G values are calculated at BP86-D3/def2-SVP level;

 G_{solv} values are calculated at PCMBP86-D3/def2-SVP level.

Table S4-3. The Optimized structures of 2(monomer) and 2(dimer) and 3.

Reference

- [S1] G. S. Hair, A. H. Cowley, R. A. Jones, B. G. McBurnett, A. Voigt, J. Am. Chem. Soc. 1999, 121, 4922-4923.
- [S2] J. Tan, C. Hu, X. Yang, S. Ju, L. Cao, Y. Wu, L. L. Liu and D. W. Stephan, Chem. Commun., 2023,59, 282-285.
- [S3] F. E. Hahn and M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122-3172.
- [S4] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- [S5] G. Sheldrick, Acta Crystallogr. Sect. A., 2015, 71, 3-8.
- [S6] G. Sheldrick, Acta Crystallogr. Sect. A., 2008, 64, 112-122.
- [S7] V. Gutmann, Coord. Chem. Rev., 1976, 18, 225-255.
- [S8] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,; M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,; G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich,; J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian,; J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young,; F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone,; T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,;

G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda,; J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,; T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta,; F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,; V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,; K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,; J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi,; J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,; J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

[S9] T. Lu, F. Chen, J. Comput. Chem., 33, 580-592 (2012)

[S10] a) H. Böhrer, N. Trapp, D. Himmel, M. Schleep and I. Krossing, *Dalton Trans.*, 2015, 44, 7489-7499; b) P. Erdmann, J. Leitner, J. Schwarz and L. Greb, *Chem, Phys, Chem.*, 2020, 21, 987-994.

Cartesian Coordinates of the Optimized Geometries

2(monomer) (BP86-D3/Def2-SVP)

SCF Done: E(RB-P86) = -1861.10658482 A.U.

Al	-0.02476100	1.24427000	-0.04418200
F	0.95708000	-1.10495400	-1.73232600
F	-3.02559100	1.84281500	-0.82974200
F	3.38702800	-2.37441600	-1.83522900
F	5.44320600	-1.48632700	-0.26200900
F	2.66433100	1.89547500	1.53528600
F	5.09343100	0.64434400	1.41629100
F	-5.03480200	-2.25963900	0.38277500
F	-0.40290800	-1.64134100	1.08905000
F	-2.62232700	-3.21669200	1.24689000
С	-1.63974400	0.15250500	0.12070400
С	1.74802700	0.43444500	-0.10383300
С	-2.89961200	0.60575200	-0.30815200
С	1.96667900	-0.66632500	-0.94617200
С	4.25985700	-0.87313100	-0.21089600
С	-3.95028300	-1.48930100	0.29858900
С	-4.05627500	-0.18814700	-0.23127500
С	3.20031700	-1.33179500	-1.01945500
С	2.82496300	0.85937500	0.68868400
С	-1.57848000	-1.15132200	0.64458400
С	4.08000000	0.22734700	0.65043100
С	-2.70673200	-1.98218500	0.74138500
F	-5.24166800	0.26477300	-0.65030300

Ν	-0.11654400	3.02621200	-0.17634700	
Ν	-0.89647100	3.96290600	-0.21836700	
Ν	-1.57704500	4.89157400	-0.26519400	
2(monomer	[.])-F (BP86-D3	/Def2-SVP)		
SCF Done:	E(RB-P86) =	-1961.061738	33 A.U.	
Al	0.01170900	1.44407700	-0.55310300	
F	-0.58795200	-0.73676000	1.64315400	
F	3.06215000	1.87240700	0.40219800	
F	-2.82066300	-2.15712200	2.26584600	
F	-5.14301500	-1.74775300	0.85889700	
F	-2.99903900	1.51670500	-1.80523200	
F	-5.21863500	0.09271800	-1.17473700	
F	4.79683200	-2.50676900	-0.03624400	
F	0.30450100	-1.65366700	-1.25276700	
F	2.37983600	-3.39105400	-0.98967700	
С	1.58826200	0.17793900	-0.41235500	
С	-1.69036400	0.44080500	-0.11787600	
С	2.84280200	0.58169800	0.05920600	
С	-1.70865300	-0.50453300	0.91503000	
С	-4.03622100	-1.04701500	0.54633400	
С	3.76814800	-1.64618000	-0.15698600	
С	3.93404300	-0.29677900	0.19931200	
С	-2.84560400	-1.25435500	1.26441700	
С	-2.89966000	0.61677900	-0.80121800	
С	1.47488800	-1.17212200	-0.76411700	
С	-4.07021800	-0.10427100	-0.49476900	
С	2.52821300	-2.09603500	-0.64339300	
F	5.12928100	0.12640000	0.65777000	
Ν	0.11605600	2.76520500	0.75668300	
Ν	0.80965400	3.69072600	1.11132600	
N	1.42983800	4.59196000	1.50631100	
F	-0.00939200	2.10891400	-2.12380800	
2(monomer)-H (BP86-D3/Def2-SVP)				
SCF Done:	E(RB-P86) =	-1861.806390	92 A.U.	
Al	0.01438400	1.50610300	-0.77825000	
F	-0.58868000	-0.50504400	1.61880000	

S34

F	3.06933100	1.97595600	0.12446300
F	-2.81910700	-1.87451200	2.34603400
F	-5.13205700	-1.60285500	0.89291100
F	-2.98150700	1.42509200	-2.03503500
F	-5.20096400	0.05031000	-1.29743200
F	4.79176500	-2.43073100	0.06872700
F	0.29373500	-1.67773600	-1.19260100
F	2.36528400	-3.38846700	-0.78760400
С	1.58287000	0.22057400	-0.52156800
С	-1.68139200	0.51037700	-0.24780700
С	2.84307200	0.65876200	-0.09804500
С	-1.70272500	-0.34069700	0.86423700
С	-4.02625600	-0.92576800	0.52765800
С	3.76349400	-1.58107500	-0.12049000
С	3.93402800	-0.20569800	0.11279300
С	-2.83976300	-1.06245000	1.26919800
С	-2.88692600	0.61814500	-0.95108600
С	1.46719900	-1.15496800	-0.75228700
С	-4.05690100	-0.07954200	-0.59332700
С	2.51925800	-2.06779200	-0.55757600
F	5.13382100	0.25428600	0.52314400
N	0.12528200	2.87492500	0.50263400
N	0.78123100	3.85546300	0.76879000
N	1.36980200	4.81040000	1.08109600
Н	-0.00154800	2.05924000	-2.29324800
2(dimer) (E	BP86-D3/Def2	-SVP)	
SCF Done:	E(RB-P86) =	-3722.316368	93 A.U.
Al	0.81469100	-1.24265400	0.00002500
F	1.93950600	-4.21004400	0.00132900
F	2.82534500	-1.08238900	2.37373800
F	0.62591800	-6.59357800	0.00130700
F	-2.10996000	-6.64586000	0.00007100

Al	0.81469100	-1.24265400	0.00002500
F	1.93950600	-4.21004400	0.00132900
F	2.82534500	-1.08238900	2.37373800
F	0.62591800	-6.59357800	0.00130700
F	-2.10996000	-6.64586000	0.00007100
F	-2.24016700	-1.91997800	-0.00118600
F	-3.54393300	-4.31147900	-0.00119600
F	6.90040200	-0.58486600	-0.00075100
F	2.82474800	-1.08272000	-2.37414100

F	5.55387500	-0.74877300	-2.37839900
Ν	-0.00007800	-0.00006300	-1.27568800
Ν	-0.00062400	-0.00056000	-2.51228000
Ν	-0.00109200	-0.00102000	-3.65563300
С	2.76615900	-1.09325100	-0.00019000
С	-0.10389000	-2.98051800	0.00001700
С	3.48935200	-1.00416100	1.19245600
С	0.59133400	-4.20165800	0.00068000
С	-1.47003900	-5.47571900	0.00006000
С	5.57549800	-0.74716700	-0.00056700
С	4.88239900	-0.83210200	1.22388800
С	-0.06204500	-5.44707700	0.00068300
С	-1.50622100	-3.05816500	-0.00058200
С	3.48905000	-1.00432400	-1.19303800
С	-2.20698600	-4.27483600	-0.00060500
С	4.88209000	-0.83227600	-1.22483800
F	5.55446400	-0.74842800	2.37727200
Al	-0.81469100	1.24265500	-0.00002600
F	-1.93950600	4.21004500	-0.00131800
F	-2.82534600	1.08238900	-2.37373800
F	-0.62591800	6.59357900	-0.00129600
F	2.10996000	6.64586000	-0.00007100
F	2.24016600	1.91997800	0.00117500
F	3.54393300	4.31147900	0.00118600
F	-6.90040200	0.58486600	0.00075200
F	-2.82474700	1.08271900	2.37414100
F	-5.55387500	0.74877200	2.37840000
Ν	0.00007800	0.00006500	1.27568700
Ν	0.00062600	0.00056100	2.51227800
Ν	0.00109000	0.00101600	3.65563100
С	-2.76615900	1.09325100	0.00019000
С	0.10389000	2.98051800	-0.00001700
С	-3.48935300	1.00416100	-1.19245600
С	-0.59133400	4.20165800	-0.00067500
С	1.47004000	5.47571900	-0.00005900

С	-5.57549800	0.74716700	0.00056800
С	-4.88240000	0.83210200	-1.22388700
С	0.06204500	5.44707800	-0.00067700
С	1.50622000	3.05816500	0.00057700
С	-3.48904900	1.00432400	1.19303800
С	2.20698600	4.27483600	0.00060000
С	-4.88208900	0.83227500	1.22483900
F	-5.55446500	0.74842900	-2.37727200
2(dimer)-F	(BP86-D3/De	f2-SVP)	
SCF Done:	E(RB-P86) =	-3822.272035	550 A.U.
Al	1.10025600	-1.52318400	-1.61463500
F	2.64123100	-3.97370600	-0.58648300
F	-1.82252200	-1.70644900	-2.55384700
F	5.01613900	-4.23956900	0.74465000
F	6.54852300	-2.02181300	1.25028300
F	3.33557900	0.73270200	-0.86179900
F	5.70044100	0.45838300	0.44605900
F	-3.97838000	-3.75062900	1.11747100
F	0.68257500	-3.00306300	1.29072000
F	-1.58982500	-3.91103200	2.45706700
Ν	0.90468300	-0.03664600	1.07679600
Ν	1.76714000	-0.17477200	1.91084000
Ν	2.59724600	-0.36752600	2.69620800
С	-0.46949300	-2.35708300	-0.69896200
С	2.89156900	-1.61341900	-0.75073000
С	-1.71788500	-2.28684000	-1.33383000
С	3.37171600	-2.85967300	-0.33299800
С	5.37785600	-1.89190000	0.60513700
С	-2.85265600	-3.30982000	0.53605400
С	-2.90436200	-2.76415200	-0.75765100
С	4.58769400	-3.02677500	0.35043100
С	3.71486000	-0.51310900	-0.48616700
С	-0.46437900	-2.91195200	0.58803700
С	4.94024200	-0.62078600	0.19447800
С	-1.62703900	-3.39173200	1.21891800
F	-4.08797500	-2.67180100	-1.39403200

Al	-0.12943200	1.03841000	0.02471900
F	-2.44949500	1.48801900	-1.96299700
F	-0.99345500	2.93389600	2.24176500
F	-5.08277900	0.74270800	-1.91609000
F	-6.09400500	-0.53576900	0.29021200
F	-1.85722100	-0.38992900	2.37521200
F	-4.47144400	-1.09505200	2.42796800
F	0.75560700	7.10444500	0.84078200
F	1.46546200	3.26685800	-1.82635900
F	1.81006000	5.92555500	-1.39623100
Ν	0.45430900	0.35843300	-1.70807500
N	0.28202600	0.89324200	-2.80909600
N	0.13285700	1.38396500	-3.83288400
С	0.21334200	2.99984800	0.19026700
С	-2.05615600	0.56773200	0.19461300
С	-0.30376600	3.64871600	1.31997200
С	-2.92551200	0.83992500	-0.86710200
С	-4.80246900	-0.17651300	0.26046900
С	0.58123700	5.78998700	0.63385800
С	-0.14124600	5.02273900	1.56578400
С	-4.28133700	0.47637500	-0.87166900
С	-2.61586600	-0.08113900	1.30148500
С	0.92719000	3.80224500	-0.70867000
С	-3.96877100	-0.46145300	1.35546100
С	1.12185000	5.18222100	-0.51338300
F	-0.65225500	5.61065900	2.66106800
F	1.21615600	-1.90613100	-3.27102300
2(dimer)-H	(BP86-D3/De	ef2-SVP)	
SCF Done:	E(RB-P86) =	-3723.016354	61 A.U.
Al	-1.28710100	-1.37834800	1.82037900
F	-3.06018400	-3.68228400	0.86425200
F	1.61017700	-1.92424800	2.65922400
F	-5.43748300	-3.77843600	-0.48567100
F	-6.73082200	-1.44670000	-1.13271800
F	-3.27479700	1.07891700	0.87748100
F	-5.64020700	0.97445500	-0.44640400

F	3.40675400	-4.23641000	-1.04760700
F	-1.11879100	-2.89413400	-1.13248500
F	0.99032500	-4.08612000	-2.33645100
N	-0.93865100	0.07150600	-1.13458100
Ν	-1.87173300	-0.01649200	-1.89332600
N	-2.76518800	-0.15432700	-2.61952000
С	0.14698000	-2.38827300	0.83218500
С	-3.06584300	-1.30323300	0.89666100
С	1.40725900	-2.48397100	1.43970200
С	-3.67071500	-2.51333300	0.53867200
С	-5.55875000	-1.40120400	-0.47810900
С	2.36085000	-3.64999900	-0.44572500
С	2.50968700	-3.11376400	0.84441600
С	-4.89104200	-2.59490200	-0.15102400
С	-3.77223500	-0.14247100	0.56241000
С	0.04318800	-2.94313200	-0.45130500
С	-4.99738800	-0.16169400	-0.12758900
С	1.12105000	-3.57206900	-1.10240400
F	3.70706000	-3.17785700	1.45863500
Al	0.19249000	0.98014400	-0.03843900
F	2.52385800	1.15938700	1.99485400
F	1.60899400	2.78843800	-2.07286000
F	5.05119700	0.12110000	1.98850400
F	5.94136900	-1.28258300	-0.19447500
F	1.77601200	-0.67757400	-2.33875400
F	4.29331300	-1.67219300	-2.35100500
F	0.19419600	7.12476700	-0.81550400
F	-1.38302100	3.37712000	1.59249900
F	-1.32602200	6.06033100	1.20139100
Ν	-0.46296800	0.44953000	1.73120700
Ν	-0.26067800	1.08115200	2.77359600
N	-0.08141000	1.65782000	3.74809300
С	0.12969800	2.97446700	-0.21230600
С	2.04940000	0.26732100	-0.16067200
С	0.88391600	3.56769800	-1.23505400

ChE- (DDOC	D2/Def2 GVI))	
Н	-1.39267400	-1.65968500	3.39643200
F	1.66699200	5.48563400	-2.45013500
С	-0.60471800	5.24770600	0.41052100
С	3.85096400	-0.97904200	-1.28857000
С	-0.61231700	3.85193400	0.58952500
С	2.54850300	-0.44945300	-1.25480400
С	4.23824700	-0.06379600	0.93496000
С	0.92982500	4.95458200	-1.45916400
С	0.17374800	5.79643500	-0.62379800
С	4.69755900	-0.78089700	-0.18460300
С	2.93159200	0.44901000	0.91026500

```
SbF5 (BP86-D3/Def2-SVP)
```

```
Sb
0.00000200
0.00013600
0.00000000

F
0.00000200
0.00340300
1.92298800

F
0.00753400
1.91467900
0.00000000

F
0.0000200
0.00340300
-1.92298800
```

SCF Done: E(RB-P86) = -739.231044542 A.U.

F	1.65161100	-0.96762500	0.00000000
F	-1.65916100	-0.95463100	0.00000000

SbF6⁻(BP86-D3/Def2-SVP)

BP86-D3/Def2-SVP

SCF Done: E(RB-P86) = -839.163326436 A.U. Sb $0.0000000 \quad 0.0000000 \quad 0.0000000$ F 0.0000000 0.0000000 1.95131100 F 0.0000000 0.0000000 -1.95131100 F $0.00000000 \quad 1.95131100 \quad 0.00000000$ F -1.95131100 0.00000000 0.00000000 F 0.0000000 -1.95131100 0.00000000 F 1.95131100 0.0000000 0.00000000 B(C₆F₅)₃ (BP86-D3/Def2-SVP)

SCF Done:E(RB-P86) = -2206.70915384A.U.B-0.000164000.000843000.00000800C1.315412000.853746000.00000100C2.459846000.46155500-0.73047600C1.425566002.058285000.73087000C3.643184001.21537100-0.75114100

С	2.59736100	2.82994400	0.75150600
С	3.70931300	2.40426600	0.00010200
С	0.08096500	-1.56491700	0.00018800
С	-0.83000900	-2.36047100	-0.73081600
С	1.06953000	-2.26192000	0.73095300
С	-0.76797900	-3.76213900	-0.75144800
С	1.15273500	-3.66250700	0.75169300
С	0.22865500	-4.41324200	0.00021700
С	-1.39684300	0.71318600	0.00020100
С	-2.49454900	0.20514100	0.73095000
С	-1.63082000	1.89961000	-0.73108900
С	-3.74943500	0.83270400	0.75140400
С	-2.87605000	2.54609300	-0.75196900
С	-3.93805600	2.00811100	-0.00031900
F	-1.63559100	-4.48104200	-1.47026300
F	0.29768100	-5.74378800	0.00016900
F	2.09035600	-4.28781800	1.47009900
F	1.96384600	-1.58809900	1.47367300
F	-1.78860400	-1.78284400	-1.47438000
F	2.43852400	-0.65814100	-1.47296100
F	0.39558900	2.49617100	1.47438600
F	2.67088200	3.95441500	1.47013400
F	4.82760600	3.12850700	0.00022000
F	4.69962200	0.82235400	-1.46928000
F	-2.35765000	-0.90616900	1.47374000
F	-0.65135000	2.44136100	-1.47446700
F	-3.06530400	3.65676200	-1.47090200
F	-5.12515300	2.61301300	-0.00055500
F	-4.75958000	0.33297500	1.46983100
B(C6F5)3-F	(BP86-D3/De	f2-SVP)	

BP86-D3/Def2-SVP

SCF Done: E(RB-P86) = -2306.63094768 A.U.

В	-0.09818500	-0.05987500	-0.93680500
С	0.39594200	1.42673700	-0.36800000
С	-0.18350800	2.16971800	0.67219100
С	1.55101900	1.99503800	-0.93542500

С	0.31014800	3.41571200	1.10285900	
С	2.08110200	3.23749000	-0.54120300	
С	1.45381600	3.95209200	0.49172400	
С	-1.64324200	-0.44943800	-0.48245700	
С	-2.05746400	-1.65502400	0.10245400	
С	-2.68138300	0.44365300	-0.80398900	
С	-3.40498300	-1.95472000	0.38860200	
С	-4.03786900	0.19103400	-0.54206300	
С	-4.40188100	-1.02512300	0.06009400	
С	1.04008800	-1.12251400	-0.36859000	
С	1.85159900	-1.92721900	-1.18482000	
С	1.30680500	-1.20474600	1.00807100	
С	2.87204600	-2.75402300	-0.67064400	
С	2.30718500	-2.01533400	1.56742700	
С	3.10325900	-2.79561000	0.71222100	
F	-3.74895200	-3.12909000	0.95634300	
F	-5.69660600	-1.29487400	0.31773000	
F	-4.99247600	1.08941700	-0.85942500	
F	-2.40003000	1.63153000	-1.38188900	
F	-1.17261100	-2.62551300	0.42864100	
F	-1.27336000	1.72005800	1.33373400	
F	2.22951300	1.34427200	-1.90336000	
F	3.18872500	3.74113300	-1.12397900	
F	1.94420600	5.14221300	0.89090500	
F	-0.29230900	4.09556600	2.10020100	
F	1.69330300	-1.96605500	-2.52181000	
F	0.55539600	-0.49198600	1.88076800	
F	2.51369500	-2.05893200	2.89974400	
F	4.07371600	-3.58299700	1.21746400	
F	3.62936300	-3.51002900	-1.49288000	
F	-0.10547800	-0.02326300	-2.36070800	
B(C ₆ F ₅) ₃ -H (BP86-D3/Def2-SVP)				
SCF Done: E(RB-P86) = -2207.41087896 A.U.				

В	-0.05536000	-0.06917000	-0.87572900
С	1.20972700	-0.97477200	-0.36630600
С	1.63944400	-0.98391000	0.97104500

С	1.97987700	-1.74795300	-1.24992300
С	2.75959000	-1.70077500	1.42445400
С	3.11187300	-2.48205200	-0.84541500
С	3.50503800	-2.45403500	0.50173000
С	0.19459400	1.47332600	-0.37493200
С	-0.47342200	2.12520300	0.67473400
С	1.18716800	2.23870400	-1.01414700
С	-0.20875100	3.45420100	1.05556800
С	1.49218200	3.56714000	-0.66723000
С	0.78636600	4.17922100	0.38148900
С	-1.53022000	-0.65762900	-0.48694500
С	-2.67587400	0.05178100	-0.89654900
С	-1.79776500	-1.86892500	0.17239600
С	-3.99211800	-0.38182100	-0.67087700
С	-3.09929700	-2.34884300	0.42159700
С	-4.20601600	-1.59836900	-0.00096000
F	-0.88501000	4.03607900	2.06805200
F	1.06062400	5.45141400	0.73516300
F	2.45147600	4.25801100	-1.31886200
F	1.91041600	1.70505800	-2.02365300
F	-1.42869900	1.48971000	1.38953600
F	0.94585800	-0.29758400	1.90749100
F	1.65769000	-1.83159500	-2.55839800
F	3.82404200	-3.21068900	-1.73099900
F	4.58515800	-3.15068600	0.90934700
F	3.12796300	-1.68218100	2.72239900
F	-2.53875400	1.22920100	-1.54876600
F	-0.79525300	-2.66620000	0.61221400
F	-3.29398100	-3.52086000	1.06187300
F	-5.45974800	-2.04010900	0.22725500
F	-5.04984900	0.34677100	-1.08515800
Н	-0.02498300	-0.04416700	-2.10716200