Supporting Information

Achieving High Performance Ultra-Broadband Near-infrared Emission through Multi Lattice Sites Occupancy and Energy Transfer for NIR LED

Applications

Mingkai Wei^a, Zixi Chen^a, Yongying Chen^a, Xinxiang Liang^a, Na Li^a, Xuejie Zhang^a, *, Wei Li^a, Haoran Zhang^a, Maxim S. Molokeev^b, and Bingfu Lei^a, *

^a Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University Guangzhou 510642, Guangdong, P. R. China

^b Department of Physics and Technical Sciences, Western Caspian University, Baku, AZ 1001, Azerbaijan

Corresponding authors E-mail: tleibf@scau.edu.cn (Bingfu Lei), zhangxuejie@scau.edu.cn

Supplementary formula

The crystal field parameters for the crystal field of Cr³⁺ ions in an octahedral environment are calculated as follows:¹

 $10D_q = E(4A_2 \rightarrow 4T_1)(1)$

$$\frac{D_q}{B} = \frac{15(m-8)}{m^2 - 10m}$$
(2)

$$m = \frac{E(4A_2 - 4T_1) - E(4A_2 - 4T_2)}{D_q}$$
(3)

The internal quantum efficiency (IQE) is defined as the percentage of emitted photons relative to the number of absorbed photons. This is calculated using the following equation:

$$IQE = \frac{\int L_s}{\int E_R - \int E_s} \times 100\% (4)$$

where, L_S represents the number of photons emitted from the sample, E_R denotes the number of exciting photons, and E_S signifies the number of reflected photons for the BaSO₄ reference. The external quantum efficiency (EQE) is defined as the percentage of emitted photons relative to the number of excitation photons. This is calculated using the following equation:

$$EQE = \frac{\int L_s}{\int E_R} \times 100\% (5)$$

The absorption efficiency (AE) is defined as the percentage of the number of absorbed photons (by the sample) to that of excitation photons:

$$AE = \frac{\int E_R - \int E_s}{\int E_R} \times 100\% (6)$$

So the EQE is also calculated using the following equation:

$$EQE = IQE \times AE \times 100\% (7)$$

Supplementary figures and tables

Figure S1 XRD patterns of (a) LMG:xCr³⁺ & (b) LMG:0.2Cr³⁺ ,yYb³⁺.

Figure S2 Rietveld refinement of (a) LMG:0.1Cr³⁺ & (b) LMG:0.2Cr³⁺& (c) LMG:0.3Cr³⁺. (d) Variation of Ga-O bond length with doping concentration of Cr³⁺ ions.

Figure S3 Elemental mappings (La, Mg, Ga, Cr and Yb).

Figure S4 (a) excitation and (b) emission spectra of LMG: $xCr^{3+}(x=0.05-0.5)$.

Figure S5 Fluorescence decay curves at three peaks.

Figure S6 Peak-differentiating and imitating of (a) $LMG:0.05Cr^{3+}$ and (b) $LMG:0.1Cr^{3+}$ and (c) $LMG:0.3Cr^{3+}$ and (d) $LMG:0.5Cr^{3+}$. (e) Variation curves of the three peaks of $LMG: xCr^{3+}(x=0.05-0.5)$.

Figure S7 (a) Emission spectra of LMG: $0.05Yb^{3+}$, xCr³⁺. (b) Fluorescence decay curves of LMG: $0.05Yb^{3+}$, xCr³⁺.

Figure S8 IQE, AE and EQE of LMG:0.2Cr³⁺.

Figure S9 Fluorescence lifetimes at (a) 730 nm, (b) 805 nm and (c) 900 nm versus Yb³⁺ ion doping concentration. (d) Energy transfer efficiency versus Yb³⁺ concentration calculated from fluorescence lifetime data.

Figure S10 (a) Relationship between the temperature of fruit and the duration of NIR pc-LED exposure. (b) Relationship between operating temperature and operating current of NIR prototype devices.

Formula	LaMgGa ₁₁ O ₁₉ :0.2Cr ³⁺ ,0.05Yb ³⁺
Sp. Gr.	P6 ₃ /mmc
<i>a</i> (Å)	5.794620(14)
<i>c</i> (Å)	22.67195(27)
<i>V</i> (Å ³)	659.279(24)
Z	2
2ϑ-interval, º	10-80
R _{wp} , %	3.09
R _p , %	1.79
χ²	2.08

Table S1 Main parameters of processing and refinement of the LMG:0.2Cr³⁺,0.05Yb³⁺ sample.

Table S2 Fractional atomic coordinates of LaMgGa $_{11}O_{19}$:0.2Cr³⁺,0.05Yb³⁺.

Atom	X	У	Z
La1	2/3	-2/3	1/4
La2	0.73286(14)	-0.73286(14)	1/4
Yb1	2/3	-2/3	1/4
Ga1	0	0	0
Mg1	0	0	0
Cr1	0	0	0
Ga2	0	0	0.23982(36)
Ga3	1/3	-1/3	0.027(27)
Mg2	1/3	-1/3	0.03(12)
Ga4	1/3	-1/3	0.189651(98)
Cr4	1/3	-1/3	0.189651(98)
Ga5	-0.16607(21)	0.16607(21)	0.10835(53)
Cr5	-0.16607(21)	0.16607(21)	0.10835(53)
01	0	0	0.15235(48)
02	2/3	-2/3	0.06122(47)
03	0.18925(11)	-0.18925(11)	1/4
04	0.14962(88)	-0.14962(88)	0.05560(24)
05	0.50945(86)	-0.50945(86)	0.15248(29)

	Table S3 Bon	d length data	of Ga ¹ -O, G	Ga ⁴ -O, and	Ga⁵-O octahedron.
--	--------------	---------------	--------------------------	-------------------------	-------------------

Ga	¹ -0	Ga	a ⁴ -O	Ga	5-0
1.946 Å		1.991 Å		2.004 Å	
1.946 Å		1.991 Å		2.004 Å	
1.946 Å	Average	1.991 Å	Average	1.990 Å	Average
1.946 Å	1.946 Å	1.975 Å	1.983 Å	1.905 Å	1.971 Å
1.946 Å		1.975 Å		1.905 Å	
1.946 Å		1.975 Å		2.023 Å	

Phosphor	IQE (%)	EQE (%)	Thermal stability(%) @ temperture	NIR output power (mW) @ photoelectric efficiency	Ref.
SrGa ₄ O ₇ :Cr ³⁺ ,Yb ³⁺	31.4	/	74%@423 K	11.1 mW@100 mA	2
Sr ₂ ScTaO ₆ :Cr ³⁺ ,Yb ³⁺	/	/	78.4%@373 K	/	3
$Ca_2LuZr_2Al_3O_{12}$:Cr ³⁺ ,Yb ³⁺	77.2	/	/	41.8 mW@100 mA	4
$(Ca_{0.5}Li_{0.5})(Mg_{0.5}Sc_{0.5})Si_2O_6:$ Cr^{3+},Yb^{3+}	46	/	69%@423 K	~35.9 mW@100 mA	5
La ₂ MgHfO ₆ :Cr ³⁺ ,Yb ³⁺	69	18.4	81.6%@373 K	/	6
$Mg_4Nb_2O_9$:Cr ³⁺ ,Yb ³⁺	72.6	36	63%@373 K	~38.5 mW@100 mA	7
LaMgGa ₁₁ O ₁₉ :Cr ³⁺ ,Yb ³⁺	94.2	40.8	89.3%@373 К 72.7%@423 К	28.3 mW@100 mA	This work

Table S4. IQE, EQE, thermal stability and Photoelectric properties of Cr³⁺ and Yb³⁺ co-doped NIR emitting phosphor.

Table S5 Detailed measured data of the NIR pc-LED output power and efficiency under different current drive.

Current(mA)	Voltage(V)	Input electrical power (mW)	NIR output power (mW)	photoelectric efficiency (%)
20	2.65	53	6.0	11.3
50	2.74	137	14.1	10.3
100	2.85	285	28.3	9.9
150	2.84	426	41.5	9.7
200	2.91	582	53.4	9.2
250	2.96	742	64.9	8.7
350	3.08	1080	84.5	7.8

Reference

1F. Zhu, Y. Gao, C. Zhao, J. Pi and J. Qiu, ACS Appl. Mater. Interfaces, 2023, 15, 39550–39558.

- 2Y. Xu, L. Luo, W. Zhao, W. Zhang and Z. Hu, Optical Materials, 2023, 145, 114460.
- 3Z. Shao, X. Zhou, L. Li, Y. Wang, F. Ling, C. Jing, X. Tang and Z. Cao, *Ceramics International*, 2023, **49**, 32860–32867.
- 4S. He, L. Zhang, H. Wu, H. Wu, G. Pan, Z. Hao, X. Zhang, L. Zhang, H. Zhang and J. Zhang, *Advanced Optical Materials*, 2020, **8**, 1901684.
- 5T.-Y. Hwang, Y. Choi, Y. Song, N. S. A. Eom, S. Kim, H.-B. Cho, N. V. Myung and Y.-H. Choa, *J. Mater. Chem. C*, 2018, **6**, 972–979.
- 6H. Suo, Y. Wang, X. Zhao, X. Zhang, L. Li, K. Guan, W. Ding, P. Li, Z. Wang and F. Wang, *Laser & Photonics Reviews*, 2022, **16**, 2200012.
- 7 M. Zheng, X. Dong, D. Wu, Y. Wang, W. Zhou, Y. Liu and L. Zhang, *AIP Advances*, 2024, **14**, 055133.

Article titles of bibliographic references

1 Achieving Broadband NIR-I to NIR-II Emission in an All-Inorganic Halide Double-Perovskite Cs₂NaYCl₆:Cr³⁺ Phosphor for Night Vision Imaging

2 Highly efficient and stable near-infrared broadband luminescence in SrGa₄O₇:Cr³⁺, Yb³⁺ phosphor

3 Broadband near-infrared double-perovskite phosphor Sr₂ScTaO₆:Cr³⁺, Yb³⁺ for NIR pc-LED applications

4 Efficient Super Broadband NIR Ca₂LuZr₂Al₃O₁₂:Cr³⁺,Yb³⁺ Garnet Phosphor for pc-LED Light Source toward NIR Spectroscopy Applications

5 A noble gas sensor platform: linear dense assemblies of single-walled carbon nanotubes (LACNTs) in a multi-layered ceramic/metal electrode system (MLES)

6 Rapid Nondestructive Detection Enabled by an Ultra-Broadband NIR pc-LED

7 Cr³⁺ and Yb³⁺ co-doped perovskite-like phosphor with improved thermal stability by efficient energy transfer