Supplementary Information

Inch-sized single crystal of radiation-sensitive copper-based hybrid perovskite for direct X-ray detection

Yicong Lv^{a,b}, Xiantan Lin^{a,b}, Fafa Wu^a, Zengshan Yue^a, Xiaoqi Li^b, Fen Zhang^{a,b}, Qingyin Wei^a, Kai Li^a, Qianxi Wang^a, Junhua Luo^{a,b,c} and Xitao Liu^{*a,b,c}

a. State Key Laboratory of Functional Crystals and Devices , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.

b. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China.

c. University of Chinese Academy of Sciences, Beijing 100049, China.

Email: xtliu@fjirsm.ac.cn

Experiment

Synthesis and crystal growth

 $CuCO_3 \cdot Cu(OH)_2$ (0.22 g, 1 mmol) was dissolved in a 38% w/w aqueous HCl solution (5 mL) by heating under constant stirring. Subsequently, 2,2-difluoroethanamine (0.167 g, 2 mmol) was added to form (2FEA)₂CuCl₄ microcrystals in the solution. This solution was heated until the initial microcrystalline was completely dissolved. Large crystals grew in a closed temperature-controlled oven. The temperature decreased at the rate of 1 K day⁻¹. A few days later, a size of 30 × 28 × 0.5 mm³ single crystal was acquired.

Single crystal and powder X-ray diffraction

We utilized Mo Ka radiation at 200 K on a Super Nova diffractometer to obtain single crystal X-ray diffraction (SC-XRD) data for $(2FEA)_2CuCl_4$. Our crystal structure was solved through the direct method and refined by full-matrix least-squares method refinements on F2 using the SHELXLTL software. Using the difference Fourier transform, we determined the non-hydrogen atoms and hydrogenated the hydrogen atoms according to our knowledge of structural chemistry. **Table S1** outlines the crystal data and structural refinement of $(2FEA)_2CuCl_4$. We also performed powder X-ray diffraction of $(2FEA)_2CuCl_4$ on a Rigaku by MiniFlex 600 diffractometer at room temperature, collecting diffractograms at a scan speed of 7.0 degrees per minute over a 2 θ range from 5° to 40°.

Optical measurement

UV-visible diffuse reflectance spectroscopy was carried out at ambient temperature, with the scanning wavelength ranging from 200 to 800 nm, using a Lambda 950 spectrometer. The reference material with a reflectivity of 100% was BaSO₄. **Fabrication and measurement of X-ray detector**

The vertical-type detectors have been engineered to stand perpendicular to the surface of $(2FEA)_2CuCl_4$ single crystals. Silver (Ag) electrodes were evenly applied across the opposing faces of the crystal, which measures 0.7 mm in thickness, covering an electrode area of 5.2 mm². We conducted the photoconductive assessments in the presence of X-ray radiation, set at an energy level of 80 keV. The rate of radiation dose was precisely calibrated using a standard commercial dosimeter. **Degree of octahedral distortion**

The average octahedral elongation, Δd , is calculated as:

$$\Delta d = \sum_{i=1}^{6} \frac{(d_i - d_0)^2}{6}$$

where d_i represents the individual Cu-Cl bond lengths and is the average Cu-Cl bond length. Calculated according to **Table S2**, Δd is 0.01454.

The bond angle variance, σ^2 , is calculated as:

$$\sigma_{\theta}^{2} = \sum_{i=1}^{12} \frac{(\theta_{i} - 90^{\circ})^{2}}{11}$$

where θ_i represents the individual Cl-Cu-Cl bond angles. Calculated according to **Table S3**, σ^2 is 0.46.

Identification code	(2FEA) ₂ CuCl ₄
Empirical formula	$C_4H_{12}Cl_4CuF_4N_2$
Formula weight	369.50
Temperature/K	300.16
Crystal system	monoclinic
Space group	C2/c
$a/\text{\AA}$	22.958(5)
b/Å	7.4311(13)
$c/{ m \AA}$	7.3162(13)
$\alpha/^{\circ}$	90
β^{\prime}	90
$\gamma/^{\circ}$	90
Volume/Å ³	1248.2(4)
Ζ	4
$ ho_{ m calc} { m g/cm^3}$	1.966
μ/mm^{-1}	2.625
F(000)	732.0
Crystal size/mm ³	30 imes 28 imes 0.5
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.762 to 55.002
Index ranges	$-29 \le h \le 28, -9 \le k \le 8, -9 \le l \le 8$
Reflections collected	3437
Independent reflections	1421 [$R_{\text{int}} = 0.0776, R_{\text{sigma}} = 0.0828$]
Data/restraints/parameters	1421/49/72
Goodness-of-fit on F^2	1.149
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1419, wR_2 = 0.3735$
Final R indexes [all data]	$R_1 = 0.1549, wR_2 = 0.3849$
Largest diff. peak/hole / e Å ⁻³	1.56/-1.07

Table S1 Crystal data and structure refinement for (2FEA)₂CuCl₄.

Atom	Atom	Length/Å	
Cu (01)	Cl (02)1	2.303(3)	
Cu (01)	Cl (02)	2.303(3)	
Cu (01)	Cl (02)2	2.925(3)	
Cu (01)	Cl (03)	2.269(4)	
Cu (01)	Cl (03)1	2.269(4)	
N (1)	C (5)	1.48(5)	
C (5)	C (8)	1.406(19)	
C (8)	F (1)	1.347(14)	
C (8)	F (2)	1.355(14)	

Table S2 Bond Lengths for (2FEA)₂CuCl₄.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C102	Cu01	C102 ¹	180.0	C103 ¹	Cu01	C102 ²	89.90(16)
C102	Cu01	C102 ²	90.95(3)	C103	Cu01	C102 ³	89.90(16)
C102	Cu01	C102 ³	89.05(3)	C103 ¹	Cu01	C102 ³	90.10(16)
C102 ³	Cu01	C102 ²	180.0	C103	Cu01	C102 ²	90.10(16)
C102 ¹	Cu01	C102 ²	89.05(3)	C103 ¹	Cu01	C103	180.00(2)
C1021	Cu01	C102 ³	90.95(3)	C8	C5	N1	114(3)
C103	Cu01	C102	90.52(18)	F1	C8	C5	119(5)
C103 ¹	Cu01	C102	89.48(18)	F1	C8	F2	96(4)
C1031	Cu01	C1021	90.52(18)	F2	C8	C5	119(3)
C103	Cu01	C102 ¹	89.48(18)				

Table S3 Bond Angle for (2FEA)₂CuCl₄

Figure S1 The TG curve of (2FEA)₂CuCl₄.

Figure S2 SCXRD diffraction spots of (2FEA)₂CuCl₄.

Compound	Dimensionality	μτ (cm ² V ⁻¹)	LoD (µGy s ⁻¹)	Sensitivity (μC Gy ⁻¹ cm ⁻²)	Refs.
(3AP)PbCl ₄	2D	2.74×10 ⁻³	1.54	791.8	1
(3AP)PbBr ₄	2D	2.38×10-3	3.04	348.6	1
(3AP)PbI ₄	2D	2.61×10-3	3.483	124.9	1
(BDA)PbI4	2D	4.43×10 ⁻⁴	0.34	242	2
MAPbBr ₃	3D	1.2×10 ⁻²	0.5	80	3
(R-	2D	2.2×10 ⁻⁵	0.547	949.6	4
MPA) ₄ AgBiI ₈					
(2FEA) ₂ CuCl ₄	2D	5.06×10 ⁻⁴	0.130	1106.44	This work

Table S4 Performances of some reported halide perovskite X-ray SC detectors.

Reference

- C. Ma, L. Gao, Z. Xu, X. Li, X. Song, Y. Liu, T. Yang, H. Li, Y. Du, G. Zhao, X. Liu, M. G. Kanatzidis, S. F. Liu and K. Zhao, Centimeter-Sized 2D Perovskitoid Single Crystals for Efficient X-ray Photoresponsivity, *Chem. Mat.*, 2022, **34**, 1699-1709.
- Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei, Y. Xia, Y. Chen, K. Zhao, W. Huang and S. F. Liu, Centimeter-Sized Single Crystal of Two-Dimensional Halide Perovskites Incorporating Straight-Chain Symmetric Diammonium Ion for X-Ray Detection, *Angew. Chem. Int. Ed.*, 2020, 59, 14896-14902.
- 3. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao and J. Huang, Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single

crystals, Nat. Photonics, 2016, 10, 333-339.

 J. Wu, S. You, P. Yu, Q. Guan, Z.-K. Zhu, Z. Li, C. Qu, H. Zhong, L. Li and J. Luo, Chirality Inducing Polar Photovoltage in a 2D Lead-Free Double Perovskite toward Self-Powered X-ray Detection, ACS Energy Lett., 2023, 8, 2809-2816.