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Experimental 

Computational Details

The calculations were carried out using density functional theory with the PBE form of 

generalized gradient approximation functional (GGA).S1 The Vienna ab−initio simulation package 

(VASP)S2−S5 was employed. The plane wave energy cutoff was set as 400 eV. The Fermi scheme was 

employed for electron occupancy with an energy smearing of 0.1 eV. The first Brillouin zone was 

sampled in the Monkhorst−Pack grid.S6 The 3×3×1 k−point mesh for the surface calculation. The 

energy (converged to 1.0 ×10−6 eV/atom) and force (converged to 0.01 eV/Å) were set as the 

convergence criterion for geometry optimization. 

Model

The model of CdS(002) is built by cutting CdS along the (002) direction according to the 

experimental observation. Four layers and 33 supercell of CdS(002) surface is obtained. To 

construct the CdS(002) structure with S vacancy, one surface S atom is removed. During the 

structural optimization calculations, all the atoms were allowed to relax. A vacuum layer as large as 

25 Å was used along the c direction normal to the surface to avoid periodic interactions. 

Photoelectrochemical measurements

The photoreduction test is carried out at room temperature and pressure filled with CO2, and a 

300W xenon lamp (λ ≥ 400 nm, light intensity = 400 mW/cm2) is used as the excitation light source. 

Specifically, 10.0 mg photocatalysts were added to the reactor, which contained 8 mL MeCN and 

TEA (V = 3:1). Then the reaction system was vacuum degassed and filled with CO2 and repeated 

three times to ensure that the reactor was filled with CO2. In the process of photocatalytic reaction, 

1.0 mL gas was taken every 1 h and the product was analyzed by gas chromatography.
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Table S1 A comparison on the CO production rates of CdS based photocatalysts.

Photocatalyst Sacrificial agent CO production rate

(μmol h–1 g–1)

Reference

NG/CdS / 2.6 S7

CdS/TiO2 / 3.6 S8

CdS/FeTCPP TEOA 7.2 S9

Ni/CdS QDs TEOA 9.5 S10

ZnS/CdS/rGO TEOA 9.7 S11

FeOOH/CdS / 12.6 S12

CdS/Ni(bpy)3Cl2 TEOA 46.9 S13

CdS/Ni9S8/Al2O3 TEOA 121.0 S14

CdS–CuS TEOA 203.4 S15

w−CdS TEOA 372.8 This work

r−CdS TEOA 638.7 This work

p–CdS TEOA 4058.5 This work
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Fig. S1. (a) CdS(002) without surface S vacancy; and (b) CdS(002) with surface S vacancy.

Fig. S2. Optimized structure diagram and charge distribution (sideview).

Fig. S3. The charge density maps of the CdS(002) without surface S vacancy (a) and CdS(002) with 

surface S vacancy (b). (Isosurface=0.1 e/Bohr3).


