Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Electronic Supplementary Information

o-Carborane decorated diboron-embedded multi-resonance TADF compounds featuring narrowband emission

Nhi Ngoc Tuyet Nguyen,^{a†} Rafi Muhammad Lutfi,^{a†} Taehwan Lee,^{a,b} Jaehoon Jung^{*a} and Min Hyung Lee^{*a}

^a Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea

^b Current address: Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku,

Kyoto 606-8502, Japan

Experimental

General considerations

All operations were performed under an inert nitrogen atmosphere using standard Schlenk and glove box techniques. Anhydrous grade solvents (Aldrich) were dried over activated molecular sieves (5Å). Spectrophotometric-grade toluene and tetrahydrofuran (THF) were used as received from Aldrich and Alfa, respectively. Commercial reagents were used without further purification after purchase. N^1, N^3 -diphenylbenzene-1,3-diamine was synthesized according to the modified literature procedures.¹ Deuterated solvents from Eurisotop were used. NMR spectra were recorded on a Bruker AVANCE III HD 400 (400.13 MHz for ¹H, 100.61 MHz for ¹³C, 128.38 MHz for ¹¹B) spectrometer at ambient temperature. Chemical shifts are given in ppm, and are referenced against external Me₄Si (¹H, ¹³C) and BF₃·OEt₂ (¹¹B). Mass spectra were obtained using a JEOL JMS700 high-resolution EI-mass spectrometer (HR EI-MS) at the Korea Basic Science Institute (KBSI), Daegu, Korea. Elemental analyses were performed on a Flash 2000 elemental analyzer (Thermo Scientific). Thermogravimetric analysis (TGA) was performed with a TA Instruments Q50 under an N₂ atmosphere at a heating rate of 10 °C/min. Cyclic voltammetry experiments were carried out using a CHI600E system.

Synthesis

Scheme S1 Synthesis of CB-diBNO (1), CB-v-DABNA (2), and Ph-diBNO (3).

Synthesis of 1a

2-Methylresorcinol (0.36 g, 2.93 mmol) and K₂CO₃ (0.81 g, 5.85 mmol) were dissolved in *N*-methylpyrrolidone (NMP, 30 mL) at room temperature. After stirring for 30 min, 1-chloro-3-fluoro-5iodobenzene (1.5 g, 5.85 mmol) was added to the solution. The mixture was stirred overnight at 170 °C. After cooling to room temperature, the reaction mixture was poured into a large amount of water. The product was extracted with ethyl acetate, and the combined organic layer was dried over anhydrous MgSO₄. After filtration and evaporation of the solvent, the crude product was purified by column chromatography on silica gel (eluent: dichloromethane/*n*-hexane = 1:4, v/v) to give **1a** as a white solid (Yield = 1.40 g, 81%). ¹H NMR (CDCl₃): δ 7.22 (dt, *J* = 3.9, 2.1 Hz, 3H), 6.99–6.96 (m, 2H), 6.86 (dd, *J* = 4.0, 1.9 Hz, 3H), 6.83 (s, 1H), 2.06 (s, 3H). ¹³C NMR (CDCl₃): δ 158.90, 154.65, 136.08, 127.85, 125.90, 123.31, 118.88, 117.06, 116.51, 9.57.

Synthesis of 1b

To a THF solution (5 mL) of *o*-carborane (0.47 g, 3.3 mmol) was slowly added 'PrMgCl (2.0 M in THF, 1.98 mL, 3.96 mmol) at 0 °C, and the mixture was stirred for 1 h. After replacement of THF with xylene (5 mL), **1a** (1.65 mmol) and NiCl₂ (8.6 mg, 0.07 mmol) were added, and the reaction mixture was heated at 140 °C for 12 h in a closed flask. After cooling down to room temperature, the reaction was quenched with water (10 mL) and the organic portion was extracted with diethyl ether (20 mL × 3). The combined organic layer was dried over anhydrous MgSO₄, filtered, and evaporated to dryness. The crude product was purified by column chromatography on silica gel (eluent: dichloromethane/*n*-hexane = 1:8, v/v) to give **1b** as a white solid (Yield = 0.54 g, 52%). ¹H NMR (CDCl₃): δ 7.24 (s, 1H), 7.15 (t, *J* = 1.7 Hz, 2H), 7.05 (t, *J* = 2.0 Hz, 2H), 6.83 (dd, *J* = 7.4, 5.2 Hz, 4H), 3.94 (s, 2H), 2.06 (s, 3H). ¹³C NMR (CDCl₃): δ 158.46, 154.54, 136.72, 136.04, 128.05, 123.15, 122.03, 118.32, 116.86, 115.67, 74.66, 59.97, 9.60.

Synthesis of 1c

Compound **1b** (0.50 g, 0.75 mmol) was dissolved in dry THF (20 mL) and lithium diisopropylamide (LDA, 1.13 mL, 2.25 mmol) was slowly added dropwise to the solution at -20 °C. After 1 h, an excess MeI (3.16 mmol) was added to the reaction mixture at -20 °C, and the mixture was stirred overnight at room temperature. The reaction was quenched by the addition of saturated aqueous NH₄Cl solution and extracted with diethyl ether (30 mL × 3). The organic portion was washed with water, dried over MgSO₄, filtered, and evaporated to dryness. The crude product was purified by column chromatography on silica gel (eluent: dichloromethane/*n*-hexane = 1:10, v/v) to give **1c** as a white solid (Yield = 0.30 g, 63%). ¹H NMR (CDCl₃): δ 7.35 (s, 2H), 7.21–7.18 (m, 2H), 6.94 (t, *J* = 1.8 Hz, 2H), 6.84 (s, 2H), 6.82 (s, 1H), 2.08 (s, 3H), 1.77 (s, 6H). ¹³C NMR (CDCl₃): δ 158.40, 154.70, 136.03, 134.22, 129.77, 128.04, 125.55, 123.05, 119.49, 119.46, 119.18, 118.92, 116.75, 80.15, 23.41, 9.61.

Synthesis of 2a

This compound was prepared in a manner analogous to the synthesis of **1b** using 1-bromo-3-chloro-5iodobenzene (0.7 g, 2.21 mmol), affording the title compound as a white solid (Yield: 0.56 g, 72%). ¹H NMR (CDCl₃): δ 7.74 (t, *J* = 1.5 Hz, 1H), 7.68–7.65 (m, 1H), 7.43 (t, *J* = 1.8 Hz, 1H), 3.93 (s, 1H). ¹³C NMR (CDCl₃): δ 143.27, 140.94, 134.98, 134.70, 131.10, 76.41, 59.79.

Synthesis of 2b

This compound was prepared in a manner analogous to the synthesis of **1c** using **2a** (0.56 g, 1.67 mmol), affording the title compound as a white solid (Yield: 0.43 g, 74%). ¹H NMR (CDCl₃): δ 7.85 (s, 1H), 7.73 (d, J = 1.6 Hz, 2H), 1.72 (s, 6H). ¹³C NMR (CDCl₃): δ 139.00, 137.38, 135.92, 133.47, 130.55, 82.80,

Synthesis of 2c

A mixture of **2b** (0.43 g, 1.23 mmol), N^1 , N^3 -diphenylbenzene-1,3-diamine (0.50 g, 1.92 mmol), Pd₂(dba)₃ (52.7 mg, 0.058 mmol), ['Bu₃PH][BF₄] (33.5 mg, 0.12 mmol), and NaO'Bu (0.55 g, 5.76 mmol) in dry toluene (20 mL) were stirred overnight at 80 °C. After cooling down to room temperature, the mixture was filtered through a Celite pad, and washed with dichloromethane. After concentration of the filtrate under reduced pressure, the crude product was purified by column chromatography on silica gel using dichloromethane/*n*-hexane (1:5, v/v) as eluent to give **2c** as a white solid (Yield: 0.50 g, 81%). ¹H NMR (CDCl₃): δ 7.33 (t, *J* = 7.8 Hz, 6H), 7.08 (d, *J* = 7.5 Hz, 4H), 7.02 (d, *J* = 2.9 Hz, 2H), 6.88 – 6.81 (m, 6H), 6.73 (d, *J* = 10.5 Hz, 2H), 1.67 (s, 6H). ¹³C NMR (CDCl₃): δ 164.31, 161.86, 149.49, 147.73, 145.93, 133.30, 131.10, 129.95, 125.50, 125.25, 121.80, 121.44, 119.99, 111.21, 110.97, 110.14, 109.90, 80.85, 77.25, 23.27.

Synthesis of 3c

A mixture of **1a** (0.4 g, 0.67 mmol), phenylboronic acid (22 mg, 0.179 mmol), Pd₂(dba)₃ (30.7 mg, 0.03 mmol), XPhos (32 mg, 0.07 mmol), and K₃PO₄ (0.23 g, 1.67 mmol) was dissolved in degassed toluene (10 mL)/water (1 mL) solvent. The solution was refluxed for 14 h under nitrogen atmosphere. After cooling to room temperature, the reaction mixture was poured into a large amount of water. The product was extracted with ethyl acetate, and the organic portion was dried over anhydrous MgSO₄, filtered, and evaporated to dryness. The crude product was purified by column chromatography on silica gel (eluent: dichloromethane/*n*-hexane = 1:6, v/v) to give **3c** as a white solid (Yield = 0.23 g, 69%). ¹H NMR (CDCl₃): δ 7.54 (d, *J* = 7.3 Hz, 4H), 7.41 (dt, *J* = 23.0, 6.9 Hz, 6H), 7.30 (s, 2H), 7.21 (t, *J* = 8.1 Hz, 1H), 7.09 (s, 2H), 6.92–6.83 (m, 4H), 2.18 (s, 3H). ¹³C NMR (CDCl₃): δ 158.80, 155.33, 144.40, 139.44, 135.57, 129.07, 128.32, 127.54, 127.22, 123.00, 121.87, 116.31, 114.62, 9.65.

Synthesis of 1d

A mixture of **1c** (0.3 g, 0.45 mmol), aniline (0.13 g, 1.35 mmol), $Pd_2(dba)_3$ (13.4 mg, 0.01 mmol), DPEPhos (14.5 mg, 0.03 mmol), and NaO'Bu (0.13 g, 1.35 mmol) in dry toluene (20 mL) was stirred overnight at 90 °C. After cooling down to room temperature, the mixture was filtered through a Celite pad, washed with dichloromethane, and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane/*n*-hexane (1:3, v/v) as eluent to give **1d** as a white solid (Yield: 0.65 g, 69%). ¹H NMR (CDCl₃): δ 7.31 (dd, *J* = 8.3, 7.5 Hz, 4H), 7.17 (t, *J* = 8.2 Hz, 1H), 7.10–6.98 (m, 8H), 6.76 (d, *J* = 8.1 Hz, 4H), 6.62 (s, 2H), 5.81 (s, 2H), 2.12

(s, 3H), 1.79 (s, 6H). ¹³C NMR (CDCl₃): δ 158.75, 155.24, 145.39, 141.15, 133.40, 129.65, 127.22, 122.79, 122.37, 119.28, 115.48, 113.72, 112.14, 106.75, 81.62, 23.25, 9.47.

Synthesis of 2d

This compound was prepared in a manner analogous to the synthesis of **1d** using **2c** (0.50 g, 0.63 mmol), affording the title compound as a white solid (Yield: 0.45 g, 82%). ¹H NMR (CDCl₃): δ 7.33 (t, J = 7.8 Hz, 6H), 7.24 (d, J = 8.1 Hz, 2H), 7.17 – 7.11 (m, 8H), 7.07 (d, J = 7.6 Hz, 6H), 7.01 (d, J = 1.6 Hz, 4H), 6.86 – 6.79 (m, 4H), 5.81 (s, 2H), 1.67 (s, 6H). ¹³C NMR (CDCl₃): δ 157.73, 156.66, 149.44, 148.44, 147.13, 140.72, 139.01, 138.87, 132.63, 130.09, 129.71, 125.43, 122.73, 121.48, 119.93, 118.59, 113.62, 111.58, 81.56, 77.37, 23.35.

Synthesis of 3d

This compound was prepared in a manner analogous to the synthesis of **1d** using **3c** (0.23 g, 0.46 mmol), affording the title compound as a white solid (Yield: 0.20 g, 71%). ¹H NMR (CDCl₃): δ 7.52 (d, J = 7.3 Hz, 4H), 7.39 (t, J = 7.4 Hz, 4H), 7.35 (s, 1H), 7.33–7.30 (m, 2H), 7.27 (d, J = 7.7 Hz, 4H), 7.13 (d, J = 7.6 Hz, 4H), 7.00 (s, 2H), 6.96 (t, J = 7.3 Hz, 2H), 6.84 (d, J = 8.2 Hz, 2H), 6.73 (s, 2H), 6.63 (t, J = 2.0 Hz, 2H), 5.81 (s, 2H), 2.23 (s, 3H). ¹³C NMR (CDCl₃): δ 159.38, 155.93, 145.34, 144.08, 142.60, 140.96, 129.67, 127.87, 127.32, 127.11, 122.69, 121.90, 118.89, 115.55, 110.53, 109.00, 105.42, 9.76.

Synthesis of 1e

This compound was prepared in a manner analogous to the synthesis of **2c** using **1d** (0.65 g, 0.84 mmol) and 1-bromo-2-iodobenzene (0.55 g, 1.95 mmol), affording the title compound as a white solid (Yield: 0.69 g, 76%). ¹H NMR (CDCl₃): δ 7.66 (dd, J = 8.0, 1.3 Hz, 2H), 7.35 (dd, J = 7.6, 1.2 Hz, 2H), 7.29 (d, J = 7.9 Hz, 3H), 7.24 (dd, J = 7.9, 1.6 Hz, 2H), 7.18 (dd, J = 7.7, 1.3 Hz, 2H), 7.09–7.01 (m, 8H), 6.79 (d, J = 1.7 Hz, 2H), 6.73 (d, J = 1.8 Hz, 2H), 6.61–6.55 (m, 4H), 2.09 (s, 3H), 1.72 (s, 6H). ¹³C NMR (CDCl₃): δ 158.03, 155.67, 148.67, 145.61, 144.37, 134.79, 132.98, 131.59, 129.72, 129.57, 129.41, 128.38, 126.86, 125.22, 124.12, 123.54, 117.59, 113.81, 113.40, 111.56, 81.62, 77.32, 23.31, 9.46. ¹¹B NMR (CDCl₃): δ -4.65 (4B), -10.19 (16B). HRMS (FAB): m/z [M]+ Calcd for C₄₉H₅₆Br₂N₂O₂B₂₀: 1082.4570; Found: 1082.4574.

Synthesis of 2e

This compound was prepared in a manner analogous to the synthesis of **2c** using **2d** (0.45 g, 0.49 mmol) and 1-bromo-2-iodobenzene (0.42 g, 1.47 mmol), affording the title compound as a white solid (Yield: 0.45 g, 75%). ¹H NMR (CDCl₃): δ 7.61–7.58 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.8 Hz, 10H),

7.11 (t, J = 8.3 Hz, 4H), 7.00 (d, J = 7.2 Hz, 4H), 6.95 (dd, J = 7.6, 3.6 Hz, 10H), 6.76 (s, 2H), 6.75 (s, 1H), 6.70 (dd, J = 8.0, 2.1 Hz, 2H), 6.62 (d, J = 9.9 Hz, 4H), 1.60 (s, 6H). ¹³C NMR (CDCl₃): δ 158.04, 155.67, 148.68, 145.62, 134.79, 132.98, 131.59, 129.72, 129.57, 129.41, 128.39, 126.87, 125.22, 124.12, 123.54, 123.52, 117.60, 113.41, 81.61, 77.32, 23.30. ¹¹B NMR (CDCl₃): δ –4.22 (4B), –10.79 (16B). HRMS (FAB): m/z [M]+ Calcd for C₆₀H₆₄Br₂N₄B₂₀: 1218.5360; Found: 1218.5361.

Synthesis of 3e

This compound was prepared in a manner analogous to the synthesis of **2c** using **3d** (0.20 g, 0.33 mmol) and 1-bromo-2-iodobenzene (0.28 g, 0.99 mmol), affording the title compound as a white solid (Yield: 0.20 g, 67%). ¹H NMR (CDCl₃): δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 7.2 Hz, 4H), 7.36–7.27 (m, 12H), 7.24 (d, *J* = 8.0 Hz, 3H), 7.14–7.05 (m, 7H), 7.04–6.97 (m, 3H), 6.89 (s, 2H), 6.70 (d, *J* = 7.9 Hz, 4H), 6.57 (s, 2H), 2.17 (s, 3H). ¹³C NMR (CDCl₃): δ 158.54, 156.08, 148.85, 146.59, 145.23, 143.45, 140.74, 134.71, 131.76, 129.61, 129.30, 129.06, 128.89, 128.78, 127.75, 127.68, 127.22, 123.89, 122.89, 116.19, 115.97, 115.73, 114.84, 114.58, 114.04, 110.38, 110.13, 9.56. HRMS (FAB): m/z [M]+ Calcd for C₅₅H₄₀Br₂N₂O₂: 918.1457; Found: 918.1453.

Synthesis of 1

To a solution of **1e** (0.69 g, 0.64 mmol) in *t*-butylbenzene (20 mL) was added dropwise *n*-BuLi (2.5 M in hexane, 0.56 mL, 1.41 mmol) at -30 °C. After stirring at 60 °C for 2 h, hexane was removed in *vacuo*. Boron tribromide (0.18 mL, 1.92 mmol) was added slowly at -30 °C, and the mixture was stirred at 50 °C for 2 h. *N*,*N*-Diisopropylethylamine (DIPEA, 0.33 mL, 1.92 mmol) was added at 0 °C, and the reaction mixture was stirred at 160 °C for 12 h. After cooling down to room temperature, an aqueous solution of NaOAc was added, and the mixture was extracted with ethyl acetate (3 × 30 mL). The combined organic layer was dried over MgSO₄, filtered, and washed several times with ethyl acetate. The solution was concentrated under reduced pressure and filtered through a silica gel (eluent: dichloromethane/*n*-hexane = 1:5) to give a yellow solid. The product was further purified by crystallization, affording the title compound as a bright yellow solid (Yield: 0.15 g, 26%). ¹H NMR (C₂D₂Cl₄): δ 10.13 (s, 1H), 9.15 (s, 2H), 7.82 (s, 4H), 7.68 (d, *J* = 67.1 Hz, 4H), 7.44 (d, *J* = 10.7 Hz, 8H), 6.98 (s, 2H), 6.66 (s, 2H), 2.87 (s, 3H), 1.72 (s, 6H). ¹³C NMR (C₂D₂Cl₄): δ 159.27, 156.97, 149.91, 146.84, 145.51, 136.11, 134.07, 132.93, 130.93, 129.83, 128.28, 125.38, 124.77, 122.27, 118.89, 115.08, 114.77, 113.01, 83.10, 78.92, 24.64, 10.90. ¹¹B NMR (C₂D₂Cl₄): δ 42.4 (1B), -4.93 (4B), -9.99 (16B). Anal. Calcd (%) for C₄₉H₅₂B₂₂N₂O₂: C, 62.69; H, 5.58; N, 2.98. Found: C, 62.62; H, 5.57; N, 2.97. *T*_{d5} = 500 °C.

Synthesis of 2

This compound was prepared in a manner analogous to the synthesis of **1** using **2e** (0.45 g, 0.37 mmol), affording the title compound as a bright yellow solid (Yield: 0.08 g, 21%). ¹H NMR (C₂D₂Cl₄): δ 10.19 (s, 1H), 9.21 (d, *J* = 7.4 Hz, 2H), 7.77 (t, *J* = 7.2 Hz, 4H), 7.68 (d, *J* = 7.5 Hz, 3H), 7.55 (d, *J* = 8.8 Hz, 14H), 7.47 (s, 6H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.61 (s, 2H), 1.70 (s, 6H). ¹³C NMR (C₂D₂Cl₄): δ 161.15, 158.73, 151.69, 147.06, 145.79, 145.28, 141.75, 141.15, 135.80, 135.15, 131.16, 130.82, 129.59, 127.59, 127.26, 125.88, 121.30, 119.55, 119.11, 116.89, 112.05, 109.69, 105.52, 83.01, 78.48, 10.90. ¹¹B NMR (C₂D₂Cl₄): δ 41.0 (1B), -4.54 (4B), -9.90 (16B). Anal. Calcd (%) for C₆₀H₆₀B₂₂N₄: C, 67.04; H, 5.63; N, 5.21. Found: C, 66.83; H, 5.56; N, 5.20. *T*_{d5} = 489 °C.

Synthesis of 3

This compound was prepared in a manner analogous to the synthesis of **1** using **2e** (0.20 g, 0.22 mmol), affording the title compound as a bright yellow solid (Yield: 0.04 g, 24%). ¹H NMR (CD₂Cl₂): δ 10.22 (s, 1H), 9.26–9.22 (m, 2H), 7.80–7.75 (m, 4H), 7.71–7.68 (m, 2H), 7.57 (dd, *J* = 10.4, 3.4 Hz, 6H), 7.52–7.40 (m, 14H), 7.37 (dd, *J* = 8.5, 6.1 Hz, 2H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.62 (d, *J* = 1.4 Hz, 2H), 2.93 (s, 3H). ¹³C NMR (CD₂Cl₂): δ 155.30, 148.09, 147.12, 141.21, 135.50, 133.43, 133.07, 124.09, 123.24, 121.91, 121.18, 106.27, 82.81, 77.94, 35.58, 31.60, 23.50. ¹¹B NMR (CD₂Cl₂): δ 40.5 (1B). Anal. Calcd (%) for C₅₅H₃₆B₂N₂O₂: C, 84.85; H, 4.66; N, 3.60. Found: C, 84.87; H, 4.69; N, 3.62. *T*_{d5} = 519 °C.

Cyclic voltammetry

Cyclic voltammetry measurements were carried out with a three-electrode cell configuration consisting of platinum working and counter electrodes and a Ag/AgNO₃ (0.01 M in CH₃CN) reference electrode at room temperature. Tetra-*n*-butylammonium hexafluorophosphate (0.1 M) was used as the supporting electrolyte. The redox potentials were recorded at a scan rate of 100 mV/s and are reported with reference to the ferrocene/ferrocenium (Fc/Fc⁺) redox couple. The HOMO energy levels were determined from the onset electrochemical oxidation (E_{onset}) of cyclic voltammograms while the LUMO energy levels were estimated from the optical bandgap (E_g) and the HOMO levels.

Photophysical measurements

UV/Vis absorption and photoluminescence (PL) spectra were recorded on a UV-2600 (Shimadzu) and an Edinburgh Instruments FLS1000 spectrophotometer, respectively. Photoluminescence quantum yields (PLQYs) all the samples were measured on an absolute PL quantum yield spectrophotometer (Quantaurus-QY C11347-11, Hamamatsu Photonics) equipped with a 3.3-inch integrating sphere. Transient PL decays were measured on an FLS1000 spectrophotometer with an excitation light source of EPL-375 laser for prompt fluorescence and VPL-375 laser for delayed fluorescence. The photophysical

analysis done by using FLS1000 and Quantaurus-QY C11347-11 spectrophotometers was conducted at total-period analysis center for Ulsan chemical industry of KBSI.

Theoretical calculations

Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed to investigate the ground and excited states of compounds **1**, **2**, and **3**. The Tamm-Dancoff approximation (TDA) was employed for TDDFT calculations.² The ground (S₀) states of compounds were optimized using DFT calculations, and their lowest singlet (S₁) and two triplets (T₁ and T₂) excited states were optimized using TDDFT calculations utilizing the PBE0 hybrid functional³ and the def2-SVP⁴ basis set implemented in GAUSSIAN 16 software package.⁵ The influence of a solvent medium (toluene, $\varepsilon = 2.3741$) on the geometric and electronic structures was examined using the polarizable continuum model (PCM) model within a self-consistent reaction field (SCRF) approximation.⁶ Additionally, a more polar solvent (THF, $\varepsilon = 7.4257$) was considered to investigate spectral quenching and bandwidth variation due to solvent medium. Natural transition orbital (NTO)⁷ analysis was conducted to characterize the excited states, i.e., charge transfer (CT) and local excited states (LE), using the Multiwfn program.⁸ The compositions of frontier molecular orbitals (FMOs) were investigated using the AOMix program.⁹ The spin-orbit coupling matrix elements (SOCME) values were computed using the quasi-degenerate perturbation theory,¹⁰ implemented in the ORCA software package,¹¹ and the same functional and basis set as used in the DFT and TDDFT calculations.

Root-mean-square-displacements (RMSDs) of the optimized structures at S_0 and S_1 states were analyzed using VMD software.¹² Additionally, electron-vibration coupling and Franck-Condon spectral analysis were performed through a sum-over-states approach¹³ as implemented in the Molecular Materials Property Prediction Package (MOMAP 2020B).¹⁴ The parameters for the simulation of PL spectra are

provided in **Table S8**. The reorganization energy (λ_{ROE}^{k}) of vibrational mode, *k*, elucidated based on harmonic oscillator approximation, has a relation with its dimensionless Huang-Rhys factor (HR_k) as follows:

$$\lambda_{ROE}^{\ k} = HR_k \hbar \omega_k$$
$$HR_k = \frac{\omega_k D_k^2}{2\hbar}$$

where ω_k is the vibration frequency, and D_k denotes the normal coordinate displacement of mode k. The Huang-Rhys factor (HR^{*k*}) indicates the strength of electron-phonon coupling.

Fig. S1 ¹³C (top) and ¹H (bottom) NMR spectra of 1a (* and † from residual solvents).

Fig. S2 ¹³C (top) and ¹H (bottom) NMR spectra of 1b (* and † from residual solvents).

Fig. S3 ¹³C (top) and ¹H (bottom) NMR spectra of 1c (* and † from residual solvents).

Fig. S4 13 C (top) and 1 H (bottom) NMR spectra of **1d** (* and † from residual solvents).

Fig. S5 ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of 1e (* and † from residual solvents).

Fig. S6 ¹³C (top) and ¹H (bottom) NMR spectra of 2b (* and † from residual solvents).

Fig. S7 13 C (top) and 1 H (bottom) NMR spectra of 2c (* and † from residual solvents).

Fig. S8 ¹³C (top) and ¹H (bottom) NMR spectra of 2d (* and † from residual solvents).

Fig. S9 ¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of 2e (* and † from residual solvents).

Fig. S10 13 C (top) and 1 H (bottom) NMR spectra of 3c (* and † from residual solvents).

Fig. S11 13 C (top) and 1 H (bottom) NMR spectra of 3d (* and † from residual solvents).

Fig. S12 13 C (top) and 1 H (bottom) NMR spectra of 3e (* and † from residual solvents).

Fig. S13¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of 1 (* and † from residual solvents).

Fig. S14¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of 2 (* and † from residual solvents).

Fig. S15¹¹B (top), ¹³C (middle), and ¹H (bottom) NMR spectra of **3** (* and † from residual solvents).

Current / A	-3 -2 Pote	2 2 3 3 ential (V) / (vs F	J J c/Fc ⁺)	2
	$E_{\rm g}({ m eV})^a$	$E_{\mathrm{ox}} (\mathrm{V})^b$	$E_{\rm HOMO}~({\rm eV})^c$	$E_{\rm LUMO} ({\rm eV})^d$
1	2.72	1.03	-5.83	-3.11
2	2.51	0.75	-5.55	-3.04
3	2.74	0.80	-5.60	-2.86

^{*a*} Optical bandgap from the absorption onset wavelength. ^{*b*} Onset potential (E_{onset}).

^{*c*} From the E_{ox} . ^{*d*} From the E_{g} and E_{HOMO} .

Fig. S16 Cyclic voltammograms of 1–3 showing (right) oxidation in CH₂Cl₂ (1 × 10⁻³ M) and (left) reduction in DMF/THF (9:1, v/v, 1 × 10⁻³ M). Scan rate = 100 mV/s.

Fig. S17 TGA curves of 1–3.

Fig. S18 (a) UV/Vis absorption and PL spectra at RT, (b) fluorescence and phosphorescence spectra at 77 K, and (c) transient PL decay of CB-diBNO (1) in toluene $(1.0 \times 10^{-5} \text{ M})$.

Fig. S19 (a) UV/Vis absorption and PL spectra at RT, (b) fluorescence and phosphorescence spectra at 77 K, and (c) transient PL decay of CB-*v*-DABNA (2) in toluene $(1.0 \times 10^{-5} \text{ M})$.

Fig. S20 (a) UV/Vis absorption and PL spectra at RT, (b) fluorescence and phosphorescence spectra at 77 K, and (c) transient PL decay of Ph-diBNO (**3**) in toluene $(1.0 \times 10^{-5} \text{ M})$.

Fig. S21 (a) UV/Vis absorption and PL spectra at RT and (b) transient PL decay of CB-diBNO (1) in THF $(1.0 \times 10^{-5} \text{ M})$.

Fig. S22 (a) UV/Vis absorption and PL spectra at RT and (b) transient PL decay of CB-*v*-DABNA (2) in THF (1.0×10^{-5} M).

Fig. S23 (a) UV/Vis absorption and PL spectra at RT and (b) transient PL decay of Ph-diBNO (3) in THF (1.0×10^{-5} M).

Fig. S24 PL spectra of (a) CB-diBNO (1) and (b) CB-v-DABNA (2) in THF/water mixtures $(1.0 \times 10^{-5} \text{ M})$ with various water fractions (f_w). Inset: Photos of 1 (left) and 2 (right) in THF/water mixtures ($f_w = 0\%$ and 99%) taken under 365 nm excitation.

Fig. S25 (a) PL spectra and (b) transient PL decay curves of the PMMA films doped with 1 wt% of CB-diBNO (1), CB-v-DABNA (2), and Ph-diBNO (3). Inset: prompt PL decay.

Fig. S26 PL spectra of the PMMA films doped with 1–10 wt% of (a) CB-diBNO (1), (b) CB-v-DABNA (2), and (c) Ph-diBNO (3).

Table S1 Photophysical data and rate constants of 1 wt% CB-diBNO (1), CB-v-DABNA (2), and BuDABNA (3) in PMMA.

compd	$\lambda_{\mathrm{PL}} (\mathrm{nm})$	FWHM (nm)	Ф _{РL} (%)	$arPhi_{ m p}/arPhi_{ m d} onumber \ (\%)^a$	$ au_{ m p} ({ m ns})/ au_{ m d}$ $(\mu { m s})^b$	$\Delta E_{\rm ST}$ (eV) ^c	$k_{ m r} (10^7 \ { m s}^{-1})^d$	$\frac{k_{\rm ISC} (10^7}{\rm s}^{-1})^d$	$k_{ m RISC}(10^4~ m s^{-1})^d$
1	454	22	53	51/2	8.26/29.4	0.18	6.22	0.37	3.51
2	498	25	68	43/25	9.30/21.7	0.13	4.60	3.98	7.32
3	452	25	76	64/12	5.64/27.7	0.16	10.1	2.85	4.30

^{*a*} PLQYs of prompt (Φ_p) and delayed (Φ_d) fluorescence ($\Phi_{PL} = \Phi_p + \Phi_d$). ^{*b*} Lifetimes of prompt (τ_p) and delayed (τ_d) PL decay components. ^{*c*} $\Delta E_{ST} = E_S - E_T$. ^{*d*} k_r , k_{ISC} , and k_{RISC} are the rate constants of fluorescence radiative decay, intersystem crossing, and reverse intersystem crossing (RISC), respectively.¹⁵

Table S2 Molecular orbital distributions (in %) of CB-diBNO (1), CB-v-DABNA (2), and Ph-diBNO (3) at their ground state (S_0) optimized geometries.

Compound	МО	Blue region	Red region	CB	others	
1	НОМО	83.73	13.44	0.64	2.19	Me CARA A A A A A A A A A A A A A A A A A
	LUMO	21.54	70.69	6.61	1.15	
2	HOMO	84.82	11.56	0.74	2.88	X= O, N
	LUMO	22.11	69.31	7.45	1.14	R= Me, H
3	НОМО	83.96	13.52	-	2.51	Blue: HOMO part
	LUMO	19.02	69 99	_	10 99	Red: LUMO part
	Lemo	17.02	07.77		10.77	CB: 2-Me-carborane

Hole

Particle

Fig. S27 Energy diagram for S₀ to S₁, T₁, and T₂ states, obtained in toluene medium, and natural transition orbitals (NTOs, isovalue = 0.03 e/Å³) of (a) CB-diBNO (1), (b) CB-v-DABNA (2), and Ph-diBNO (3) for the transitions from S₀ to S₁, T₁, and T₂ states. Along with the experimentally measured ΔE_{ST} values, corrected S₁ energies are presented in parentheses since TDDFT calculation is known to overestimate ΔE_{ST} for MR-TADF molecules due to an inaccurate estimation of the Coulomb interaction mainly for S₁ state.^{16,17} Computationally obtained spin-orbit coupling matrix elements between the S₁ and T_n (*n* = 1 and 2) states at 298 K are provided.

State		Blue region	Red region	CB
S ₁				
1	Hole	97.47	1.91	0.63
	Particle	91.93	0.61	7.46
2	Hole	96.72	2.55	0.72
	Particle	90.69	0.59	8.72
T ₁				
1	Hole	97.45	1.91	0.64
	Particle	92.76	0.62	6.61
2	Hole	96.95	2.61	0.59
	Particle	91.97	0.74	7.45

Table S3 NTO contributions (in %) of CB-diBNO (1) and CB-v-DABNA (2) for the transitions from S_0 to S_1 and T_1 states.

Fig. S28 Geometric overlap of the ground state (S₀, blue) and lowest singlet excited state (S₁, red) optimized structures of CB-diBNO (1) and Ph-diBNO (3) in toluene and THF. During the transition from S₁ to S₀ for these diboron MR-TADF compounds, the root-mean-square displacements (SD_{RMSD}) for the molecules and average changes in C–C bond lengths (ΔL_{avg}) for the structural deviation of highlighted MR-emitting core are provided.

Fig. S29 (a) Fluorescence spectra in THF at RT (red) and simulated emission spectra obtained from Franck–Condon analysis (black) for both compounds 1 (top) and 3 (bottom), where FC2 is the square of Franck-Condon factor. (b) Huang-Rhys (HR^{*k*}) factor and reorganization energy (λ_{ROE}^{k}) of each vibrational mode *k* contributing to the S₁ \rightarrow S₀ transition of 1 and 3. (c) Vibrational normal modes, mode #8 and mode #3, mainly contributing to the spectral broadening of 1 and 3, respectively.

PL peak	PL peak			Vibrational modes		
Wavelength (nm) ^{<i>a</i>}	FC ²	3	5	18	28	30
Main peak region						
451.92	2.13×10 ⁻¹	0 ^b	0	0	0	0
452.38	1.26×10^{-1}	0	1	0	0	0
455.95	2.19×10 ⁻²	0	0	0	1	0
Shoulder peak region						
456.40	2.38×10 ⁻³	1	0	0	0	1
456.69	1.80×10 ⁻³	1	1	0	1	0
457.80	1.22×10 ⁻³	0	0	1	0	1

Table S4 The vibrational modes contributing to the Franck-Condon spectral progression for CB-diBNO (1) in toluene. (FC2: the square of Franck-Condon factor). Three of the most intense peaks in each region were selected. The most intense peak in the main peak region is indicated in bold.

^{*a*} The numerical values of computationally estimated wavelengths were corrected by increasing 24.31 nm to align with the peak position of the experimental PL spectrum. ^{*b*} The number *n* indicates the transition from the vibrational state v = 0 of S₁ state to the vibrational state v = n of S₀ state.

Table S5 The vibrational modes contributing to the Franck-Condon spectral progression for Ph-diBNO (3) in toluene. (FC2: the square of Franck-Condon factor). Three of the most intense peaks in each region were selected. The most intense peak in the main peak region is indicated in bold.

PL pe	Vibrational normal modes				
Wavelength (nm) ^a	FC ²	3	6	8	
Main peak region					
447.54	4.04×10 ⁻²	0^b	0	0	
447.99	4.74×10 ⁻²	1	0	0	
448.44	3.00×10 ⁻²	2	0	0	
Shoulder peak region					
448.89	1.40×10 ⁻²	1	1	0	
448.90	1.36×10 ⁻²	3	0	0	
448.93	1.77×10^{-2}	1	0	1	

^{*a*} The numerical values of computationally estimated wavelengths were corrected by increasing 22.02 nm to align with the peak position of the experimental PL spectrum. ^{*b*} The number *n* indicates the transition from the vibrational state v = 0 of S₁ state to the vibrational state v = n of S₀ state.

PL peak	Vibrational modes				
Wavelength (nm) ^a	FC^2	7	8	28	30
Main peak region					
452.28	3.72×10 ⁻²	0^b	0	0	0
452.75	5.09×10 ⁻²	1	0	0	0
453.24	3.14×10 ⁻²	1	1	0	1
Shoulder peak region					
456.73	5.16×10 ⁻³	1	0	1	0
456.89	3.93×10 ⁻³	1	0	0	1
456.24	3.77×10 ⁻³	0	0	1	0

Table S6 The vibrational modes contributing to the Franck-Condon spectral progression for CB-diBNO (1) in THF. (FC2: the square of Franck-Condon factor). Three of the most intense peaks in each region were selected. The most intense peak in the main peak region is indicated in bold.

^{*a*} The numerical values of computationally estimated wavelengths were corrected by increasing 20.22 nm to align with the peak position of the experimental PL spectrum. ^{*b*} The number *n* indicates the transition from the vibrational state v = 0 of S₁ state to the vibrational state v = n of S₀ state.

Table S7 The vibrational modes contributing to the Franck-Condon spectral progression for Ph-diBNO (3) in THF. (FC2: the square of Franck-Condon factor). Three of the most intense peaks in each region were selected. The most intense peak in the main peak region is indicated in bold.

PL pe	ak	Vibrational normal modes		
Wavelength (nm) ^a	FC ²	3	27	
Main peak region				
450.42	3.06×10 ⁻²	0^b	0	
450.89	4.77×10 ⁻²	1	0	
451.35	3.87×10 ⁻²	2	0	
Shoulder peak region				
454.79	2.72×10-3	1	1	
455.26	4.24×10 ⁻³	3	0	
455.74	3.43×10 ⁻³	1	0	

^{*a*} The numerical values of computationally estimated wavelengths were corrected by increasing 20.31 nm to align with the peak position of the experimental PL spectrum. ^{*b*} The number *n* indicates the transition from the vibrational state v = 0 of S₁ state to the vibrational state v = n of S₀ state.

Table S8 Details of parameters employed for the simulation of PL spectrum in Toluene using MOMAP software.

parameter	value	parameter	value
FreqScale	1.0	Steps	0.0000001
Maxvib	10	FWHM	$500 \text{ cm}^{-1} \text{(THF: 600 cm}^{-1}\text{)}$
promode	24	blocksize	1000
FC_eps_abs	0.012 (THF: 0.04)	testpoints	1000
FC_eps_emi	0.012 (THF: 0.04)	reduce_eps	0.001
FC_eps_ic	0.012 (THF: 0.04)		

Fig. S30 Selected vibrational modes (see Table S4–S7) and their vibrational frequencies for the S_1-S_0 transition of CB-diBNO (1) and Ph-diBNO (3) (a) in toluene and (b) in THF. Their reorganization energy (λ_{ROE}^{mode} , cm⁻¹) and dimensionless Huang-Rhys factor (HR^{mode}) of each vibrational mode are provided.

compound	$\lambda_{\rm PL} ({\rm nm})$	FWHM (nm)	medium	ref
CB-diBNO (1)	453	11	Toluene	This work
v-DABNA	468	14	Toluene	[18]
BOBO-Z	441	15	Toluene	[19]
m-v-DABNA	464	14	Toluene	[20]
4F-v-DABNA	457	14	Toluene	[20]
4F-m-v-DABNA	455	14	Toluene	[20]
t-Bu-v-DABNA	467	14	Toluene	[21]
o-Tol-v-DABNA-Me	466	14	Toluene	[22]
NO-DBMR	458	14	Toluene	[23]
Cz-DBMR	480	14	Toluene	[23]
V-DABNA	483	14	Toluene	[24]
V-DABNA-F	467	13	Toluene	[24]
V-DABNA-Mes	486	13	Toluene	[25]
CzB4	470/483	11/14	3-Methylpentane/	[26]
			0.1wt%-PS	
CzB6	475/488	14/12	3-Methylpentane/	[26]
			0.1wt%-PS	
CzB8	485/491	20/12	3-Methylpentane/	[26]
			0.1wt%-PS	
CzB4-oPh	467/478	9/16	3-Methylpentane/	[26]
	470	12	U.1Wt%-PS	[27]
I R-LR	4/3	12	Ioluene	[27]

Table S9 Selected reports of MR-TADF compounds with narrow FWHM (≤ 15 nm).

References

1. S. Nakatsuka, H. Gotoh, K. Kinoshita, N. Yasuda and T. Hatakeyama, *Angew. Chem. Int. Ed.*, 2017, **56**, 5087-5090.

- 2. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 1999, 314, 291-299.
- 3. C. Adamo and V. Barone, J. Chem. Phys. 1999, 110, 6158.
- 4. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.; Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F.; Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Jr.; Peralta, F. Ogliaro, M. J. Bearpark, J. J Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019.

- 6. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev. 2005, 105, 2999-3093
- 7. R. L. Martin, J. Chem. Phys. 2003, 118, 4775
- 8. T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580
- 9. S. I. Gorelsky and A. B. P. Lever, J. Organomet. Chem. 2001, 635, 187.
- 10. B. de Souza, G. Farias, F. Neese and R. Izsak, J. Chem. Theory Comput. 2019, 15, 1896
- 11. (a) F. Neese, WIREs Comput. Mol. Sci. 2011, 2, 73-78. (b) F. Neese, WIREs Comput. Mol. Sci. 2018, 8, e1327.
- 12. W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics, 1996, 14, 33-38.
- 13. Y. Niu, W. Li, Q. Peng, H. Geng, Y. Yi, L. Wang, G. Nan, D. Wang and Z. Shuai, *Mol. Phys.* 2018, **116**, 1078-1090.
- 14. a) Z. Shuai, Chin. J. Chem. 2020, 38, 1223-1232; b) Z. Shuai and Q. Peng, Phys. Rep. 2014, 537, 123-156.
- 15. R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura and T. Yasuda, *Adv. Optical Mater.* 2018, 6, 1701147.
- 16. K. Shizu, H. Kaji, Commun. Chem. 2022, 5, 53.
- 17. A. Pershin, D. Hall, V. Lemaur, J. C. Sancho-Garcia, L. Muccioli, E. Zysman-Colman, D. Beljonne, Y. Olivier, *Nat. Commun.* **2019**, *10*, 597.
- 18. Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai and T. Hatakeyama, *Nat. Photonics*, 2019, **13**, 678.
- 19. I. S. Park, M. Yang, H. Shibata, N. Amanokura and T. Yasuda, Adv. Mater. 2022, 34, 2107951.
- 20. K. R. Naveen, H. Lee, R. Braveenth, K. J. Yang, S. J. Hwang and J. H. Kwon, *Chem. Eng. J.*, 2022, **432**, 134381.
- 21. K. R. Naveen, H. Lee, R. Braveenth, D. Karthik, K. J. Yang, S. J. Hwang and J. H. Kwon, *Adv. Funct. Mater.*, 2022, **32**, 2110356.
- 22. H. S. Kim, H. J. Cheon, D. G. Lee, W. C. Lee, J. H. Kim, Y. H. Kim and S. H. Yoo, Sci. Adv., 2023, 9,

eadf1388.

23. K. R. Naveen, J. H. Oh, H. S. Lee and J. H. Kwon, Angew. Chem. Int. Ed. 2023, 62, e202306768.

24. S. Oda, B. Kawakami, M. Horiuchi, Y. Yamasaki, R. Kawasumi and T. Hatakeyama, *Adv. Sci.*, 2023, 10, 2205070.

25. S. Oda, B. Kawakami, Y. Yamasaki, R. Matsumoto, M. Yoshioka, D. Fukushima, S. Nakatsuka and T. Hatakeyama, *J. Am. Chem. Soc.*, **2022**, 144, 106–112.

26. Y. Sano, T. Shintani, M. Hayakawa, S. Oda, M. Kondo, T. Matsushita and T. Hatakeyama, *J. Am. Chem. Soc.*, 2023, **145**, 11504–11511.

27. W. Yuan, Q. Jin, M. Du, L. Duan and Y. Zhang, Adv. Mater., 2024, 36, 2410096.