Supporting Information (SI)

π -conjugated organic molecule modified strategy to achieve high-performance metal

nitrate birefringent crystal

Yi-Lei Lv, Liang Ma, Guo-Ren Zhu, Bing-Wei Miao, Wenlong Liu, Sheng-Ping Guo* and Ru-Ling Tang* †School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Corresponding author: rltang@yzu.edu.cn, spguo@yzu.edu.cn

Supporting Information Index

Tables and Figures

- 1. Table S1. Crystal data and structure refinement parameters for $Hg_3O_2(NO_3)_2 \cdot H_2O$ and $(CH_5N_3S)_2Hg(NO_3)_2$.
- 2. Table S2. Important bond lengths (Å) and bond angles (°) for $Hg_3O_2(NO_3)_2 \cdot H_2O$ and $(CH_5N_3S)_2Hg(NO_3)_2$.
- 3. Table S3. Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for Hg₃O₂(NO₃)₂·H₂O. Ueq is defined as 1/3 of the trace of the orthogonalized Uij tensor.
- 4. Table S4. Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for (CH₅N₃S)₂Hg(NO₃)₂. Ueq is defined as 1/3 of the trace of the orthogonalized Uij tensor.
- 5. Table S5. The reported metal nitrate birefringent crystals.
- 6. Figure S1. Experimental and simulated powder XRD patterns of $Hg_3O_2(NO_3)_2 \cdot H_2O$.
- 7. Figure S2. Experimental and simulated powder XRD patterns of $(CH_5N_3S)_2Hg(NO_3)_2$.
- 8. Figure S3. EDS image and data for $Hg_3O_2(NO_3)_2 \cdot H_2O$ (a) and $(CH_5N_3S)_2Hg(NO_3)_2$ (b).
- 9. Figure S4. TG curves of $Hg_3O_2(NO_3)_2 \cdot H_2O$ (a) and $(CH_5N_3S)_2Hg(NO_3)_2$ (b).
- 10. Figure S5. IR spectrum and the peaks' assignment for Hg₃O₂(NO₃)₂·H₂O (a) and (CH₅N₃S)₂Hg(NO₃)₂ (b).
- 11. Figure S6. The arrangement of NO_3^- for $Hg_3O_2(NO_3)_2 \cdot H_2O$ (a) and $(CH_5N_3S)_2Hg(NO_3)_2$ (b).
- 12. Figure S7. (a) Original single crystal polarized optical microscope image and (b) A single crystal corresponding to complete extinction for Hg₃O₂(NO₃)₂·H₂O; (c) Original single crystal polarized optical microscope image and (d) A single crystal corresponding to complete extinction for (CH₅N₃S)₂Hg(NO₃)₂.
- 13. Figure S8. (a) Calculated band gap and (b) Density of states (DOS) for $Hg_3O_2(NO_3)_2$ · H_2O .
- 14. Figure S9. (a) Calculated band gap and (b) Density of states (DOS) for (CH₅N₃S)₂Hg(NO₃)₂.

Empirical formula	$Hg_3O_2(NO_3)_2 \cdot H_2O$	(CH ₅ N ₃ S) ₂ Hg(NO ₃) ₂
Formula weight	775.81	506.89
Temperature/K	296	296
Crystal system	triclinic	monoclinic
Space group	p1	C2/c
a/Å	6.9108(3)	11.6751(7)
b/Å	6.9443(3)	13.5050(8)
$c/{ m \AA}$	10.1264(5)	20.7268(12)
<i>α</i> (°)	99.946(2)	90
$eta(^\circ)$	97.884(2)	100.495(2)
γ(°)	119.581(2)	90
Volume/Å ³	402.00(3)	1226.37(10)
Z	2	4
pcalc g/cm ³	6.049	2.745
μ/mm^{-1}	57.181	12.931
F(000)	656.0	952.0
Radiation	MoK α ($\lambda = 0.71073$)	$MoK\alpha \ (\lambda = 0.71073)$
20 range for data collection/°	6.049 to 50.052	5.762 to 54.978
Index ranges	$-8 \le h \le 8, -8 \le k \le 8, -12 \le l \le 12$	$-14 \le h \le 11, -9 \le k \le 9, -18 \le l \le 18$
Reflections collected	656.0	6132
Independent reflections	1424 [$R_{int} = 0.0429, R_{sigma} = 0.0328$]	1402 [$R_{int} = 0.0363, R_{sigma} = 0.0362$]
Data/restraints/parameters	1424/6/131	1402/0/88
Goodness-of-fit on F ²	1.066	1.019
Final R indexes $[I \ge 2\sigma (I)]^{a,b}$	R ₁ =0.0181, WR ₂ =0.0416	R ₁ =0.0229, WR ₂ =0.0325
Final R indexes [all data] ^{a,b}	R ₁ =0.0203, WR ₂ =0.0423	R ₁ =0.0361, WR ₂ =0.0348

Table S1. Crystal data and structure refinement parameters for Hg₃O₂(NO₃)₂·H₂O and (CH₅N₃S)₂Hg(NO₃)₂.

Bond Length(Å)		Hg ₃ O ₂ (NO ₃) ₂ ·H ₂ O	
$Hg(1) - O(1)^2$	2.070(5)	$Hg(2)^{1}-O(2)$	2.081(4)
Hg(1) - O(2)	2.072(5)	N(1) - O(3)	1.269(7)
Hg(2) - O(1)	2.065(4)	N(1) - O(4)	1.254(7)
$Hg(2) - O(2)^4$	2.081(4)	N(1) - O(5)	1.216(7)
Hg(3) - O(1)	2.058(4)	N(2)-O(7)	1.243(8)
Hg(3) - O(2)	2.057(5)	N(2) - O(8)	1.241(8)
$Hg(1)^{3}-O(1)$	2.070(5)	N(2) - O(9)	1.210(9)
Bond Angles (deg)		Hg ₃ O ₂ (NO ₃) ₂ ·H ₂ O	
$O(1)^2 - Hg(1) - O(2)$	175.00(18)	O(5) - N(1) - O(4)	121.1(6)
$O(1) - Hg(2) - O(2)^3$	171.87(18)	O(8) - N(2) - O(7)	119.5(7)
O(2) - Hg(3) - O(1)	177.83(18)	O(9) - N(2) - O(7)	120.6(7)
O(4) - N(1) - O(3)	118.5(6)	O(8) - N(2) - O(8)	119.9(7)
O(5) - N(1) - O(3)	120.3(6)		

Table S2. Important bond lengths (Å) and bond angles (°) for $Hg_3O_2(NO_3)_2 \cdot H_2O$ and $(CH_5N_3S)_2Hg(NO_3)_2$.

Symmetry transformations used to generate equivalent atoms:¹1+X,+Y,+Z; ²1+X,1+Y,+Z; ³-1+X,+Y,+Z; ⁴-1+X,-1+Y,+Z

Bond Length(Å)		(CH ₅ N ₃ S) ₂ Hg(NO ₃) ₂	
$Hg(1) - S(1)^{1}$	2.3686(8)	O(1) - N(1)	1.250(4)
Hg(1) - S(1)	2.3686(8)	O(2) - N(1)	1.242(3)
$Hg(1) - N(2)^{1}$	2.496(3)	N(1) - O(3)	1.214(3)
Hg(1) - N(2)	2.496(3)	N(3) - C(1)	1.322(4)
S(1) - C(1)	1.719(3)	N(4) - C(1)	1.315(4)
Bond Angles (deg)		(CH ₅ N ₃ S) ₂ Hg(NO ₃) ₂	
$S(1)^1 - Hg(1) - S(1)$	157.01(5)	O(3) - N(1) - O(1)	119.5(3)
$S(1)^1 - Hg(1) - N(2)$	114.03(7)	O(3) - N(1) - O(2)	120.4(3)
$S(1) - Hg(1) - N(2)^1$	114.03(7)	N(3)-N(2)-Hg(1)	108.30(18)
$S(1)^1 - Hg(1) - N(2)^1$	79.23(7)	C(1) - N(3) - N(2)	123.4(3)
S(1) - Hg(1) - N(2)	79.23(6)	N(3) - C(1) - S(1)	125.5(2)
$N(2)^{1}-Hg(1)-N(2)$	112.88(12)	N(4) - C(1) - S(1)	116.7(2)

C(1) - S(1) - Hg(1)	101.64(11)	N(4) - C(1) - N(3)	117.8(3)
O(2) - N(1) - O(1)	120.1(3)		

Symmetry transformations used to generate equivalent atoms:¹1-*x*,+*y*,3/2-*z*

Table S3. Fractional atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for Hg₃O₂(NO₃)₂·H₂O. Useq is defined as 1/3 of the trace of the orthogonalized Uij tensor.

atom	Wyckoff site	x	У	Z	$U_{ m eq}{}^{ m a}/{ m \AA}^2$
Hg(1)	2 <i>i</i>	9062.9(4)	10032.2(4)	2042.7(3)	12.66(10)
Hg(2)	2 <i>i</i>	-915.8(4)	5071.7(4)	2103.8(3)	14.94(11)

Hg(3)	2i	4054.4(4)	4996.3(4)	1917.4(3)	15.62(11)
O(1)	2i	988(7)	3589(8)	2473(5)	17.0(11)
O(2)	2 <i>i</i>	7185(8)	6459(8)	1440(5)	16.7(11)
O(3)	2 <i>i</i>	2358(9)	10434(8)	757(5)	21.8(11)
O(4)	2 <i>i</i>	2328(9)	7292(8)	740(5)	24.8(12)
N(1)	2 <i>i</i>	3434(10)	9451(10)	1040(6)	12.7(12)
O(5)	2 <i>i</i>	5495(8)	10589(9)	1578(5)	25.2(12)
O(6)	2 <i>i</i>	6624(13)	4448(13)	3972(7)	45.4(17)
O(7)	2 <i>i</i>	12223(10)	9601(11)	3605(6)	38.3(15)
N(2)	2 <i>i</i>	12436(11)	9852(11)	4872(6)	23.8(16)
O(8)	2 <i>i</i>	14216(12)	11522(12)	5705(7)	53.8(19)
O(9)	2 <i>i</i>	10942(14)	8462(14)	5297(8)	73(2)

atom	Wyckoff site	x	У	Z	$U_{\rm eq}^{\rm a}/{ m \AA}^2$
Hg(1)	4 <i>e</i>	5000	2829.1(3)	7500	35.87(10)
S(1)	8 <i>f</i>	5523.8(8)	2214.3(12)	6012.5(6)	34.0(2)
O(1)	8 <i>f</i>	2739(2)	640(3)	6898.4(18)	47.7(7)
O(2)	8 <i>f</i>	3310(2)	-1026(3)	5853.6(17)	47.0(7)
N(1)	8 <i>f</i>	3237(2)	-723(4)	6690(2)	31.6(7)
N(2)	8 <i>f</i>	3482(2)	4627(3)	6435.7(18)	33.1(7)
N(3)	8 <i>f</i>	3502(2)	4142(3)	5494.5(17)	31.0(7)
N(4)	8 <i>f</i>	4272(3)	2791(3)	4343.7(19)	38.9(7)
O(3)	8 <i>f</i>	3642(3)	-1747(4)	7309.9(19)	66.8(9)
C(1)	8 <i>f</i>	4335(3)	3121(4)	5249(2)	25.5(7)

Table S4. Fractional atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for (CH₅N₃S)₂Hg(NO₃)₂. Ueq is defined as 1/3 of the trace of the orthogonalized Uij tensor.

Compounds	Space group	Birefringence	Ref.
$Sc(IO_3)_2(NO_3)$	R32	Exp.0.348@546nm	Si1
$Hg_3(TeO_3)(Te_3O_7)(NO_3)_2$	Pnma	Exp.0.295@546nm	41
K(H ₃ C ₃ N ₃ O ₃)(NO ₃)	$P2_{1}/c$	Cal.0.253@546.1nm	Si2
$Pb_2(NO_3)_2(H_2O)F_2$	Amm2	Cal.0.230@1064nm	Si3
Hg ₃ O ₂ (NO ₃)F	Pbca	Cal.0.230@1064nm	40c
Rb(H ₃ C ₃ N ₃ O ₃)(NO ₃)	$P2_1/c$	Cal.0.224@546.1nm	Si2
Gu ₂ Bi(NO ₃) ₃ Cl ₂	$P2_{1}/c$	Exp.0.186@546nm	Si4
Pb ₂ (BO ₃)(NO ₃)	P6 ₃ mc	Cal.0.174@1064nm	18
$Hg_{16}(NO_3)_6O_{12}F_2(H_2O)$	Ibca	Exp.0.17@546nm	40d
$(NH_4)_3SbF_4(NO_3)_2$	Pnma	Cal.0.164@546nm	19
Gu ₃ Bi ₂ NO ₃ Cl ₈	рĪ	Exp.0.162@546nm	Si4
$Cs_2Pb(NO_3)_2Br_2$	I4 ₁ /amd	Exp.0.147@546nm	20
La(OH) ₂ NO ₃	P2 ₁	Exp.0.146@589.6nm	Si5
CsHgNO ₃ Cl ₂	P6 ₃ /mmc	Exp.0.145@ 546nm	40b
$Na_3Rb_6(CO_3)_3(NO_3)_2C1$ ·(H ₂ O) ₆	P6 ₃ /mcm	Exp. 0.14@546nm	Si8
Y(OH) ₂ NO ₃	<i>P</i> 2 ₁	Exp.0.133@589.6nm	Si5
Bi ₃ TeO ₆ OH(NO ₃) ₂	<i>P</i> 2 ₁	Cal.0.115@1064nm	21
Gd(OH) ₂ NO ₃	<i>P</i> 2 ₁	Exp.0.112@589.6nm	Si5
K ₂ Hg(NO ₃) ₄	I ⁴ 2m	Exp.0.107@546nm	Si7
Rb ₂ Hg(NO ₃) ₄	I ⁴ 2m	Exp.0.092@546nm	Si7
$(NH_4)_3SbF_3(NO_3)_3$	<i>P</i> 2 ₁	Cal.0.098@546nm	19
Ba ₂ NO ₃ (OH) ₃	<i>р</i> б _{2т}	Cal.0.082@532nm	Si8
(C ₈ H ₆ BrN ₂ O)NO ₃	Сс	Cal.0.08@550nm	Si9
Sr(NO ₃)(NH ₂ SO ₃)·H ₂ O	$Pca2_1$	Cal.0.0665@532nm	Si10
Rb ₂ SbF ₃ (NO ₃) ₂	<i>P</i> 2 ₁	Cal.0.06@1064 nm	Si11
PbCdF(SeO ₃)(NO ₃)	$Pca2_1$	Cal.0.055@1064nm	Si12
RbSnF ₂ NO ₃	C2/m	Cal.0.05@1064nm	Si11

Table S5. The reported metal nitrate birefringent crystals. ("Si" means the file is in the Supporting Information)

Figure S1. Experimental and simulated powder XRD patterns of $Hg_3O_2(NO_3)_2 \cdot H_2O$ (1 grid = 1 mm).

Figure S2. Experimental and simulated powder XRD patterns of $(CH_5N_3S)_2Hg(NO_3)_2$ (1 grid = 1 mm).

Figure S3. EDS image and data for $Hg_3O_2(NO_3)_2 \cdot H_2O$ (a) and $(CH_5N_3S)_2Hg(NO_3)_2$ (b).

Figure S4. TG curves of $Hg_3O_2(NO_3)_2 \cdot H_2O$ (a) and $(CH_5N_3S)_2Hg(NO_3)_2$ (b).

Figure S5. IR spectrum and the peaks' assignment for $Hg_3O_2(NO_3)_2 \cdot H_2O$ (a) and $(CH_5N_3S)_2Hg(NO_3)_2$ (b).

Figure S6. The arrangement of NO_3^- for $Hg_3O_2(NO_3)_2 \cdot H_2O$ (a) and $(CH_5N_3S)_2Hg(NO_3)_2$ (b).

Figure S7. (a) Original single crystal polarized optical microscope image and (b) A single crystal corresponding to complete extinction for $Hg_3O_2(NO_3)_2 \cdot H_2O$; (c) Original single crystal polarized optical microscope image and (d) A single crystal corresponding to complete extinction for $(CH_5N_3S)_2Hg(NO_3)_2$.

Figure S8. (a) Calculated band gap and (b) Density of states (DOS) for $Hg_3O_2(NO_3)_2 \cdot H_2O$.

Figure S9. (a) Calculated band gap and (b) Density of states (DOS) for (CH₅N₃S)₂Hg(NO₃)₂.

References:

- C. Wu, X. X. Jiang, Z. J. Wang, L. Lin, Z. S. Lin, Z. P. Huang, X. F. Long, M. G. Humphrey, C. Zhang, Giant Optical Anisotropy in the UV-Transparent 2D Nonlinear OpticalMaterial Sc(IO₃)₂(NO₃), *Angew. Chem. Int. Ed.*, 2021, **60**, 3464–3468.
- X. Hao, M. Luo, C. S. Lin, G. Peng, T. Yan, D. H. Lin, L. L. Cao, X. F. Long, G. S. Yang, N. Ye, A(H₃C₃N₃O₃)(NO₃) (A = K, Rb): Alkali-Metal Nitrate Isocyanurates with Strong Optical Anisotropy, *Inorg. Chem.*, 2020, **59**, 10361–10367.
- 3. G. Peng, Y. Yang, Y. H. Tang, M. Luo, T. Yan, Y. Q. Zhou, C. S. Lin, Z. S. Lin, N. Ye, Collaborative enhancement from Pb²⁺ and F⁻ in Pb₂(NO₃)₂(H₂O)F₂ generates the largest second harmonic generation effect among nitrates, *Chem. Commun.*, 2017, **53**, 9398-9401.
- 4. Z. Y. Bai, K. M. Ok, Exceptional Optical Anisotropy Enhancement Achieved Through Dual-Ions Cosubstitution Strategy in Novel Hybrid Bismuth Halides, *Small*, 2024, 2311391.
- Y. X. Song, M. Luo, C. S. Lin, N. Ye, Structural Modulation of Nitrate Group with Cations to Affect SHG Responses in RE(OH)₂NO₃ (RE = La, Y, and Gd): New Polar Materials with Large NLO Effect after Adjusting pH Values of Reaction Systems, *Chem. Mater.*, 2017, 29, 896–903.
- M. Cheng, W. Q. Jin, Z. H. Yang, S. L. Pan, Large optical anisotropy-oriented construction of a carbonatenitrate chloride compound as a potential ultraviolet birefringent material, *Chem. Sci.*, 2022, 13, 13482-13488.
- L. Qi, X. X. Jiang, K. N. Duanmu, C. Wu, Z. S. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang, Quadruple-Bidentate Nitrate-Ligated A₂Hg(NO₃)₄ (A=K, Rb): Strong Second-Harmonic Generation and Sufficient Birefringence, *Angew. Chem. Int. Ed.*, 2023, 62, e202309365.
- X. H. Dong, L. Huang, Q. Y. Liu, H. M. Zeng, Z. Lin, D. G. Xu, G. H. Zou, Perfect balance harmony in Ba₂NO₃(OH)₃: a beryllium-free nitrate as a UV nonlinear optical material, *Chem. Commun.*, 2018, 54, 5792-5795.
- 9. Y. G. Shen, W. R. Niu, Y. J. Luo, Y. W. Zhou, X. L. Xue, L. Q. Liu, (C₈H₆BrN₂O)NO₃: A Hybrid Nonlinear Optical Crystal With an Appropriate Birefringence, *Adv. Optical Mater.*, 2024, **12**, 2400062.
- X. F. Wang, Y. Li, Z. L. Chen, J. Lee, F. F. Zhang, K. R. Poeppelmeier, S. L. Pan, K. M. Ok, Sr(NO₃)(NH₂SO₃)·H₂O: First Nitrate Sulfamate Revealing Remarkable Second Harmonic Generation and Optimized Birefringence, *Small Struct*. 2023, 4, 2300274.
- 11. L. Wang, H. M. Wang, D. Zhang, D. J. Gao, J. Bi, L. Huang, G. H. Zou, Centrosymmetric RbSnF₂NO₃vs. noncentrosymmetric Rb₂SbF₃(NO₃)₂, *Inorg. Chem. Front.*, 2021, **8**, 3317-3324.
- Y. X. Ma, C. L. Hu, B. X. Li, F. Kong, J. G. Mao, PbCdF(SeO₃)(NO₃): A Nonlinear Optical Material Produced by Synergistic Effect of Four Functional Units, *Inorg. Chem.*, 2018, 57, 11839–11846.