Supporting Information

Enhancing Electrocatalytic Hydrogen Evolution Efficiency: Tuning Catalyst Support Pore Size to Optimize Hydrogen Adsorption-Desorption Kinetics

Yong Zhou^{a,b}, Bin Yang^b, Bing Li^{b*}, and Xiaoyang Liu^{a*}

a. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

b. Center for High Pressure Science and Technology Advanced Research, Changchun 130012, China.

* Corresponding authors: Xiaoyang Liu (liuxy@jlu.edu.cn); Bing Li (libing@hpstar.ac.cn).

Figure S1. SEM images of (a) $SiO_2@SiO_2/RF-1$, (b) $SiO_2@SiO_2/C-1$, and (c) HMCS-1. TEM images of (d) $SiO_2@SiO_2/RF-1$, (e) $SiO_2@SiO_2/C-1$, and (f) HMCS-1.

Figure S2. SEM images of (a) SiO₂@SiO₂/RF-2, (b) SiO₂@SiO₂/C-2, and (c) HMCS-2. TEM images of (d) SiO₂@SiO₂/RF-2, (e) SiO₂@SiO₂/C-2, and (f) HMCS-2.

Figure S3. SEM images of (a) $SiO_2@SiO_2/RF-3$, (b) $SiO_2@SiO_2/C-3$, and (c) HMCS-3. TEM images of (d) $SiO_2@SiO_2/RF-3$, (e) $SiO_2@SiO_2/C-3$, and (f) HMCS-3.

Figure S4. SEM images of (a) $SiO_2@SiO_2/RF-4$, (b) $SiO_2@SiO_2/C-4$, and (c) HMCS-4. TEM images of (d) $SiO_2@SiO_2/RF-4$, (e) $SiO_2@SiO_2/C-4$, and (f) HMCS-4.

Figure S5. XRD patterns of Ru/HMCS-1-5, Ru/HMCS-2-5, Ru/HMCS-3-5 and Ru/HMCS-4-5 (a); Ru/HMCS-2-100°C, Ru/HMCS-2-140°C and Ru/HMCS-2-180°C (b); Ru/HMCS-2-10min, Ru/HMCS-2-20min and Ru/HMCS-2-30min (c).

Figure S6. SEM images of (a) Ru/HMCS-1-5, (b) Ru/HMCS-2-5, (c) Ru/HMCS-3-5, and (d) Ru/HMCS-4-5. TEM images of (e) Ru/HMCS-1-5, (f) Ru/HMCS-2-5, (g) Ru/HMCS-3-5, and (h) Ru/HMCS-4-5. HRTEM images of (i) Ru/HMCS-1-5, (j) Ru/HMCS-2-5, (k) Ru/HMCS-3-5 and (l) Ru/HMCS-4-5.

Figure S7. SEM images of Ru/HMCS-2-0 (a), Ru/HMCS-2-1 (b), and Ru/HMCS-2-7 (c). TEM images of Ru/HMCS-2-0 (d), Ru/HMCS-2-1 (e), and Ru/HMCS-2-7 (f). HRTEM images of Ru/HMCS-2-0 (g), Ru/HMCS-2-1 (h), and Ru/HMCS-2-7 (i).

Figure S8. SEM images of Ru/HMCS-2-100°C (a), Ru/HMCS-2-140°C (b), and Ru/HMCS-2-180°C (c). TEM images of Ru/HMCS-2-100°C (d), Ru/HMCS-2-140°C (e), and Ru/HMCS-2-180°C (f). HRTEM images of Ru/HMCS-2-100°C (g), Ru/HMCS-2-140°C (h), and Ru/HMCS-2-180°C (i).

Figure S9. SEM images of Ru/HMCS-2-10min (a), Ru/HMCS-2-20min (b), and Ru/HMCS-2-30min (c). TEM images of Ru/HMCS-2-10min (d), Ru/HMCS-2-20min (e), and Ru/HMCS-2-30min (f). HRTEM images of Ru/HMCS-2-10min (g), Ru/HMCS-2-20min (h), and Ru/HMCS-2-30min (i).

Figure S10. (a) N_2 -adsorption/desorption isotherms and (b) pore size distribution of HMCSs.

Figure S11. (a) XPS survey spectrum of HMCS-2. High-resolution XPS spectra of C 1*s* (b) and O 1*s* (c) for HMCS-2.

Catalyst	Ru (<i>wt</i> %)
Ru/HMCS-1-5	2.83
Ru/HMCS-2-5	3.12
Ru/HMCS-3-5	2.51
Ru/HMCS-4-5	2.34
Ru/HMCS-2-1	1.15
Ru/HMCS-2-3	2.42
Ru/HMCS-2-7	5.78
Ru/HMCS-2-100°C	1.98
Ru/HMCS-2-140°C	2.04
Ru/HMCS-2-180°C	2.23
Ru/HMCS-2-10min	2.25
Ru/HMCS-2-20min	2.97
Ru/HMCS-2-30min	4.33

Table S1. The Ru content of the samples by ICP-OES.

Catalyst	$\eta_{10}(mV)$	Tafel slope (mV dec ⁻¹)	C_{dl} (mF cm ⁻²)	ECSA (cm ²)
Ru/HMCS-1-5	30.9	47.00	25.80	45.60
Ru/HMCS-2-5	22.0	48.34	33.74	59.64
Ru/HMCS-3-5	29.8	47.57	24.24	42.84
Ru/HMCS-4-5	23.7	43.55	29.66	52.42
Ru/HMCS-2-1	36.5	66.39	38.39	67.85
Ru/HMCS-2-3	18.9	39.54	39.66	70.10
Ru/HMCS-2-7	21.1	43.67	40.48	71.55
Ru/HMCS-2-100°C	83.3	158.45	25.43	44.95
Ru/HMCS-2-140°C	67.9	122.59	26.93	47.60
Ru/HMCS-2-180°C	46.9	121.68	37.29	65.91
Ru/HMCS-2-10min	32.2	70.68	41.02	72.50
Ru/HMCS-2-20min	37.3	101.39	39.43	69.69
Ru/HMCS-2-30min	31.2	78.17	37.29	65.91
20 wt.%Pt/C	31.9	57.03	50.30	88.91
40 <i>wt</i> .%Pt/C	21.2	41.21	55.62	98.31

 Table S2. Electrocatalytic Performance for the HER of Ru/HMCS and commercial Pt/C catalysts

		•
Catalyst	$\mathrm{R}_{s}\left(\Omega ight)$	$R_{ct}(\Omega)$
Ru/HMCS-1-5	14.75	46.24
Ru/HMCS-2-5	17.91	18.59
Ru/HMCS-3-5	22.21	38.32
Ru/HMCS-4-5	15.79	39.49
Ru/HMCS-2-1	14.76	64.26
Ru/HMCS-2-3	13.83	18.13
Ru/HMCS-2-7	13.75	8.72
Ru/HMCS-2-100°C	15.81	113.6
Ru/HMCS-2-140°C	34.54	95.02
Ru/HMCS-2-180°C	32.9	78.59
Ru/HMCS-2-10min	21.18	86.79
Ru/HMCS-2-20min	16.82	55.21
Ru/HMCS-2-30min	15.97	29.42

 Table S3. Fitted EIS results of Ru/HMCS catalysts

Figure S12. Cyclic voltammetry curves of Ru/HMCS-1-5 (a), Ru/HMCS-2-5 (b), Ru/HMCS-3-5 (c), Ru/HMCS-4-5 (d), Ru/HMCS-2-1 (e), Ru/HMCS-2-3 (f), Ru/HMCS-2-7 (g), 20 wt.%Pt/C (h) and 40 wt.%Pt/C (i) (10–120 mV s⁻¹, in 1.0 M KOH solution).

Figure S13. Cyclic voltammetry curves of Ru/HMCS-2-100°C (a), Ru/HMCS-2-140°C (b), Ru/HMCS-2-180°C (c), Ru/HMCS-2-10min (d), Ru/HMCS-2-20min (e) and Ru/HMCS-2-30min (f) (10–120 mV s⁻¹, in 1.0 M KOH solution).

Figure S14. Chronoamperometric measurement of Ru/HMCS-2-3 in 1.0 M KOH.

Figure S15. Characterizations of Ru/HMCS-2-3 catalyst after 48 h chronoamperometric measurement. (a) SEM image, (b) TEM image, and (c) HRTEM image.

Catalyst	Ru content	η_{10}	Tafel slope	R _{ct}	Ref.
	(wt.%)	(mV)	(mV dec ⁻¹)	(Ω)	
Ru/HMCS-2-3	2.42	18.9	39.54	18.1	This work
Ru ₉₀ Ni ₁₀ /rGOP	94	6	26	1.4	[1]
Ru/C-20A	85.5	13	35		[2]
UP-RuNi _{SAs} /C		9	37.6	0.10	[3]
Ru/NC	5.83	24	29		[4]
Ru _{NP} /Ru _{SA} @CFN- 800	12	33	37.16	31.91	[5]
CNT-V-Fe-Ru	17.84	38	41	24.6	[6]
NMC Ru _{SA+NC}	2.0	5	136		[7]
α-Ru@Co-DHC		40	62		[8]
$Ru_{1+NPs}/N-C-700^{\circ}C$	7.57	39	27.6	29.97	[9]
Ru/Co-N-C-800°C	0.36	17	27.8		[10]
Ru/3d-OMC		20	40.5		[11]
Ru S/DA		58	90		[12]
Ru _{1,n} -NC	7.1	14.8	22.4		[13]
Ru _{NP} @RuN _x - OFC/NC	17.84	19	35.35	10.81	[14]
Ru55@CN	1.728	36	39		[15]
Ru _{SA+NP} /DC	11.8	18.8	35.8		[16]
NiRu _{0.13} -BDC		34	32		[17]
Ru/Co@OG	6.9	13	22.8		[18]
Ru1CoP/CDs-1000	13.69	51	73.4		[19]
Ru/g-C ₃ N ₄ -C-TiO ₂	12.4	107	83	58	[20]
Ru/p-NC	1.0	10	17	4.7	[21]
Ru/MoO ₂	21.26	16	32	24.59	[22]

Table S4. Comparison of HER activity of Ru/HMCS-2-3 catalyst with recently reportedrepresentative Ru-based catalysts in 1.0 M KOH solution.

$Ru/g-C_3N_4-2$	3.27	34	27	35.2	[23]
Ru-CoP/NC		22	50		[24]
Ru ADC		18	41		[25]
ECM@Ru	0.68	83	58	15.1	[26]
Ru-N/BC	0.46	51	44	20.3	[27]
Ru-NPs/SAs@N-TC	0.457	97	58		[28]
Ru-NMCNs-500	3.04	39	35.2	8.86	[29]
Ru@CNT-500	0.068	36.69	28.82		[30]
5%Ru-MoS ₂ /CNT	5 (at.%)	50	62		[31]
RuS _x /S-GO	44.31	58	56		[32]

Reference

- 1. Y. Liu, H. Shi, T. Y. Dai, S. P. Zeng, G. F. Han, T. H. Wang, Z. Wen, X. Y. Lang and Q. Jiang, In situ engineering multifunctional active sites of ruthenium-nickel alloys for pH-universal ampere-level current-density hydrogen evolution, *Small*, 2024, **20**, 2311509.
- B. H. Cui, H. Zhu, M. Wang, J. R. Zeng, J. F. Zhang, Z. L. Tian, C. L. Jiang, Z. J. Sun, H. T. Yang, Y. Liu, J. Ding, Z. Y. Luo, Y. N. Chen, W. Chen and W. B. Hu, Intermediate state of dense Ru assembly captured by high-temperature shock for durable ampere-level hydrogen production, *ACS Mater. Lett.*, 2024, 6, 1532-1541.
- 3. R. Yao, K. A. Sun, K. Y. Zhang, Y. Wu, Y. J. Du, Q. Zhao, G. Liu, C. Chen, Y. H. Sun and J. P. Li, Stable hydrogen evolution reaction at high current densities *via* designing the Ni single atoms and Ru nanoparticles linked by carbon bridges, *Nat. Commun.*, 2024, **15**, 2218.
- Y. P. Zhu, K. Fan, C. S. Hsu, G. Chen, C. S. Chen, T. C. Liu, Z. Z. Lin, S. X. She, L. Q. Li, H. M. Zhou,
 Y. Zhu, H. M. Chen and H. T. Huang, Supported ruthenium single-atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution, *Adv. Mater.*, 2023, 35, 2301133.
- T. M. Luo, J. F. Huang, Y. Z. Hu, C. K. Yuan, J. S. Chen, L. Y. Cao, K. Kajiyoshi, Y. J. Liu, Y. Zhao, Z. J. Li and Y. Q. Feng, Fullerene lattice-confined Ru nanoparticles and single atoms synergistically boost electrocatalytic hydrogen evolution reaction, *Adv. Funct. Mater.*, 2023, 33, 2213058.
- T. T. Gao, X. M. Tang, X. Q. Li, S. W. Wu, S. M. Yu, P. P. Li, D. Xiao and Z. Y. Jin, Understanding the atomic and defective interface effect on ruthenium clusters for the hydrogen evolution reaction, ACS Catal., 2023, 13, 49-59.
- H. X. Yao, X. K. Wang, K. Li, C. Li, C. H. Zhang, J. Zhou, Z. W. Cao, H. L. Wang, M. Gu, M. H. Huang and H. Q. Jiang, Strong electronic coupling between ruthenium single atoms and ultrafine nanoclusters enables economical and effective hydrogen production, *Appl. Catal. B-Environ.*, 2022, **312**, 121378.
- W. X. Yang, W. Y. Zhang, R. Liu, F. Lv, Y. G. Chao, Z. C. Wang and S. J. Guo, Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis, *Chin. J. Catal.*, 2022, 43, 110-115.
- S. R. Wang, M. M. Wang, Z. Liu, S. J. Liu, Y. J. Chen, M. Li, H. Zhang, Q. K. Wu, J. H. Guo, X. Q. Feng, Z. Chen and Y. Pan, Synergetic function of the single-atom Ru-N₄ site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis, *ACS Appl. Mater. Interfaces*, 2022, 14, 15250-15258.
- C. L. Rong, X. J. Shen, Y. Wang, L. Thomsen, T. W. Zhao, Y. B. Li, X. Y. Lu, R. Amal and C. Zhao, Electronic structure engineering of single-atom Ru sites *via* Co-N₄ Sites for bifunctional pH-universal water splitting, *Adv. Mater.*, 2022, **34**, 2110103.
- Z. H. Liu, Y. Du, R. H. Yu, M. B. Zheng, R. Hu, J. S. Wu, Y. Y. Xia, Z. C. Zhuang and D. S. Wang, Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation, *Angew. Chem. Int. Edit.*, 2022, **62**, e2022126.
- Y. Liu, N. Chen, W. D. Li, M. Z. Sun, T. Wu, B. L. Huang, X. Yong, Q. H. Zhang, L. Gu, H. Q. Song, R. Bauer, J. S. Tse, S. Q. Zang, B. Yang and S. Y. Lu, Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution, *Smartmat*, 2022, **3**, 249-259.
- Q. He, Y. Z. Zhou, H. W. Shou, X. Y. Wang, P. J. Zhang, W. J. Xu, S. C. Qiao, C. Q. Wu, H. J. Liu, D. B. Liu, S. M. Chen, R. Long, Z. M. Qi, X. J. Wu and L. Song, Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media, *Adv. Mater.*, 2022, 34, 2110604.
- Y. Q. Feng, W. H. Feng, J. Wan, J. S. Chen, H. Wang, S. M. Li, T. M. Luo, Y. Z. Hu, C. K. Yuan, L. Y. Cao, L. L. Feng, J. Li, R. Wen and J. F. Huang, Spherical vs. planar: Steering the electronic communication between Ru nanoparticle and single atom to boost the electrocatalytic hydrogen evolution activity both in acid and alkaline, *Appl. Catal. B-Environ.*, 2022, **307**, 121193.

- S. Ajmal, T. D. H. Bui, Q. V. Bui, T. Yang, X. D. Shao, A. Kumar, S.-G. Kim and H. Lee, Accelerating water reduction towards hydrogen generation via cluster size adjustment in Ru-incorporated carbon nitride, *Chem. Eng. J.*, 2022, **429**, 132282.
- L. J. Zhang, H. Jang, Y. Wang, Z. Li, W. Zhang, M. G. Kim, D. J. Yang, S. G. Liu, X. Liu and J. Cho, Exploring the dominant role of atomic- and nano-ruthenium as active sites for hydrogen evolution reaction in both acidic and alkaline media, *Adv. Sci.*, 2021, 8, 2004516.
- Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, K. Liu, Y. Lin, M. Liu, G. Li and C. Y. Su, Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution, *Nat. Commun.*, 2021, **12**, 1369.
- 18. P. Su, W. Pei, X. Wang, Y. Ma, Q. Jiang, J. Liang, S. Zhou, J. Zhao, J. Liu and G. Q. Lu, Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate, *Angew. Chem. Int. Edit.*, 2021, **60**, 16044-16050.
- H. Song, M. Wu, Z. Tang, J. S. Tse, B. Yang and S. Lu, Single atom ruthenium-doped CoP/CDs nanosheets *via* splicing of carbon-dots for robust hydrogen production, *Angew. Chem. Int. Edit.*, 2021, 60, 7234-7244.
- 20. Z. Li, Y. Yang, S. Wang, L. Gu and S. Shao, High-density ruthenium single atoms anchored on oxygenvacancy-rich g-C₃N₄-C-TiO₂ heterostructural nanosphere for efficient electrocatalytic hydrogen evolution reaction, *ACS Appl. Mater. Interfaces*, 2021, **13**, 46608-46619.
- 21. Y. Li, H. Liu, B. Li, Z. Yang, Z. Guo, J. B. He, J. Xie and T. C. Lau, Ru single atoms and nanoclusters on highly porous N-doped carbon as a hydrogen evolution catalyst in alkaline solutions with ultrahigh mass activity and turnover frequency, *J. Mater. Chem. A*, 2021, **9**, 12196-12202.
- H. Li, K. Liu, J. Fu, K. Chen, K. Yang, Y. Lin, B. Yang, Q. Wang, H. Pan, Z. Cai, H. Li, M. Cao, J. Hu, Y.-R. Lu, T.-S. Chan, E. Cortes, A. Fratalocchi and M. Liu, Paired Ru-O-Mo ensemble for efficient and stable alkaline hydrogen evolution reaction, *Nano Energy*, 2021, 82, 105767.
- D. Li, Y. Liu, Z. Liu, J. Yang, C. Hu and L. Feng, Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru-N coupling in defect-rich Ru/g-C₃N₄ nanosheets, *J. Mater. Chem. A*, 2021, 9, 15019-15026.
- Y. Hao, H. Xue, J. Sun, N. Guo, T. Song, J. Sun and Q. Wang, Tuning the electronic structure of CoP embedded in N-doped porous carbon nanocubes *via* Ru doping for efficient hydrogen evolution, *ACS Appl. Mater. Interfaces*, 2021, 13, 56035-56044.
- D. Cao, J. Wang, H. Xu and D. Cheng, Construction of dual-site atomically dispersed electrocatalysts with Ru-C₅ single atoms and Ru-O₄ nanoclusters for accelerated alkali hydrogen evolution, *Small*, 2021, 17, 2101163.
- 26. H. Zhang, W. Zhou, F. Lu Xue, T. Chen and W. Lou Xiong, Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution, *Adv. Energy Mater.*, 2020, **10**, 2000882.
- Y. Yu, S. Yang, M. Dou, Z. Zhang and F. Wang, Photochemically activated atomic ruthenium supported on boron-doped carbon as a robust electrocatalyst for hydrogen evolution, *J. Mater. Chem. A*, 2020, 8, 16669-16675.
- B. Yan, D. Liu, X. Feng, M. Shao and Y. Zhang, Ru species supported on MOF-derived N-doped TiO₂/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts, *Adv. Funct. Mater.*, 2020, **30**, 2003007.
- J. Peng, Y. Chen, K. Wang, Z. Tang and S. Chen, High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution, *Int. J. Hydrog. Energy*, 2020, 45, 18840-18849.
- Q. Liu, L. Yang, P. Sun, H. Liu, J. Zhao, X. Ma, Y. Wang and Z. Zhang, Ru catalyst supported on nitrogen-doped nanotubes as high efficiency electrocatalysts for hydrogen evolution in alkaline media, *RSC Adv.*, 2020, 10, 22297-22303.

- 31. X. Zhang, F. Zhou, S. Zhang, Y. Liang and R. Wang, Engineering MoS₂ basal planes for hydrogen evolution *via* synergistic ruthenium doping and nanocarbon hybridization, *Adv. Sci.*, 2019, **6**, 1900090.
- P. Li, X. Duan, S. Wang, L. Zheng, Y. Li, H. Duan, Y. Kuang and X. Sun, Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range, *Small*, 2019, 15, 1904043.