Supporting Information

Designing Infrared Nonlinear Optical Crystals, Sr₂MgSn₂OS₆ and Sr₂SnGa₂OS₆ with Hybrid Anionic Frameworks via Double Substitution Strategy

Zhen Qian,[‡]^a Deman Kong,[‡]^a Hongping Wu,^{*}^a Hongwei Yu,^a Zhanggui Hu,^a Jiyang Wang^a and Yicheng Wu^a

Correspondence: Hongping Wu (wuhp@email.tjut.edu.cn)

^a Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
‡ These authors contributed equally to this work.

CONTENTS

1.	Table S1 (Crystal data, structure refinement)
2.	Table S2 (Atomic coordinates, displacement parameters and BVS of Sr ₂ MgSn ₂ OS ₆)3
3.	Table S3 (Atomic coordinates, displacement parameters and BVS of Sr ₂ SnGa ₂ OS ₆)4
4.	Table S4 (Selected bond distances and angles for Sr ₂ MgSn ₂ OS ₆)
5.	Table S5 (Selected bond distances and angles for Sr ₂ SnGa ₂ OS ₆)
6.	Table S6 (The space groups, Dipole moment, and the flexibility indices F)
7.	Figure S1 (The Powder X-ray Diffraction of Sr ₂ SnGa ₂ OS ₆)8
8.	Figure S2 (Experimental results vs simulated X-ray Diffraction of Sr ₂ MgSn ₂ OS ₆)9
9.	Figure S3 (Two Experimental results vs simulated X-ray Diffraction of Sr ₂ MgSn ₂ OS ₆)
10.	Figure S4 (The Powder X-ray Diffraction of Sr ₂ MgSi ₂ O ₇)11
11.	Figure S5 (The variable-temperature powder XRD of the Sr ₂ SnGa ₂ OS ₆)12
12.	Figure S6 (Shrinkage phenomenon of Sr ₂ SnGa ₂ OS ₆ at different temperatures)13
13.	Figure S7 (The IR transmittance spectrum of Sr ₂ MgSi ₂ O ₇)14
14.	Figure S8 (The SHG response of Sr ₂ MgSi ₂ O ₇)15

CCDC number	2402942	2402941
Empirical formula	$Sr_2MgSn_2OS_6$	$Sr_2SnGa_2OS_6$
Formula weight	645.36	641.791
Temperature [K]		293(2)
Crystal system		tetragonal
Space group (number)		$P\overline{4}2_1m$ (No. 113)
<i>a</i> [Å]	9.5344(17)	9.5281(11)
<i>b</i> [Å]	9.5344(17)	9.5281(11)
<i>c</i> [Å]	6.2123(16)	6.2183(10)
Volume [Å ³]	564.7(2)	564.53(16)
Ζ	2	2
$ ho_{ m calc} [m g cm^{-3}]$	3.809	3.775
$\mu [\mathrm{mm}^{-1}]$	14.933	17.336
Goodness-of-fit on F^2	1.072	0.821
Final <i>R</i> indexes $[I \ge 2\sigma(I)]^{[a]}$	$R_1 = 0.0525$	$R_1 = 0.0334$
	$wR_2 = 0.1055$	$wR_2 = 0.0692$
Final R indexes [all data]	$R_1 = 0.0649$	$R_1 = 0.0403$
	$wR_2 = 0.1114$	$wR_2 = 0.0736$
Largest peak/hole [eÅ ⁻³]	1.22/-1.11	0.67/-0.83
Flack X parameter	0.59(5)	0.02(2)

Table S1. Crystal data and structure refinement for Sr₂MgSn₂OS₆ and Sr₂SnGa₂OS₆.

^[a] $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ and $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$

	Wyckof					
Atom	f	Х	У	Z	$U_{ m eq}$	BVS
	position					
Sr(1)	2a	0.1521(2)	0.6521(2)	1.0131(4)	0.022(1)	2.09
Mg(1)	4e	0.1273(2)	0.3727(2)	0.4408(3)	0.017(1)	2.07
Mg(2)	2b	0.5000	0.5000	0.5000	0.015(1)	2.11
Sn (1)	4e	0.1273(2)	0.3727(2)	0.4408(3)	0.017(1)	3.93
Sn(2)	2b	0.5000	0.5000	0.5000	0.015(1)	3.89
O(1)	lc	0	0.5000	0.3030(30)	0.026(6)	2.05
S (1)	4e	0.1373(5)	0.3627(5)	0.7973(8)	0.020(1)	1.95
S(2)	8f	0.3322(5)	0.4312(5)	0.2561(6)	0.020(1)	1.98

Table S2. The atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²× 10³) for Sr₂MgSn₂OS₆. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor, and the BVS for each atom in the asymmetric unit of Sr₂MgSn₂OS₆.

	Wyckof					
Atom	f	Х	У	Z	$U_{ m eq}$	BVS
	position					
Sr(1)	2a	0.8478(1)	0.3478(1)	-0.0128(2)	0.017(1)	2.12
Sn (1)	4e	0.8724(1)	0.6276(1)	0.5591(2)	0.012(1)	3.89
Sn(2)	2b	0.5000	0.5000	0.5000	0.012(1)	3.93
Ga(1)	4e	0.8724(1)	0.6276(1)	0.5591(2)	0.012(1)	3.12
Ga(2)	2b	0.5000	0.5000	0.5000	0.012(1)	3.07
O(1)	lc	1.0000	0.5000	0.7000(20)	0.014(3)	1.96
S (1)	4e	0.8627(3)	0.6373(3)	0.2025(6)	0.016(1)	2.05
S(2)	8f	0.6680(3)	0.5684(3)	0.7436(4)	0.014(1)	2.09

Table S3. The atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²× 10³) for Sr₂SnGa₂OS₆. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor, and the BVS for each atom in the asymmetric unit of Sr₂SnGa₂OS₆.

Atom-Atom	Length [Å]	$O(1)^{\#1}$ -Sr(1)-S(2) ^{#1}	67.22(15)
Sr(1)-O(1)#1	2.732(14)	S(1) ^{#2} -Sr(1)-S(2) ^{#1}	84.02(11)
Sr(1)-S(1)#2	3.074(6)	S(1)-Sr(1)-S(2)#1	68.20(13)
Sr(1)-S(1)	3.071(5)	$S(1)^{#3}-Sr(1)-S(2)^{#1}$	132.61(14)
Sr(1)-S(1)#3	3.071(5)	S(2)#4-Sr(1)-S(2)#1	120.84(17)
Sr(1)-S(2)#4	3.108(5)	O(1)#1-Sr(1)-S(2)#5	145.62(8)
Sr(1)-S(2) ^{#1}	3.108(5)	S(1)#2-Sr(1)-S(2)#5	67.68(12)
Sr(1)-S(2)#5	3.146(5)	S(1)-Sr(1)-S(2)#5	81.36(12)
Sr(1)-S(2)#6	3.146(5)	S(1) ^{#3} -Sr(1)-S(2) ^{#5}	122.01(14)
Sr(1)-Sn(1)#7	3.770(3)	S(2)#4-Sr(1)-S(2)#5	143.60(9)
$Sr(1)-Sn(1)^{\#1}$	3.770(3)	S(2)#1-Sr(1)-S(2)#5	79.82(16)
Sr(1)-Mg(1) ^{#5}	4.099(3)	O(1)#1-Sr(1)-S(2)#6	145.62(9)
$Sr(1)-Sr(1)^{\#3}$	4.102(5)	S(1)#2-Sr(1)-S(2)#6	67.68(12)
S(1)-Sn(1)	2.218(5)	S(1)-Sr(1)-S(2)#6	122.01(14)
S(2)-Sn(2)	2.299(4)	S(1) ^{#3} -Sr(1)-S(2) ^{#6}	81.36(12)
S(2)-Sn(1)	2.334(5)	S(2)#4-Sr(1)-S(2)#6	79.82(16)
O(1)-Sn(1)	1.916(10)	S(2)#1-Sr(1)-S(2)#6	143.60(9)
O(1)-Sn(1) ^{#3}	1.917(10)	S(2)#5-Sr(1)-S(2)#6	68.72(17)
Atom-Atom-Atom	Angle [°]	O(1)-Sn(1)-S(1)	119.9(6)
$O(1)^{#1}$ -Sr(1)-S(1) ^{#2}	116.1(4)	O(1)-Sn(1)-S(2)	99.2(4)
$O(1)^{#1}$ -Sr(1)-S(1)	77.7(3)	S(1)-Sn(1)-S(2)	117.73(16)
S(1) ^{#2} -Sr(1)-S(1)	141.65(9)	O(1)-Sn(1)-S(2)#12	99.2(4)
$O(1)^{#1}$ -Sr(1)-S(1) ^{#3}	77.7(3)	S(1)-Sn(1)-S(2)#12	117.73(15)
S(1) ^{#2} -Sr(1)-S(1) ^{#3}	141.65(9)	S(2)-Sn(1)-S(2)#12	99.1(2)
S(1)-Sr(1)-S(1)#3	74.1(2)	$S(2)^{\#5}-Sn(2)-S(2)^{\#10}$	97.5(2)
O(1) ^{#1} -Sr(1)-S(2) ^{#4}	67.22(14)	$S(2)^{\#5}-Sn(2)-S(2)^{\#13}$	115.74(12)
S(1)#2-Sr(1)-S(2)#4	84.02(11)	$S(2)^{\#10}$ - $Sn(2)$ - $S(2)^{\#13}$	115.74(12)
S(1)-Sr(1)-S(2)#4	132.61(14)	$S(2)^{\#5}-Sn(2)-S(2)$	115.74(12)
S(1) ^{#3} -Sr(1)-S(2) ^{#4}	68.20(13)	$S(2)^{\#10}-Sn(2)-S(2)$	115.74(12)
		$S(2)^{\#13}-Sn(2)-S(2)$	97.5(2)

Table S4. Selected lengths (Å) and bond angles (°) for $Sr_2MgSn_2OS_6$.

Symmetry transformations used to generate equivalent atoms:

#1: x, y, z+1; #2: y, -x+1, -z+2; #3: -x, -y+1, z; #4: y-1/2, x+1/2, z+1; #5: y, -x+1, -z+1; #6: -x+1/2, y+1/2, -z+1; #7: -x, -y+1, z+1; #8: -y+1, x, -z+2; #9: x, y, z-1; #10: -y+1, x, -z+1; #11: -x, -y+1, z-1; #12: -y+1/2, -x+1/2, z; #13: -x+1, -y+1, z;

Atom-Atom	Length [Å]	S(1)-Sr(1)-S(2)#1	68.29(9)
Sr(1)-O(1) ^{#1}	2.719(9)	S(1)#2-Sr(1)-S(2)#1	132.63(9)
Sr(1)-S(1)	3.070(3)	S(1) ^{#3} -Sr(1)-S(2) ^{#1}	83.94(7)
Sr(1)-S(1) ^{#2}	3.070(3)	S(2)#4-Sr(1)-S(2)#1	120.58(11)
Sr(1)-S(1) ^{#3}	3.072(4)	O(1)#1-Sr(1)-S(2)#5	145.65(5)
Sr(1)-S(2)#4	3.106(3)	S(1)-Sr(1)-S(2)#5	122.00(9)
Sr(1)-S(2) ^{#1}	3.106(3)	S(1)#2-Sr(1)-S(2)#5	81.37(7)
Sr(1)-S(2) ^{#5}	3.148(3)	S(1)#3-Sr(1)-S(2)#5	67.73(8)
Sr(1)-S(2)#6	3.148(3)	S(2)#8-Ga(1)-S(2)	99.32(15)
Sr(1)-Ga(1) ^{#1}	3.7740(18)	S(2)#1-Sr(1)-S(2)#5	143.62(5)
Sr(1)-Ga(1) ^{#7}	3.7740(18)	O(1)#1-Sr(1)-S(2)#6	145.65(5)
Sr(1)-Sr(1) ^{#2}	4.101(3)	S(1)-Sr(1)-S(2)#6	81.37(7)
Ga(1)-O(1)	1.929(7)	S(1)#2-Sr(1)-S(2)#6	122.00(9)
Ga(1)-S(1)	2.221(4)	S(1)#3-Sr(1)-S(2)#6	67.73(8)
Ga(1)-S(2) ^{#8}	2.330(3)	S(2)#4-Sr(1)-S(2)#6	143.62(5)
Ga(1)-S(2)	2.330(3)	S(2)#1-Sr(1)-S(2)#6	79.94(10)
Ga(2)-S(2)	2.298(3)	S(2)#5-Sr(1)-S(2)#6	68.67(10)
Ga(2)-S(2)#9	2.298(3)	O(1)-Ga(1)-S(1)	120.4(4)
Ga(2)-S(2) ^{#6}	2.298(3)	O(1)-Ga(1)-S(2)#8	98.7(3)
Ga(2)-S(2) ^{#10}	2.298(3)	S(1)-Ga(1)-S(2)#8	117.80(10)
Atom-Atom-Atom	Angle [°]	O(1)-Ga(1)-S(2)	98.7(3)
$O(1)^{\#1}$ -Sr(1)-S(1)	77.46(18)	S(1)-Ga(1)-S(2)	117.80(10)
O(1) ^{#1} -Sr(1)-S(1) ^{#2}	77.46(18)	O(1)-Ga(1)-S(1)	120.4(4)
S(1)-Sr(1)-S(1) ^{#2}	74.15(13)	O(1)-Ga(1)-S(2)#8	98.7(3)
O(1) ^{#1} -Sr(1)-S(1) ^{#3}	116.4(2)	S(1)-Ga(1)-S(2)#8	117.80(10)
S(1)-Sr(1)-S(1)#3	141.66(6)	O(1)-Ga(1)-S(2)	98.7(3)
$S(1)^{#2}-Sr(1)-S(1)^{#3}$	141.66(6)	S(1)-Ga(1)-S(2)	117.80(10)
O(1)#1-Sr(1)-S(2)#4	67.23(10)	S(2)-Ga(2)-S(2) ^{#9}	97.54(13)
S(1)-Sr(1)-S(2)#4	132.63(9)	S(2)-Ga(2)-S(2) ^{#6}	115.74(7)
S(1)#2-Sr(1)-S(2)#4	68.29(9)	S(2) ^{#9} -Ga(2)-S(2) ^{#6}	115.74(7)
S(1) ^{#3} -Sr(1)-S(2) ^{#4}	83.94(7)	S(2)-Ga(2)-S(2) ^{#10}	115.74(7)
O(1) ^{#1} -Sr(1)-S(2) ^{#1}	67.23(10)	S(2) ^{#9} -Ga(2)-S(2) ^{#10}	115.74(7)
		$S(2)^{\#6}$ -Ga(2)-S(2) ^{#10}	97.54(13)

 $(\text{\AA}) \quad \text{and} \quad \text{bond} \quad \text{angles} \quad (^{\circ}) \quad \text{for} \quad Sr_2SnGa_2OS_6.$

Symmetry transformations used to generate equivalent atoms:

Table S5.

Selected

lengths

#1: x, y, z-1; #2: -x+2, -y+1, z; #3: y, -x+1, -z; #4: y+1/2, x-1/2, z-1; #5: -x+3/2, y-1/2, -z+1; #6: y, -x+1, -z+1; #7: -x+2, -y+1, z-1; #8: -y+3/2, -x+3/2, z; #9: x+1, -y+1, z; #10: -y+1, x, -z+1; #11: - x+2, -y+1, z+1; #12: x, y, z+1; #13: -y+1, x, -z;

Table S6. The space groups, Dipole moment, and the flexibility indices (F) of [SiO₄] and [(Sn/Ga)OS₃] units in Sr₂MgSi₂O₇, Sr₂SnGa₂OS₆.

Compounds	Space groups	Tetrahedral units	Dipole moment (Debye)	F
$Sr_2MgSi_2O_7$	$P\overline{4}2_1m$	[SiO ₄]	1.97	0.102
$Sr_2SnGa_2OS_6$	$P\overline{4}2_1m$	[(Sn/Ga)OS ₃]	8.72	0.178

Figure S1. Experimental (red) and simulated (black) powder XRD patterns of Sr₂SnGa₂OS₆.

Figure S2. Experimental results (Dark blue) and simulated (red) powder XRD patterns of $Sr_2MgSn_2OS_6$.

Figure S3. Experimental results [(1) blue and (2) purple] and simulated (red) powder XRD patterns of $Sr_2MgSn_2OS_6$.

Figure S4. Experimental (red) and simulated (black) powder XRD patterns of Sr₂MgSi₂O₇.

Figure S5. The variable-temperature powder XRD of the Sr₂SnGa₂OS₆.

Figure S6. Shrinkage phenomenon of Sr₂SnGa₂OS₆ at different temperatures.

Figure S7. The IR transmittance spectrum of $Sr_2MgSi_2O_7$.

Figure S8. SHG signals of $Sr_2MgSi_2O_7$ with AGS as a reference at a particle size of $150-210 \,\mu$ m at 2090 nm radiation.

