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1. General information

Unless otherwise specified, commercially available reagents were used without
further purification. Toluene and THF (tetrahydrofuran) were refluxed over
Na/benzophenone and distilled under argon atmosphere. EtO. (Diethyl ether) were
refluxed over CaH and distilled under argon atmosphere. All reactions were carried
out under an argon atmosphere unless otherwise noted. Column chromatography
was performed on silica gel 200-300 Mesh with eluent (PE = petroleum ether, EA =
ethyl acetate, DCM = dichloromethane). Reactions were monitored by thin-layer
chromatography (TLC) and visualization on TLC was achieved by UV light, iodine or
phosphomolybdic acid.

NMR spectra were recorded on Bruker-400 MHz NMR spectrometer (400 MHz for
'H; 100 MHz for '3C). '"H NMR chemical shifts were determined relative to internal
(CH3)4Si (TMS) (0.00 ppm) or at the signal of a residual protonated solvent: CDCl3
(7.26 ppm) or DMSO-ds (2.50 ppm). ®C NMR chemical shifts were determined
relative to CDCl3 (77.16 ppm) or DMSO-ds (39.52 ppm). The coupling constants (J)
were given in Hertz (Hz). The following abbreviations were used to explain NMR peak
multiplicities: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.
HRMS data were obtained by ESI or APCI method with Bruker mass spectrometer
(MAXIS). Gas chromatography (GC) analysis was carried out on a SHIMADZU GC
with a HP-5 MS column.

The general reactions were carried with the assembled photoreactor (Figure S1).
Each of lamp include: 9 W purple LED (390-395 nm, 3 LED lamp beads in series),
plastic fan, electric driver (XC-8W600-0OS). The optical power up to 200 + 10 mw at 1
cm axis distance detected by Thorlabs’ Optical Power Meter (PM100D, S120VC). The
LED beads were purchased from Zhuhai UV Optoelectronics Co., Ltd.
(TH-UV395T3WL-3535-60). We don’'t use band pass filters, and the specific
wavelengths (390-395 nm) refer only to the max of irradiation. Furthermore, for all
light sources, it only refers to the maximum value of the illumination.

Figure S1. Pictures of assembled photoreactor.

(Notes: The thermal radiation of the LEDs allows the temperature of the THF reaction
mixture to reach around 70 °C without an external heating unite.)
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2. General procedure for the synthesis of substrates

2.1. General procedure for the synthesis of nitroarenes'

Pd(PPhs)s (5 mol%) NO,
o gy e L
+ >
Br R DMF/H,0 (5:1) O
R

80°C,5h

1.0 equiv 1.5 equiv

In an oven-dried 10 mL Schlenk flask, arylboronic acid (1.5 mmol), K2CO3 (276.4mg
2.0 mmol), and Pd(PPhs)s (57.7 mg, 0.05 mmol) were dissolved in DMF and H20
(DMF : H20 = 5:1, 4.0 mL). 1-bromo-4-nitrobenzene (202.0 mg,1.0 mmol) was then
added, and the resulting mixture was heated to 80 °C for 5 hours under Ar
atmosphere. The reaction mixture was poured into water and then the product was
extracted with EtOAc (3 times), dried over Na2SO4, and concentrated in vacuo. The
residue was purified by column chromatography on silica gel (PE/EA = 5:1~3:1) to
give the corresponding nitroarenes.
Analysis data of nitroarenes:
4-Nitro-1,1'-biphenyl (S1)

OO

A white solid (159.4 mg, 80% yield), (PE/EA = 5:1);'"H NMR (400 MHz, CDCls)  8.31
(d, J=8.8Hz, 2H), 7.74 (d, J= 8.8 Hz, 2H), 7.63 (d, J = 7.0 Hz, 2H), 7.54 — 7.42 (m,
3H). The obtained spectrum matched that reported in the literature.?
4-Methoxy-4'-nitro-1,1'-biphenyl (S2)

O NO,

MeO I

A yellowish solid (194.8 mg, 85% yield), (PE/EA = 3:1);"H NMR (400 MHz, CDCls) &
8.27 (d, J=8.8 Hz, 2H), 7.69 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.02 (d, J =
8.8 Hz, 2H), 3.88 (s, 3H). The obtained spectrum matched that reported in the
literature.?
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2.2. General procedure for the synthesis of Grignard Reagent

Cl 5 Mg, THF MgCl
+ F\/\Br >
reflux, 36 h
MeO MeO
MeO Cl Mg, THF MeO MgCl
+ Br\/\Br
reflux, 36 h

(4-Methoxyphenyl)magnesium chloride (S3) and (3-methoxyphenyl)magne-
sium chloride (S4)*

In an oven-dried 50 mL Schlenk flask equipped with a stir bar, under Ar atmosphere,

was added magnesium turnings that had been activated (16.0 mmol, 1.6 equiv). The
flask containing the Mg was heated at 100 °C while flushing with Ar for 1 hour before
cooling to room temperature. Once cool, dry degassed THF (20.0 mL) was added and
the mixture was stirred while adding degassed 1,2-dibromoethane (~10 drops).
1-chloro-4-methoxybenzene or 1-chloro-3-methoxybenzene was then added
dropwise over ~2 minutes (10 mmol, 1.0 equiv.). The mixture darkened slightly and
was stirred while heating to reflux for 36 hours. Determining the concentration of
Grignard reagents by the combined use of menthol and 1,10-phenanthroline in dry
tetrahydrofuran solution®.

Br Mg, THF MgBr
v o
reflux, 3 h

Naphthalen-2-ylmagnesium bromide (S5)°:

Magnesium powder (267.3 mg, 11 mmol) was added to a 50 mL round-bottom flask
containing 15 mL anhydrous tetrahydrofuran (THF) and an iodine under argon
pressure. A 2-bromonaphthalene solution of (2.0707 g, 10 mmol) in 5 mL anhydrous
THF was dropped into the suspension of magnesium. After initiated the reaction, the
dropping rate of 2-bromonaphthalene solution was adjusted to maintain the reaction
system refluent. After the dropwise addition, heated the system continued to reflux for
2 more hours. Determining the concentration of Grignard reagents by the combined
use of menthol and 1,10-phenanthroline in dry tetrahydrofuran solution®.
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3. Tables of the optimization of reaction conditions

Table $1. The screening of light source?

H

/©/N02 ©/MQCI light source ’i‘ H
+ - (30 0
Me THF, T, 5h, Ar

1 9 Mé 3 Me

Entry light source Yield of 3 (%)° Yield of 4 (%)?

1 390-395 nm, reflux 74 N.D.

2 390-395 nm, 40 °C 45 28

3 365-370 nm 63 N.D.

4 blue N.D. 95

5 white trace trace

6 orange trace trace

7 red trace trace

8 no light, reflux N.D 88

aStandard conditions: 1 (0.5 mmol), 2 (2.5 mmol, 5.0 equiv), THF (2 mL), T, 5 h. ?Yields determined by 'H

NMR analysis using 1,3,5-trimethoxybenzene as internal standard. N.D. = not detected.

Table S2. The screening of amount of Grignard reagent.?

NO, PhMgCl2 (x equiv) H “
/©/ 390395 0m + /©/ O
Me 1 THF, reflux, 5h, Ar 5 Me 4
Entry 2 (x equiv) Yield of 3 (%)? Yield of 4 (%)°
1 1.0 N.D 30
2 1.5 N.D. 47
3 2.0 N.D. 58
4 2.5 N.D 68
5 3.0 5 61
6 3.5 22 45
7 4.0 45 20
8 45 57 9
9 5.0 74 N.D.
10 5.5 63 10
11 6.0 51 23
12 6.5 28 45

aStandard conditions: 1 (0.5 mmol), 2 ( x equiv), THF (2 mL), reflux, 5 h. “Yields determined by
"H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. N.D. = not detected.
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Table S3. The screening of solvents.?

NO, PhMgCI 2 (5.0 equiv) N ¥
/©/ 390395 . /@/ \©
Me :
et el
Entry solvent Yield of 3 (%)° Yield of 4 (%)°
1 THF (reflux) 74 N.D.
2 2-MeTHF 71 N.D.
3 dioxane 29 38
4 Et,0 (reflux) 9 76
5 DME 70 N.D.
6 toluene 70 N.D

4Standard conditions: 1 (0.5 mmol), 2 ( 5.0 equiv), THF/solvent (1:1, 2mL), 70 °C, 5 h, Ar.
byields determined by TH NMR analysis using 1,3,5-trimethoxybenzene as internal standard.
N.D. = not detected.

Table S4. The screening of reaction time.?

NO, PhMgCI 2 (5.0 equiv) H H
gt + v A0

Me 1 THF, reflux, t, Ar Me 3 Me 4

Entry t (h) Yield of 3 (%)b Yield of 4 (%)

1 1 12 60

2 2 27 56

3 3 52 21

4 4 65 7

5 5 74 N.D.

6 6 72 N.D.

7 7 74 N.D.

8 8 75 N.D.

9 9 74 N.D.

10 10 69 N.D.

aStandard conditions: 1 (0.5 mmol), 2 ( 5.0 equiv), THF (2.0 mL), reflux, t.
determined by "H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. N.D. =

not detected.
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4. Procedure for the synthesis of carbazoles

H
N

NO, MgCl 390-395 nm —
SO - SN
THF, reflux, 5 h, Ar RI_Z —I R?

To a dry Schlenk flask equipped with a stir bar was added nitroarenes (0.5 mmol),
then was evacuated and backfilled with Ar for 3 times, and THF (0.80 mL) was added.
The Grignard reagent (2.0 M in THF solution) (1.3 mL, 2.5 mmol) was slowly added to

a solution of the nitrobenzene in THF at 0 °C. The reaction mixture was then irradiated
with two 9 W 390-395 nm LEDs lamp at reflux for 5 h. After cooling to room
temperature, the 30 mL saturated NH4Cl aqueous solution was added and the
resulting mixture was extracted with ethyl acetate (3x15 mL). The combined organic
layers were washed with brine (30 mL), dried over anhydrous Na;SOs, and
concentrated in vacuo. The crude product was purified by flash chromatography to
afford carbazoles.

Table S5. Selected unsuccessful substrates.

H
NO, MgCl 390-395 nm N
] =
THF, reflux, 5 h, Ar R? R2
Me
NO NO NO NO
oot T O ey
Cl Br MeO,C F.C

3

0% 0% 0% 0% 0%
MgCl Me
o
MeO,C
0%? 0%

Reaction condition: nitroarenes (0.5 mmol), Aryl Grignard reagents (5.0 equiv, 2.5 mmol), THF
(2 mL), purple LEDs (390-395 nm), reflux, Ar, 5 h. 2Add TMEDA.” 9The preparation method of (4-
(methoxycarbonyl)phenyl)magnesium chloride: to a solution of BDMAEE (250 pL, 1.3 mmol) in
THF (1.0 mL) was added isopropyl magnesium chloride (0.6 mL, 1.2 mmol, 2 M solution in THF)
at 15 °C. The mixture was stirred at this temperature for 20 min. methyl 4-iodobenzoate (327.6
mg, 1.25 mmol) in THF (1.0 mL) was added. After the resulting mixture was stirred at rt for 10
min.8

These substrates nitroarenes could not obtain carbazoles, but only the corresponding
diarylamines with 80-90% yield.
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5. Synthesis of glycozoline (19) in gram scale

H
/@,Noz /©/'V'QC' purple LED (390-395 nm) N
+ >
MeO Me THF, reflux, 12 h O O
MeO . e
24, 10 mmol Glycozoline

19, 6.3 mmol/1.3331 g
63%

To a dry 100 mL Schlenk flask equipped with a stir bar was added
1-methoxy-4-nitrobenzene (10 mmol), then was evacuated and backfilled with Ar for 3
times, and THF (15.0 mL) was added. The Grignard reagent (2.0 M in THF solution)
(25.0 mL, 50.0 mmol) was slowly added to a solution of the 1-methoxy-4-nitrobenzene
in THF at 0 °C. The reaction mixture was then irradiated with four 9 W 390-395 nm
LEDs lamp at reflux for 12 h. After cooling to room temperature, the 50 mL saturated
NH4Cl aqueous solution was added and the resulting mixture was extracted with ethyl
acetate (3x50 mL). The combined organic layers were washed with brine (50 mL),
dried over anhydrous Na>SO4, and concentrated in vacuo. The crude product was
purified by flash chromatography to afford glycozoline 19.

6. Derivations of glycozoline (19)
H
N | N
O O BBr3 (20 eqUIV)
CH,Cl,, -78 °C to rt
0 ~ Me HO Me
Glycozoline 85% Glycozolinol

19 25

\

Me

Glycozoline 19 (105.6 mg, 0.5 mmol) was dissolved in DCM (5.0 mL). After cooling to
-78 °C, a solution of boron tribromide (1M in dichloromethane, 1.0 mL, 1 mmol) was
added over a period of 11 min and the solution was allowed to warm to room
temperature. The reaction mixture was stirred for 4 h at room temperature. The
mixture was subsequently quenched with methanol (1 mL) under cooling, transferred
to a separation funnel with ethyl acetate, and washed several times with water and
brine. After extraction of the aqueous layer with ethyl acetate, the combined organic
layers were dried over sodium sulfate, the solvent was evaporated, and the crude
product was purified by chromatography on silica gel (PE/Acetone 3:1) to provide 25
(83.8 mg, 85% yield) as a white solid.®
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H

H
N
O O DDQ (2.0 equiv) N
MeOH/H,0, rt
MeO . Me MeO CHO
Glycozoline 70%

19 26

DDQ (249.7 mg, 1.1 mmol) was added in portions to a solution of Glycozoline 19
(105.6 mg, 0.5 mmol) in a mixture of methanol (5.0 mL), THF (1.5 mL), and water (0.5
mL). The reaction mixture was stirred for 1.5 h at room temperature, diluted with 10%
NaOH and extracted several times with diethyl ether. The combined organic layers
were washed with brine and dried over sodium sulfate. Removal of the solvent and
flash chromatography of the crude product on silica gel (PE/EA 4:1) provided26 (78.8
mg, 70% yield) as a white solid.®

7. Mechanistic Investigations
7.1. The by-products in the synthesis of carbazoles.

by-products

o ool O

0.50 mmol H

purple LED 28,0.14 mmol, 28% 29, 0.50 mmol !

.\ (390-395nm) O O : .
THF, reflux, 5 h : Me 5

MgCl Me O i

/@ 27, 0.36 mmol, 72% O :

! Me !

Me 1Me '

2.5 mmol .30, 0.25 mmol 31, 1.00 mmol

To a dry Schlenk flask equipped with a stir barwas evacuated and backfilled with Ar for 3
times , then was added nitrobenzene (61.5 mg, 0.5 mmol), and THF (1.3 mL) was added.
The p-tolylmagnesium chloride (2.0 M in THF solution) (1.3 mL, 2.5 mmol) was slowly
added to a solution of the nitrobenzene in THF at 0 °C. The reaction mixture was then
irradiated with two 9 W 390-395 nm LEDs lamp at reflux for 5 h. After cooling to room
temperature, the 30 mL saturated NH4CI aqueous solution and 1,3,5-trimethoxybenzene
(16.8 mg, 0.1 mmol, as internal standard) were added, then the resulting mixture was
extracted with ethyl acetate (3 X 15 mL). The combined organic layers were washed with
brine (30.0 mL), dried over anhydrous Na:SO4, and concentrated in vacuo. Yields
determined by 'H NMR.
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f1 (ppm)
o
. | | | | |
LIL__u'uUJ ‘ 'L._._J_,._ J KJ JJ L& K IL_J“J ___J_.__J
iU ,);i—rg"‘llq-ﬁ.
2 23048
; ; . : — . : ; : . o8 T o ; ; . :
8.5 8.0 7.5 7.0 6.5 6.0 LT 5.0 4.5 40 35 3.0 2.5 20 1.5 1.0 0.5 0.0
1 (ppm)
7.2. The search for possible intermediates.
urple LED
X MgCl purp §
©/ . /@’ (300-395 nm)
Me THF, reflux, 3 h O O
0.50 mmol 2.0 mmol 3 Me
(@) Ph—NO 60%
no light: 0%
b —_
(b) Ph—NHOH 0%
(,3_
(¢) Ph—=N=N—Ph 0%
(d) Ph—=N=N=Ph 0%
(e) Ph—NH, 0%

To five dry Schlenk flask equipped with a stir bar was added five potential

intermediates (0.5 mmol) respectively, then was evacuated and backfilled with Ar for 3
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times, and THF (1.3 mL) was added. The p-tolylmagnesium chloride (2.0 M in THF
solution) (1.0 mL, 2.0 mmol) was slowly added to a solution of the five potential
intermediates in THF at 0 °C. The reaction mixture was then irradiated with two 9 W
390-395 nm LEDs lamp at reflux for 5 h. After cooling to room temperature, the 30 mL
saturated NH4Cl aqueous solution and 1,3,5-trimethoxybenzene (16.8 mg, 0.1 mmol,
as internal standard) were added, then the resulting mixture was extracted with ethyl
acetate (3x15 mL). The combined organic layers were washed with brine (30 mL),
dried over anhydrous Na;SO4, and concentrated in vacuo. Yields determined by 'H
NMR. Notably only nitrosoarene could afford the desired carbazole 3 (60%) or (0%) in
light or no light conditions. The results are like those observed when nitrobenzene
was used, implicating the nitrosoarene as a possible intermediate in the
photochemical reaction.

no light, 70 °C &

)
N
Y @Me Ph—NO
e
|

Ph—NH,
A Purple LED 390-395 nm

Ph-N=N-Ph
Purple LED_390-395 nm
- 9
Ph-llFN—Ph
B ,_VI?urpIe LED 390-395 nm

Ph—NHOH
Purple LED 390-395 nm |?

. |
I A H
AN N Purple LED 390-395 nm

[ ()
% SRRV LN EE ) ST

2.66 2.60 2.54 2.48 2.42 . 2.36 2.30 2.24 218 2442
f1 (ppm)

7.3. The light on/off experiment.

purple LED H
MgCl
/©/N02 ©/ g (390-395 nm) N
+ - (0
Me THF, reflux, t
Me
1, 0.50 mmol 2.50 mmol 3

Ten parallel reactions are performed simultaneously under the same conditions. After
being irradiated for 1 h, The first reaction was quenched with saturated NH4Cl
aqueous solution, then an internal standard 1,3,5-trimethoxybenzene was added, and
then extracted. The organic layer was dried over anhydrous Na;SOs, and

concentrated in vacuo, and yields determined by 'H NMR. Then other reaction
S12



mixtures were stirred for 1 h with light-off. All of the following yields were analyzed in
the identical way after a 1 h light on or off.

A
80 —
3 60 - 60
% 53
2 46
> 40 7 37
™
20 - 20
on off on off on off on off on off
1 ] 1 1 ) 1 T 1 ] 1 ’
1 2 3 4 5 6 7 8 9 10
Time (h)
5h 5
_ \i = . iL; = AJLJ_L_._N_ (.JL |

- J\).JMN_QL.JHM«JL 1

6.5 60 55 50 45 40

30 25
f1 (ppm)
10h s
o —— 7,4.0._¢J'U'MJ )
9h L
I T
8h r?
e — e H e
J B
7h § 4 - B
Me ‘I
ik 1 R —
6h M B
Em— _ n”n__.w Mo, oo gl

610 5.‘5 5‘.0 4.‘5 4.‘0 3.0
f1 (ppm)
The experiments demonstrated that light plays a crucial role in the synthesis of
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carbazole and requires continuous illumination.
7.4. The effect of NH of diarylamine for the construction of carbazole.

R R
,{j purple LED l{l
©/ \© /©/MQCI (390-395 nm)
+ >
Me THF, reflux, 5 h
R = Me, Ph 1.00 mmol R = Me, Ph
0.50 mmol N.D.

To a dry Schlenk flask equipped with a stir bar was added N-methyl-N-phenylaniline
or triphenylamine (0.5 mmol), then was evacuated and backfilled with Ar for 3 times,
and THF (1.5 mL) was added. The p-tolylmagnesium chloride (2.0 M in THF solution)
(0.5 mL, 1 mmol) was slowly added to a mixed solution in THF at 0 °C. The reaction
mixture was then irradiated with two 9 W 390-395 nm LEDs lamp at reflux for 5 h.
After cooling to room temperature, the 30 mL saturated NH4Cl aqueous solution and
1,3,5-trimethoxybenzene (16.8 mg, 0.1 mmol, as internal standard) were added, then
the resulting mixture was extracted with ethyl acetate (3x15 mL). The combined
organic layers were washed with brine (30 mL), dried over anhydrous Na>SO4, and
concentrated in vacuo. Yields determined by 'H NMR.

The result of the experiment was that no corresponding carbazole products were
observed, and materials were all recovered, suggesting that NH of diarylamine is
crucial for the successful construction of carbazole.

o0

-2
/ /Internal Standar\

‘| W__]"I W ] I

Me
1
N.

SN

|4 T

l

72 70 68 66 64 62 60 58 56 54 ?12( 5.)0 48 46 44 42 40 38 36 34 32 30
ppm

7.5. The effect of "BuL.i to the construction of carbazole.
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purple LED

H
y N
/©/ \© + "Buli (390-398 nm) O O
Me
Me

THF, reflux, 5 h
4, 0.50 mmol 1.00 mmol

3,80%

no light: 3, 0%

To a dry Schlenk flask equipped with a stir bar was added 4-methyl-N-phenylaniline 4
(91.6 mg, 0.5 mmol), then was evacuated and backfilled with Ar for 3 times, and THF
(1.5 mL) was added. The "BuLi (2.0 M in THF solution) (0.5 mL, 1 mmol) was slowly
added to a solution of the nitrobenzene in THF at 0 °C. The reaction mixture was then
irradiated with two 9 W 390-395 nm LEDs lamp at reflux for 5 h. After cooling to room
temperature, the 30 mL saturated NHiCl aqueous solution and
1,3,5-trimethoxybenzene (16.8 mg, 0.1 mmol, as internal standard) were added, then
the resulting mixture was extracted with ethyl acetate (3x15 mL). The combined
organic layers were washed with brine (30 mL), dried over anhydrous Na>SO4, and
concentrated in vacuo. Yields determined by 'H NMR.

The same results were obtained when "BuLi was substituted for aryl Grignard reagent
in light or no light, indicating that aryl Grignard reagent participated as a base in the

reaction.
H
Me
Purple LED 390-395 nm / m
. | " - ]
H
ISR
Me \
No light,70 °C
e A __JL _lLE _,L N J"L__ o L_

7.6. The experiment for releasing hydrogen.
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purple LED

H H
N MgClI N
Q- g —eeem . (KT
Me Me
Me
3

THF, reflux, 5 h
4, 0.50 mmol 1.00 mmol

To a dry Schlenk flask equipped with a stir bar was added 4-methyl-N-phenylaniline
4 (91.6 mg, 0.5 mmol), then was evacuated and backfilled with Ar for 3 times, and
THF (1.5 mL) was added. The p-tolylmagnesium chloride (2.0 M in THF solution) (0.5
mL, 1 mmol) was slowly added to a solution of the nitrobenzene in THF at 0 °C. The
reaction mixture was then irradiated with two 9 W 390-395 nm LEDs lamp at reflux for
5 h. After cooling to room temperature, we detected the gas in the upper layer of the
tube with GC.

: Egiggzﬁtians ﬁ:‘l\ *ﬁ‘ jﬁl—i’%

<FERFEED

EATE 1 YC-H2-1
B ID :
Y s c H2-1.ged
')'J"E'Z';'.":Cf-‘_#-‘ﬁ : wangxuewei—h2-T0oc—20 mins. gem
AL L4 ‘ _
e S i1 FEf 2R i 31|
BEEE R ;1 ul 4
srém B 1 2023/3/18 22:57:35 i) : System Administrator
Lb3 H I 1 2023/3/18 23:12:39 Wb : System Administrator
<R D
uV
] DTCDI

400+

3004

200+

100

o
I T T Y T I
2.5 5.0 7.5 10. 0 12. 5
min
<>
DTCDL . ) B . i =
i | fREgRdlE | AR | B | WREE [WREERAT) kRid | th&ta
[ 1] 5.845 | 32233 | 430 | 100.000 | [ M ]
Bt _ 32233 430

GC detected the hydrogen in the upper layer of the tube
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8. Analytic data of compounds

3-Methyl-9H-carbazole (3)
H

0
Me

The product 3 was purified with silica gel chromatography (PE/DCM/EA = 20:2:1) as a
white solid (61.6 mg, 68% yield). The obtained spectrum matched that reported in the
literature.°

"H NMR (400 MHz, DMSO-ds) 3 11.09 (br s, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.89 (s, 1H),
7.44 (d, J=8.0Hz, 1H), 7.39-7.31 (m, 2H), 7.23 - 7.17 (m, 1H), 7.15-7.08 (m, 1H),
2.46 (s, 3H) ppm.

3C NMR (100 MHz, DMSO-dg) & 140.1, 138.1, 127.3, 127.0, 125.5, 122.7, 122.4,

120.2, 120.0, 118.4, 111.0, 110.8, 21.2 ppm.

9H-carbazole (5)

H
N

The product 5 was purified with silica gel chromatography (PE/DCM/EA = 20:2:1) as a
white solid (50.2 mg, 60% yield). The obtained spectrum matched that reported in the
literature.°

"H NMR (400 MHz, DMSO-ds) 5 11.25 (br s, 1H), 8.11 (d, J = 8.0 Hz, 2H), 7.49 (d, J =
8.0 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.15 (t, J = 7.6 Hz, 2H) ppm.

3C NMR (100 MHz, DMSO-ds) d 139.9, 125.7, 122.5, 120.3, 118.7, 111.1 ppm.

H
MeO
The product 6 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as a

3-Methoxy-9H-carbazole (6)

white solid (54.2 mg, 55% yield). The obtained spectrum matched that reported in the
literature.!

"H NMR (400 MHz, CDCls) 8 8.04 (d, J = 7.8 Hz, 1H), 7.90 (br s, 1H), 7.57 (d, J=2.4
Hz, 1H), 7.46 — 7.37 (m, 2H), 7.33 (d, J = 8.8 Hz, 1H), 7.25-7.15 (m, 1H), 7.08 (dd, J
= 8.8, 2.4 Hz, 1H), 3.94 (s, 3H) ppm.

3C NMR (100 MHz, CDCIs3) 6 154.1, 140.4, 134.5, 125.9, 123.9, 123.5, 120.4, 119.2,
115.2, 111.4, 110.9, 103.4, 56.2 ppm.
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3-Phenyl-9H-carbazole (7)

N
Ph

The product 7 was purified with silica gel chromatography (PE/DCM/EA = 20:2:1) as a
white solid (54.7 mg, 45% yield). The obtained spectrum matched that reported in the
literature.™

"H NMR (400 MHz, DMSO-ds)  11.33 (br s, 1H), 8.45 (d, J = 1.6 Hz, 1H), 8.22 (d, J =
7.8 Hz, 1H), 7.81 —= 7.73 (m, 2H), 7.71 (dd, J = 8.4, 1.8 Hz, 1H), 7.57 (d, J = 8.4 Hz,
1H), 7.54 — 7.45 (m, 3H), 7.43 - 7.38 (m, 1H), 7.33 (t, J=7.4 Hz, 1H), 7.18 (t, J=7.8
Hz, 1H) ppm.

3C NMR (100 MHz, DMSO-ds) 5 141.3, 140.2, 139.3, 131.0, 128.8, 126.7, 126.3,

125.7,124.6, 123.1, 122.6, 120.4, 118.6, 118.3, 111.3, 111.1. ppm.

3-(4-Methoxyphenyl)-9H-carbazole (8)
H
N

(-0
(

MeO
The product 8 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as a

white solid (72.4 mg, 53% yield). The obtained spectrum matched that reported in the
literature.'?

"H NMR (400 MHz, DMSO-ds) & 11.27 (s, 1H), 8.36 (s, 1H), 8.19 (d, J = 7.8 Hz, 1H),
7.73—-7.59 (m, 3H), 7.51 (dd, J=14.4,8.2 Hz, 2H), 7.39 (t, J= 7.6 Hz, 1H), 7.16 (t, J
=7.2 Hz, 1H), 7.04 (d, J = 7.8 Hz, 2H), 3.80 (s, 3H) ppm.

3C NMR (100 MHz, DMSO-dg) & 158.2, 140.2, 138.9, 133.8, 130.8, 127.7, 125.6,
124.3, 123.0, 122.6, 120.4, 118.5, 117.7, 114.3, 111.2, 111.0, 55.1 ppm.

3-(1H-pyrazol-1-yl)-9H-carbazole (9)

ZT

C

~N

The product 9 was purified with silica gel chromatography (PE/DCM/EA = 10:3:1) as a
white solid (66.5 mg, 57% vyield).
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H NMR (400 MHz, DMSO-ds) 5 11.39 (br s, 1H), 8.70 — 8.34 (m, 2H), 8.19 (d, J= 7.8
Hz, 1H), 7.96 — 7.83 (m, 1H), 7.80 — 7.66 (m, 1H), 7.58 (d, J = 8.8 Hz, 1H), 7.52 (d, J =
8.0 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 6.68 — 6.39 (m, 1H) ppm.
13C NMR (100 MHz, DMSO-ds) & 140.6, 140.1, 138.1, 132.5, 127.7, 126.1, 122.6,
122.4, 120.5,118.7, 117.6, 111.4, 111.2, 110.6, 107.2 ppm.

HRMS (ESI) (m/z): calcd. for C1sH12Ns [M+H]* : 234.1026, found: 234.1022.

4-methyl-9H-carbazole (10) and 2-methyl-9H-carbazole (10’)

M
10

The 3.6:1 mixture of product 10 and 10’ were purified with silica gel chromatography
(PE/DCM/EA = 20:2:1) as a white solid (61.6 mg, 68% yield). (Obtained as a 3.6:1
mixture of isomers, resulting in a double set of signals.) The obtained spectrum
matched that reported in the literature.’®

"H NMR (400 MHz, CDCls) 6 8.19 (d, J = 8.0 Hz, 1H), 8.09 — 7.99 (m, 2H), 7.95 (d, J =
8.0 Hz, 1H), 7.86 (br s, 1H), 7.43 (d, J = 4.0 Hz, 2H), 7.38 (d, J = 3.6 Hz, 2H), 7.36 —
7.17 (m, 5H), 7.07 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 7.0 Hz, 1H), 2.89 (s, 3H), 2.52 (s,
3H) ppm.

13C NMR (100 MHz, CDCls) d 140.1, 139.6, 136.1, 133.5, 125.8, 125.4, 125.3, 1241,
123.6, 122.7, 122.1, 1211, 121.1, 120.1, 119.5, 119.5, 110.9, 110.6, 110.5, 108.3,
22.2,20.9 ppm.

M
M bMe

11
4-Methoxy-3-methyl-9H-carbazole (11)
The product 11 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (41.2 mg, 39% yield).
"H NMR (400 MHz, DMSO-ds) & 11.21 (br's, 1H), 8.10 (d, J = 7.8 Hz, 1H), 7.46 (d, J =
8.0 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.25 — 7.10 (m, 3H), 3.90 (s, 3H), 2.37 (s, 3H)
ppm.
3C NMR (100 MHz, DMSO-ds) 6 153.0, 140.1, 139.6, 128.6, 125.1, 121.9, 120.6,
119.0, 118.7, 115.4, 110.7, 106.8, 59.4, 14.9 ppm.
HRMS (ESI) (m/z): calcd. for C14H14NO [M+H]*: 212.1070, found: 212.1075.

: Meo
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2-Methoxy-3-methyl-9H-carbazole (11°)

The product 11’ was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (29.6 mg, 28% vyield). The obtained spectrum matched that reported in
the literature.

"H NMR (400 MHz, DMSO-ds) & 11.00 (br s, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.81 (s, 1H),
7.40 (d, J=8.0Hz, 1H), 7.25 (t, J=7.4 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 6.96 (s, 1H),
3.87 (s, 3H), 2.28 (s, 3H) ppm.

3C NMR (100 MHz, DMSO-ds) d 156.7, 139.5, 139.4, 123.7, 122.6, 121.1, 119.0,
118.3, 117.3, 115.2, 110.5, 92.7, 55.3, 16.6. ppm.

1,6-Dihydro-2H-furo[2,3-c]carbazole (12)

The product 12 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (37.7 mg, 36% yield).

"H NMR (400 MHz, DMSO-dg)) 6 11.05 (br's, 1H), 7.91 (d, J=7.8 Hz, 1H), 7.45 (d, J =
8.0 Hz, 1H), 7.37 (t, J=7.6 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H),
6.90 (d, J = 8.6 Hz, 1H), 4.65 (t, J = 8.8 Hz, 2H), 3.59 (t, J = 8.8 Hz, 2H) ppm.

3C NMR (100 MHz, DMSO-ds) & 153.2, 140.7, 135.0, 125.5, 121.7, 121.2, 119.4,
118.1, 117.8, 110.8, 109.2, 107.5, 70.8, 29.0 ppm.

HRMS (ESI) (m/z): calcd. for C14H12NO [M+H]*": 210.0913, found: 210.0917.

3,5-Dihydro-2H-furo[3,2-b]carbazole (12’)

The product 12’ was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (29.3 mg, 28% yield).

"H NMR (400 MHz, DMSO-ds) & 10.96 (br s, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.46 — 7.37
(m, 2H), 7.33 (s, 1H), 7.29 (t, J= 7.6 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 4.54 (t, J= 8.4
Hz, 2H), 3.30 (t, J = 8.4 Hz, 2H) ppm.

3C NMR (100 MHz, DMSO-ds) 5 153.5, 140.2, 135.0, 126.8, 124.7, 122.5, 121.6,
119.9, 117.7, 110.8, 107.3, 98.8, 70.8, 29.8 ppm.

HRMS (ESI) (m/z): calcd. for C14H12NO [M+H]*: 210.0913, found: 210.0917.
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2,3-Dihydro-7H-[1,4]dioxino[2,3-c]carbazole (13)

H
O\\/o

The product 13 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (68.7 mg, 61% yield).

"H NMR (400 MHz, CDCl3) 6 8.22 (d, J = 7.8 Hz, 1H), 7.73 (brs, 1H), 7.34 (t, J=7.6
Hz, 1H), 7.29 - 7.12 (m, 2H), 6.96 (d, J = 8.6 Hz, 1H), 6.77 (d, J = 8.6 Hz, 1H), 4.50 —
4.37 (m, 2H), 4.35 — 4.24 (m, 2H) ppm.

3C NMR (100 MHz, CDCIs) 5 139.7, 139.1, 136.4, 135.5, 125.3, 123.0, 122.4, 119.3,

116.1,112.9, 110.2, 103.0, 65.1, 64.4 ppm.
HRMS (ESI) (m/z): calcd. for C1aH12NO2 [M+H]* : 226.0863, found: 226.0871.

7H-benzo[c]carbazole (14)

N
The product 14 was purified with silica gel chromatography (PE/DCM/EA = 20:2:1) as
a white solid (68.4 mg, 63% vyield). The obtained spectrum matched that reported in
the literature.
"H NMR (400 MHz, CDCl3) 6 8.80 (d, J = 8.4 Hz, 1H), 8.59 (d, J = 8.0 Hz, 1H), 8.36 (br
s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.71 (t, J = 7.2 Hz, 1H), 7.66
—7.35 (m, 5H) ppm.

13C NMR (100 MHz, CDCl3) 6 138.6, 137.2, 130.1, 129.3, 127.6, 127.0, 124.5, 124.1,
123.4,123.2,122.2, 120.4, 115.6, 112.7, 111.3 ppm.

6H-thieno[2,3-c]carbazole (15)
H
S0
S ~

The product 15 was purified with silica gel chromatography (PE/DCM/EA = 20:2:1) as
a white solid (61.4 mg, 55% yield).

"H NMR (400 MHz, DMSO-ds)  11.55 (brs, 1H), 8.41 (d, J = 7.8 Hz, 1H), 8.20 (d, J =
5.2 Hz, 1H), 8.10 - 7.84 (m, 1H), 7.69 — 7.51 (m, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.25 (1,

J=7.4 Hz, 1H) ppm.
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3C NMR (100 MHz, DMSO-ds) 5 138.8, 137.2, 133.1, 131.0, 128.2, 124.7, 121.8,
121.8,121.1, 119.8, 118.9, 115.6, 111.2, 109.7 ppm.
HRMS (APCI) (m/z): calcd. for C14H1oNS [M+H]*: 224.0528, found: 224.0527.

3-Methyl-3,6-dihydropyrrolo[2,3-c]carbazole (16)

N

Me=N,
The product 16 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (58.4 mg, 53% yield).
"H NMR (400 MHz, CDCls) & 8.25 (d, J = 7.8 Hz, 1H), 7.92 (br s, 1H), 7.42 — 7.33 (m,
3H), 7.31-7.25(m, 1H), 7.22 (d, J= 8.6 Hz, 1H), 7.17 (d, J= 2.6 Hz, 1H), 7.00 (d, J =
2.6 Hz, 1H), 3.83 (s, 3H) ppm.
3C NMR (100 MHz, CDCIs) 5 139.1, 134.4, 132.0, 128.7, 124.3, 123.9, 121.9, 121 4,
119.2, 114.6, 110.6, 108.5, 106.0, 99.2, 33.4 ppm.
HRMS (ESI) (m/z): calcd. for C1sH13N2 [M+H] *: 221.1073, found: 221.1078.

2-Butyl-6H-furo[2,3-c]carbazole (17)
H
490
O ~

"Bu
The product 17 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (79.0 mg, 60% yield).
"H NMR (400 MHz, CDCls) 5 8.16 (d, J = 7.8 Hz, 1H), 8.09 (br s, 1H), 7.51 (d, J = 8.6
Hz, 1H), 7.48 — 7.36 (m, 2H), 7.33 — 7.20 (m, 2H), 6.93 (s, 1H), 2.89 (t, J= 7.4 Hz, 2H),
1.97 —1.72 (m, 2H), 1.58 — 1.40 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H).
13C NMR (100 MHz, CDClIs) d 160.5, 150.0, 139.6, 135.8, 125.1, 123.5, 122.2, 121.3,
119.4, 114.8, 110.8, 109.3, 106.0, 101.0, 30.2, 28.6, 22.5, 14.0.
HRMS (ESI) (m/z): calcd. for C1sH1sNO [M+H]*: 264.1383, found: 264.1389.

3,6-Dimethyl-9H-carbazole (18)
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The product 18 was purified with silica gel chromatography (PE/DCM/EA = 20:2:1) as
a white solid (66.4 mg, 68% yield). The obtained spectrum matched that reported in
the literature."

1H NMR (400 MHz, CDCl3) & 7.84 (s, 3H), 7.30 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.2 Hz,
2H), 2.52 (s, 6H) ppm.

13C NMR (100 MHz, CDCIs) 5 138.2, 128.6, 127.1, 123.6, 120.3, 110.4, 21.6 ppm.

3-Methoxy-6-methyl-9H-carbazole (19)

The product 19 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (73.9 mg, 70% yield). The obtained spectrum matched that reported in
the literature.®

"H NMR (400 MHz, DMSO-ds) & 10.85 (br s, 1H), 7.87 (s, 1H), 7.61 (d, J = 2.2 Hz, 1H),
7.33 (t, J=8.0Hz, 2H), 7.17 (d, J= 8.2 Hz, 1H), 6.98 (dd, J = 8.8, 2.2 Hz, 1H), 3.83 (s,
3H), 2.45 (s, 3H) ppm.

3C NMR (100 MHz, DMSO-dg) & 152.8, 138.7, 134.8, 126.7, 126.5, 122.6, 122.5,
119.9, 114.5, 111.5, 110.7, 102.9, 55.6, 21.1 ppm.

5-Methoxy-3-methyl-9H-carbazole (20)

T,

The product 20 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (569.1 mg, 56% yield). The obtained spectrum matched that reported in
the literature.”

"H NMR (400 MHz, CDCls) 8 8.12 (s, 1H), 7.94 (br s, 1H), 7.37 — 7.25 (m, 2H), 7.21 (d,
J=8.2Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 4.09 (s, 3H), 2.54 (s,
3H) ppm.

13C NMR (100 MHz, CDCls) d 156.4, 141.4, 137.0, 129.0, 126.6, 126.3, 123.1, 123.0,
112.6 109.7, 103.7, 100.3, 55.6, 21.6 ppm.
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3,6-Dimethoxy-9H-carbazole (21)

N

MeO Q OMe
The product 21 was purified with silica gel chromatography (PE/DCM/EA = 20:4:1) as
a white solid (68.2 mg, 60% yield). The obtained spectrum matched that reported in
the literature.®
"H NMR (400 MHz, CDCls) 8 7.75 (br s, 1H), 7.49 (d, J = 2.0 Hz, 2H), 7.25 (d, J = 8.8
Hz, 2H), 7.03 (dd, J = 8.6, 2.4 Hz, 2H), 3.91 (s, 6H) ppm.
3C NMR (100 MHz, CDCI3) 5 153.8, 135.4, 123.8, 115.4, 111.7, 103.1, 56.2 ppm.

10-Methyl-7H-benzo[c]carbazole (22)

The product 22 was purified with silica gel chromatography (PE/DCM/EA = 20:2:1) as
a white solid (64.7mg, 56% yield). The obtained spectrum matched that reported in
the literature.

"H NMR (400 MHz, CDCIs3) & 8.79 (d, J = 8.4 Hz, 1H), 8.37 (s, 1H), 8.29 (s, 1H), 8.00
(d, J=8.0Hz, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.64 — 7.56 (m,
1H), 7.54 — 7.39 (m, 2H), 7.34 — 7.23 (m, 1H), 2.65 (s, 3H) ppm.

13C NMR (100 MHz, CDCls) & 137.5, 136.9, 130.2, 129.7, 129.3, 129.3, 127.3, 126.9,
125.9, 124.4, 123.4, 130.0, 122.1, 115.4, 112.8, 110.9, 22.0 ppm.

7H-dibenzo[c,g]carbazole (23)

The product 23 was purified with silica gel chromatography (PE/DCM/EA = 20:2:1) as
a white solid (73.5 mg, 55% vyield) The obtained spectrum matched that reported in
the literature.®

H NMR (400 MHz, CDCls) & 9.28 (d, J = 8.4 Hz, 2H), 8.38 (s, 1H), 8.08 (d, J = 8.0 Hz, 2H),
7.84 (d, J= 8.7 Hz, 2H), 7.75 (t, J = 7.6 Hz, 2H), 7.59 (t, J = 7.4 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H)
ppm.
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3C NMR (100 MHz, CDCI3) d 136.2, 130.1, 129.3, 129.3, 126.9, 125.6, 125.3, 123.4,
117.7, 112.7 ppm.

6-Methyl-9H-carbazol-3-ol (25)

N

HO Me

The product 25 was purified with silica gel chromatography (PE/ Acetone = 3:1) as a
white solid (83.8 mg, 85% yield). The obtained spectrum matched that reported in the
literature.®
"H NMR (400 MHz, DMSO-de) 5 10.72 (br s, 1H), 8.89 (br's, 1H), 7.76 (s, 1H), 7.37 (s,
1H), 7.32 — 7.21 (m, 2H), 7.13 (d, J = 8.2 Hz, 1H), 6.92 — 6.82 (m, 1H), 2.43 (s, 3H)
ppm.
3C NMR (100 MHz, DMSO-dgs) & 150.2, 138.7, 134.1, 126.5, 126.2, 122.9, 122.4,
119.8, 114.8, 111.2, 110.5, 104.7, 21.0 ppm.

6-Methoxy-9H-carbazole-3-carbaldehyde (26)

The product 26 was purified with silica gel chromatography (PE/EA = 4:1) as a white
solid (78.8 mg, 70% yield).

"H NMR (400 MHz, CDCI3) & 10.09 (s, 1H), 8.59 — 8.53 (m, 1H), 8.46 (br s, 1H), 7.95
(dd, J=8.6,1.6 Hz, 1H), 7.59 (d, J = 2.4 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.38 (d, J =
8.8 Hz, 1H), 7.12 (dd, J = 8.8, 2.4 Hz, 1H), 3.94 (s, 3H) ppm.

13C NMR (100 MHz, CDCls) & 192.0, 154.9, 144.1, 134.8, 128.9, 127.3, 124.3, 123.9,
123.7,116.4, 112.1, 111.2, 103.4, 56.1 ppm.

HRMS (ESI) (m/z): calcd. for C14H12NO2 [M+H]*: 226.0863, found: 226.0867.
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10. Copies of 'H and 3C NMR spectra of compounds

H NMR (400 MHz, CDCls) of 4-Nitro-1,1"-biphenyl (S1)
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H NMR (400 MHz, CDCls) of 4-Methoxy-4"-nitro-1,1"-biphenyl (S2)
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H NMR (400 MHz, DMSO-ds) of 3-Methyl-9H-carbazole (3)
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3C NMR (100 MHz, DMSO-ds) of 3-Methyl-9H-carbazole (3)
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H NMR (400 MHz, DMSO-d;) of 9H-carbazole (5)
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3C NMR (100 MHz, DMSO-ds) of 9H-carbazole (5)
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H NMR (400 MHz, DMSO-ds) of 3-Methoxy-9H-carbazole (6)
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3C NMR (100 MHz, DMSO-ds) of 3-Methoxy-9H-carbazole (6)
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H NMR (400 MHz, DMSO-ds) of 3-Phenyl-9H-carbazole (7)
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3C NMR (100 MHz, DMSO-ds) of 3-Phenyl-9H-carbazole (7)
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"H NMR (400 MHz, DMSO-ds) of 3-(4-Methoxyphenyl)-9H-carbazole (8)
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H NMR (400 MHz, DMSO-d;) of 3-(1H-pyrazol-1-yl)-9H-carbazole (9)
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13C NMR (100 MHz, DMSO-ds) of 3-(1H-pyrazol-1-yl)-9H-carbazole (9)
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and

4-methyl-9H-carbazole (10)

(400 MHz, CDClj) of

'H NMR

2-methyl-9H-carbazole (10’)
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H NMR (400 MHz, DMSO-d;s) of 4-Methoxy-3-methyl-9H-carbazole (11)
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3C NMR (100 MHz, DMSO-ds) of 4-Methoxy-3-methyl-9H-carbazole (11)
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H NMR (400 MHz, DMSO-ds) of 2-Methoxy-3-methyl-9H-carbazole (11’)
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13C NMR (100 MHz, DMSO-ds) of 2-Methoxy-3-methyl-9H-carbazole (11°)
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"H NMR (400 MHz, DMSO-d;) of 1,6-Dihydro-2H-furo[2,3-c]carbazole (12)
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3C NMR (100 MHz, DMSO-ds) of 1,6-Dihydro-2H-furo[2,3-c]carbazole (12)
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H NMR (400 MHz, DMSO-ds) of 1,6-Dihydro-2H-furo[2,3-c]carbazole (12)
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H NMR (400 MHz, CDCls) of 2,3-Dihydro-7H-[1,4]dioxino[2,3-c]carbazole (13)
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13C NMR (100 MHz, CDCls) of 2,3-Dihydro-7H-[1,4]dioxino[2,3-c]carbazole (13)
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"H NMR (400 MHz, CDCIs) of 7H-benzo[c]carbazole (14)
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3C NMR (100 MHz, CDCIs) of 7H-benzo[c]carbazole (14)

S09L'LL

mwvm.whv
LELYLL

V85T bk
6204 'ZH
2815 51|
[6IE02)
saLzzh;
LShh wmé
B36EETH
LLENFETL
z89r KZ)
86L0°4TH
£6b5 LTk
ZIEE62)
£650°0E
zal ek
£295 8}

30

I=z

14

a0 80

100

f1 (ppm)

T
110

T
180 17

T
190

T
200

1

S41



H NMR (400 MHz, DMSO-ds) of 6H-thieno[2,3-c]carbazole (15)
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13C NMR (100 MHz, DMSO-ds) of 6H-thieno[2,3-c]carbazole (15)
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H NMR (400 MHz, CDCIs) of 3-Methyl-3,6-dihydropyrrolo[2,3-c]carbazole (16)
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13C NMR (100 MHz, CDCl:) of 3-Methyl-3,6-dihydropyrrolo[2,3-c]carbazole (16)
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"H NMR (400 MHz, CDCIs) of 2-Butyl-6H-furo[2,3-c]carbazole (17)
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3C NMR (100 MHz, CDCIs) of 2-Butyl-6H-furo[2,3-c]carbazole (17)
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H NMR (400 MHz, DMSO-d;) of 3-Methoxy-6-methyl-9H-carbazole (19)
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3C NMR (100 MHz, DMSO-ds) of 3-Methoxy-6-methyl-9H-carbazole (19)
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H NMR (400 MHz, CDCIs) of 5-Methoxy-3-methyl-9H-carbazole (20)
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3C NMR (100 MHz, CDCl:) of 5-Methoxy-3-methyl-9H-carbazole (20)
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"H NMR (400 MHz, CDCIs) of 3,6-Dimethoxy-9H-carbazole (21)
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3C NMR (100 MHz, CDCIs) of 3,6-Dimethoxy-9H-carbazole (21)
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H NMR (400 MHz, CDCIs) of 10-Methyl-7H-benzo[c]carbazole (22)
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3C NMR (100 MHz, CDCls) of 10-Methyl-7H-benzo[c]carbazole (22)

SPos’lz—

LOgL'LL

Dme.th
08LP AL

9088'0LL
0BLLZLL
#98E §LL
gzel'gcl
LLLO mNL

£0Ep 521
200t WNLW
LLIG ST
PrLE 9ZL~
BEPE L2L ]
£L0E 6Z)
£62€ 671
00L9 62L
1B} 05}
1898'98L
LELy LEL

=

22

Me

110 100 90 BO 70 60
f1 (ppm

120

S49



H NMR (400 MHz, CDCIs) of 7H-dibenzo[c,g]carbazole (23)
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H NMR (400 MHz, DMSO-ds) of 6-Methyl-9H-carbazol-3-ol (25)
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13C NMR (100 MHz, DMSO-ds) of 6-Methyl-9H-carbazol-3-ol (25)
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H NMR (400 MHz, CDCI5) of 6-Methoxy-9H-carbazole-3-carbaldehyde (26)
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3C NMR (100 MHz, CDCls) of 6-Methoxy-9H-carbazole-3-carbaldehyde (26)
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