Supporting Information

Visible-Light Mediated Cobaloxime-Catalyzed Isomerization and Hydroalkenylation of Bicyclo[1.1.0]butanes

Ben Mao,^a Sheng-Hao Jiang,^a Zheng Xiong,^a Yin Wei^{*b} and Min Shi^{*a,b}

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. <u>mshi@mail.sioc.ac.cn</u>.

^bState Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

CONTENTS

1. General Remarks	S2
2. Optimization of Reaction Conditions	S3
3. Preparation of Substrates and Catalysts	S7
4. General Procedure for the Synthesis of Products	S19
5. Mechanistic Studies	S21
6. Analysis of Internal Mixtures and Some Unsuccessful Examples	S41
7. Proposed Reaction Mechanism	S43
8. Synthetic Applications	S44
9. X-ray Data	S49
10. Characterization Data of Substrates	S51
11. Characterization Data of Products	S55
12. NMR Spectra	S72
13. Reference	S139

1. General Remarks

Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. NMR spectra were recorded with a Bruker spectrometer at 400 MHz (¹H NMR), 600 MHz (¹H NMR), 101 MHz (¹³C NMR), 151 MHz (¹³C NMR) and 565 MHz (¹⁹F NMR) in CDCl₃, respectively. Chemical shifts were reported in ppm, and are referenced to internal TMS or the residual solvent resonance as the internal standard (CHCl₃: δ = 7.26 ppm for ¹H NMR and CDCl₃: δ = 77.00 ppm for ¹³C NMR). Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm⁻¹. Mass spectra were recorded by ESI, EI, DART and HRMS was measured on a HP-5989 instrument. Commercially available reagents were used without further purification. Organic solvents used were dried by standard methods when necessary. All reactions were monitored by TLC with Huanghai GF₂₅₄ silica gel coated plates. Flash column chromatography was performed by using 300-400 mesh silica gel eluting with ethyl and petroleum at increased pressure. All reactions were performed under argon using standard Schlenk techniques.

The photoreaction setup is reassembled as following picture with a purple LED, a fan and a magnetic stirrer. The reaction tube was about 5.0 cm far from the light source. The 30 W purple LED (Wavelength: 390 – 400 nm) was directly purchased online from Taobao.com.

Figure S1. The photoreaction setup

2. Optimization of Reaction Conditions

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **1a** (0.1 mmol), styrene **2a**, catalyst and other additives were added. The tube was degassed by alternating vacuum evacuation (5 min) and argon backfill for three times. Then the degassed solvent was injected into the tube. The mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, 1,3,5-trimethoxybenzene (1.0 equiv) used as an internal standard was added after removal of the tube from the light source. The solvent was removed under reduced pressure and the resulting crude was analyzed by ¹H NMR.

$ \begin{array}{c} $	<u>Co(dmgH)₂</u> PyCl (10 mol%) MeCN (0.1 M), rt 30 W purple LED, 24 h	CCLOFF+C 3aa	4a
Entry	Additive	3aa , Yield (%) ^[a]	4a , Yield (%) ^[a]
1	Zn (2.0 equiv), NH ₄ Cl (2.0 equiv	/) 11	16
2	Mn (2.0 equiv), NH ₄ Cl (2.0 equiv	/) 15	44
3	HEH (2.0 equiv), KH ₂ PO ₄ (2.0 equ	iiv) 22	32

2.1 Table S1. Screening of Catalytic System

^[a]Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

2.2 Table S2. Solvent Optimization

^[a]Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

2.3 Table S3. Additive Optimization

+ 2a (5.0 equiv)	Co(dmgH) ₂ PyCI (10 mol%) HEH (2.0 equiv) Additive (2.0 equiv) DCE (0.1 M), rt 30 W purple LED, 24 h	GGL O H + G 3aa	4a
Entry	Base	3aa , Yield (%) ^[a]	4a , Yield (%) ^[a]
1	KH ₂ PO ₄	40	38
2	Li ₂ CO ₃	25	24
3	Na ₂ CO ₃	21	31
4	K ₂ CO ₃	17	13
5	KHCO3	16	20
6	Et ₃ N	n.d.	n.d.
7	ⁱ Pr ₂ NEt	n.d.	n.d.
8	Na-Gly	35	25
9	w/o	12	15

^[a]Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

2.4 Table S4. [Co] Catalyst Optimization

Entry	Deviation	3aa , Yield (%) ^[a]	4a , Yield (%) ^[a]
1	none	40	38
2	Co(dmgH) ₂ (4-OMe-py)Cl	28	34
3	Co(dmgH) ₂ (DMAP)Cl	18	35
4	Co(dmgH) ₂ (4-CF ₃ -py)Cl	46	39
5	Co(dmgH) ₂ (4-CN-py)Cl	48	38
6	Co(dmgH)(dmgH ₂)Cl ₂	35	31
7	Co(dmgH)(dmgH ₂)Cl ₂ + L1 (15 mol%)	48	36
8	Co(dmgH)(dmgH ₂)Cl ₂ + L2 (15 mol%)	50	33
9	Co(dmgH)(dmgH ₂)Cl ₂ + L3 (15 mol%)	20	15
10	CoBr ₂ (10 mol%), DPEphos (15 mol%)	n.d.	n.d.
11	Co(acac) ₂ (10 mol%), DPEphos (15 mol%)	n.d.	n.d.
12	Co(Salen ^{tBu, tBu}) (5 mol%)	n.d.	n.d.

 $^{\rm [a]}\!{\rm Yields}$ were determined by $^1\!{\rm H}$ NMR using 1,3,5-trimethoxybenzene as an internal standard.

S5

2.5 Table S5. Further Optimization of Product 3aa

^[a]Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^[b]Isolated yield on 0.2 mmol scale.

2.6 Table S6. Control Experiments

6

^[a]Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^[b]Isolated yield on 0.2 mmol scale.

n.d.

91 (86)^[b]

w/o 2a, 4-CN-py

3. Preparation of Substrates and Catalysts

The bicyclo[1.1.0]butanes (BCBs, substrates 1) were synthesized according to the previous report. The procedures for the synthesis of substrates 1a - 1l were slightly modified based on the previous reports.^{1, 2} The procedures for the synthesis of substrates 1m, 1o, and 1p were in consistent with the reported literature.³⁻⁵ The substrates of alkenes 2a - 2p, and 2r - 2z were all commercially available. The cobalt catalysts used were commercially available except Co(dmgH)₂(4-CN-py)Cl and Co(dmgH)₂(4-CF₃-py)Cl.

Substrates of BCBs

Substrates of Alkenes

General Procedure A for the Synthesis of Substrates 1a – 1g

Step 1: A solution of the corresponding alcohol (10 mmol, 1.0 equiv), 3-oxocyclobutane-1carboxylic acid (1.14 g, 10 mmol, 1.0 equiv) and 4-dimethylaminopyridine (122.2 mg, 1.0 mmol, 0.1 equiv) in DCM (40 mL) was stirred at 0 °C in an ice bath for 10 min. Afterwards, the solution of dicyclohexylcarbodiimide (2.27 g, 11 mmol, 1.1 equiv) in DCM (10.0 mL) was added dropwise for 15 min. The reaction system was warmed to room temperature and stirred for 12 h. Upon completion, the mixture was filtered through a celite. The filtrate was concentrated under reduced

pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 4/1) to afford the compounds **S1** in good yields.

Step 2: A round bottom flask equipped with a magnetic stir bar was added compound **S1** and methanol (0.33 M). The solution was stirred at 0 °C in an ice bath for 10 min. Then NaBH₄ (0.5 equiv) was added slowly and the resulting mixture was allowed to stirred for 2.0 min. Afterwards, the reaction was quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with CH₂Cl₂ for 3 times (3×20 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford compound **S2**, which was directly used without further purification.

Step 3: A solution of compound **S2** and 4-dimethylaminopyridine (0.1 equiv) in DCM (1.0 M) was stirred at 0 °C in an ice bath. Then Et₃N (1.2 equiv) and 4-toluenesulfonyl chloride (1.2 equiv) was added to the solution. The reaction system was warmed to room temperature and stirred for 12 h. Upon completion, water (15 mL) was added to the solution and the resulting mixture was extracted with CH_2Cl_2 for 3 times (3 × 20 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 4/1) to afford the compound **S3** in good yields (ranging from 70% to 90%).

Step 4: A solution of compound **S3** (5.0 mmol, 1.0 equiv) in THF (0.2 M) was stirred at 0 °C in an ice bath for 10 min. Afterwards, 'BuOK (1.1equiv, 1.0 M in THF) was added dropwise for 15 min. The resulting mixture was allowed to stir for another 10 min. Upon completion, the reaction was quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with CH_2Cl_2 for 3 times (3 × 15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 30/1) to afford the substrate BCBs in moderate yields.

General Procedure B for the Synthesis of Substrates 1h – 1l

Step 1: A solution of 3-oxocyclobutane-1-carboxylic acid (1.14 g, 10 mmol, 1.0 equiv) and 1,1'carbonyldiimidazole (1.62 g, 10 mmol, 1.0 equiv) in THF (30 mL) was stirred at room temperature for 2.0 h. Then, the corresponding amine (10 mmol, 1.0 equiv) was added to the solution and the resulting mixture was allowed to stir for another 10 h. Upon completion, the reaction was quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with CH₂Cl₂ for 3 times (3 × 20 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 1/1) to afford the compounds **S4** in good yields (ranging from 80% - 90%).

Step 2: A round bottom flask equipped with a magnetic stir bar was added compound **S4** and methanol (0.33 M). The solution was stirred at 0 °C in an ice bath for 10 min. Then NaBH₄ (0.5 equiv) was added slowly and the resulting mixture was allowed to stirred for 10 min. Afterwards, the reaction was quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with CH₂Cl₂ for 3 times (3×20 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford compound **S5**, which was directly used without further purification.

Step 3: A solution of compound **S5** and 4-dimethylaminopyridine (0.1 equiv) in DCM (1.0 M) was stirred at 0 °C in an ice bath. Then Et₃N (1.2 equiv) and 4-toluenesulfonyl chloride (1.2 equiv) was

added to the solution. The reaction system was warmed to room temperature and stirred for 12 h. Upon completion, water (15 mL) was added to the solution and the resulting mixture was extracted with CH_2Cl_2 for 3 times (3 × 20 mL). The combined organic layer was washed with brine and dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 1/1) to afford the compounds S6 in good yields (ranging from 70% to 90%).

Step 4: A solution of compound **S6** (5.0 mmol, 1.0 equiv) in THF (0.2 M) was stirred at 0 °C in an ice bath for 10 min. Afterwards, 'BuOK (1.1 equiv, 1.0 M in THF) was added dropwise for 15 min. The resulting mixture was allowed to stir for another 10 min. Upon completion, the reaction was quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with CH_2Cl_2 for 3 times (3 × 15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 4/1) to afford the substrate BCBs in moderate yields.

Synthesis of Substrate 1n⁶

Step 1: A round bottom flask equipped with a magnetic stir bar was added 3methylenecyclobutane-1-carbonitrile (0.93 g, 10.0 mmol, 1.0 equiv) and concentrated HCl solution (10 mL). The flask was heated to 70 °C in an oil bath and stirred vigorously for 16 h. Upon completion, the solution was cooled to room temperature and the diluted with water (25 mL). The resulting mixture was extracted with Et_2O for 3 times (3 × 25 mL). The combined organic layer was

washed with brine and dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure to afford **S8**, which was directly used without further purification.

Step 2: A solution of the compound **S8** (assuming 10 mmol, 1.0 equiv), naphthalen-2-ylmethanol (1.58 g, 10 mmol, 1.0 equiv) and 4-dimethylaminopyridine (122.2 mg, 1.0 mmol, 0.1 equiv) in DCM (40 mL) was stirred at 0 °C in an ice bath for 10 min. Afterwards, the solution of dicyclohexylcarbodiimide (2.27 g, 11 mmol, 1.1 equiv) in DCM (10.0 mL) was added dropwise for 15 min. The reaction system was warmed to room temperature and stirred for 12 h. Upon completion, the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 4/1) to afford the compound **S9** (2.39 g, 83% yield) as a pale green oil.

Step 3: A solution of compound **S9** (2.30 g, 8.0 mmol) in THF (20 mL, 0.4 M) was stirred at 0 °C under Ar in an ice bath for 10 min. Afterwards, NaHMDS (4.8 mL, 1.2 equiv, 2.0 M in THF) was added dropwise for 15 min. The resulting mixture was warmed to room temperature and stirred for 2.0 h. Upon completion, the reaction was quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with EtOAc for 3 times (3×15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 20/1) to afford the substrate **1n** (1.25 g, 62% yield) as a colorless oil.

Synthesis of Substrate 2q⁷

Step 1: A solution of 1*H*-indole-3-carbaldehyde (0.73 g, 5.0 mmol, 1.0 equiv) and 4methylbenzenesulfonyl chloride (1.14 g, 6.0 mmol, 1.2 equiv) in DCM (10 mL, 0.5 M) was stirred at 0 °C in an ice bath for 5.0 minutes, then Et_3N (0.84 mL, 6.0 mmol, 1.2 equiv) was injected in one portion. The resulting mixture was warmed to room temperature and stirred for 12 h. Upon

completion, the reaction was quenched with a sat. NH_4Cl solution and extracted with $CHCl_2$ for 3 times (3 × 10 mL). The combined organic layer was washed with brine and dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel (PE/EA = 4/1) to afford the compound **S10** (1.36 g, 91% yield) as a yellow solid.

Step 2: A solution of methyltriphenylphosphonium bromide (2.14 g, 6.0 mmol, 1.5 equiv) and 'BuOK (0.67 g, 6.0 mmol, 1.5 equiv) in THF (20.0 mL) was stirred at room temperature for 1.0 h. Afterwards the compound **S10** (1.20 g, 4.0 mmol, 1.0 equiv) in THF (5.0 mL) was added and the solution was stirred for another 11 h. Upon completion, the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 6/1) to afford the substrate **2q** (0.65 g, 55% yield) as a white solid.

Synthesis of Cobalt Catalyst⁸

A solution of Co(dmgH)(dmgH₂)Cl₂ (1.0 equiv) and the corresponding pyridine derivative (1.0 equiv) in MeOH (0.03 M) was stirred at room temperature for 3.0 h. Afterwards, a brown precipitate was formed. The flask was cooled to -10 °C and the resulting mixture was filtered and washed with water, ethanol, and Et₂O to afford the cobalt catalyst. The catalyst was directly used without further purification after drying.^{8a}

In a two-neck round-bottom flask (100 mL), KOH (84.2 mg, 1.5 mmol, 2.5 equiv) and Co(dmgH)₂pyCl (242.2 mg, 0.6 mmol, 1.00 equiv) were dissolved in 20 mL of methanol. The flask was cooled to 0 °C and the solution was degassed by a forced flow of argon via a needle adaptor for 20 min. Then NaBH₄ (59.0 mg, 2.6 equiv) was added into the reaction mixture under argon. The resulting mixture was allowed to stirred for 5 min. Subsequently, "BuI (0.31 mL, 2.7 mmol, 4.50 equiv.) was added to the reaction mixture. The reaction mixture was stirred at 0 °C for another 30 minutes. Upon completion, acetone (4 mL) and water (60 mL) were added. The resulting precipitate was collected by filtration over a Büchner funnel, rinsed with water (30 mL) and dried at room temperature under vacuum to afford Co(dmgH)₂(butyl)py (81.7 mg, 32% yield) as an orange solid.^{8b, 8c}

¹**H** NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 4.8 Hz, 2H), 7.71 (t, J = 7.5 Hz, 1H), 7.35 – 7.28 (m, 2H), 2.13 (s, 12H), 1.68 – 1.59 (m, 2H), 1.26 – 1.15 (m, 2H), 0.94 – 0.85 (m, 2H), 0.80 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.0, 149.0, 137.3, 125.1, 33.0, 23.7, 14.0, 12.0 (The signal from the carbon bound to cobalt was absent).

Synthesis of Deuterated Hantzsch Esters⁹

In an oven-dried round bottom flask equipped with a magnetic stir bar, ethyl acetoacetate (1.5 mL, 12.0 mmol, 4.0 equiv), d_2 -paraformaldehyde (96.1 mg, 3.0 mmol, 1.0 equiv), ammonium acetate (0.46 g, 6.0 mmol, 2.0 equiv) and water (6.0 mL) was added. The mixture was stirred vigorously at 86 °C in an oil bath for 3.0 hours. After cooling down to room temperature, the mixture was filtered and the obtained precipitate was dried to afford compound d_2 -HEH (525.0 mg, 69% yield) as a yellow solid.

A solution of compound d2-HEH (0.51 g, 2.0 mmol) in CD3OD (4.0 mL) was stirred under Ar at

room temperature for 18 h. The solvent was evaporated and another CD₃OD (2.0 mL) was added. The resulting mixture was allowed to stir for another 24 h. The deuterated Hantzsch Esters was obtained after removing the solvent as a pale green solid (492.0 mg, 96% yield). The spectral data of deuterated Hantzsch Esters is consisted with the previous reports.⁹ ¹H NMR (400 MHz, CDCl₃) δ 4.17 (q, *J* = 7.1 Hz, 4H), 2.19 (s, 6H), 1.29 (t, *J* = 7.1 Hz, 6H).

Synthesis of Deuterated Substrate d₅-1a¹⁰

Step 1: A solution of the 3-oxocyclobutane-1-carbonitrile (1.43 g, 15 mmol, 1.0 equiv), acetic acid d_4 in D₂O (6.0 mL) was stirred at 70 °C in an oil bath for 12 h. Upon completion, anhydrous Na₂SO₄ was added and the resulting mixture was extracted with CH₂Cl₂ for 3 times (3 × 15 mL). Then the solvent was removed under reduced pressure to afford compound **S11** (1.48 g, 99% yield) as a pale yellow solid, which was directly used without further purification.

Step 2: A solution of the compound **S11** (1.48 g, 15 mmol, 1.0 equiv) in deuterium chloride (15 mL) was stirred at 70 °C in an oil bath for 16 h. Upon completion, the solution was cooling down to room temperature, and diluted with D_2O (25 mL). The resulting mixture was extracted with Et_2O for 3 times (3 × 20 mL). Then the solvent was removed under reduced pressure to afford compound **S12** (1.37 g, 77% yield) as a white solid, which was directly used without further purification.

Step 3: A solution of naphthalen-2-ylmethanol (10 mmol, 1.0 equiv), compound **S12** (1.19 g, 10 mmol, 1.0 equiv) and 4-dimethylaminopyridine (122.2 mg, 1.0 mmol, 0.1 equiv) in DCM (40 mL) was stirred at 0 °C in an ice bath for 10 min. Afterwards, the solution of dicyclohexylcarbodiimide (2.27 g, 11 mmol, 1.1 equiv) in DCM (10.0 mL) was added dropwise for 15 min. The reaction system was warmed to room temperature and stirred for 12 h. Upon completion, the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 4/1) to afford the compound **S13** as a white solid (2.2 g, 85% yield).

Step 4: A round bottom flask equipped with a magnetic stir bar was added compound **S13** (8.5 mmol, 2.2 g) and methanol- d_4 (25 mL). The solution was stirred at 0 °C in an ice bath for 10 min. Then NaBD₄ (4.25 mmol, 177.9 mg, 0.5 equiv) was added slowly and the resulting mixture was allowed to being stirred for 2.0 min. Afterwards, the reaction was quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with CH₂Cl₂ for 3 times (3 × 20 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford compound **S14**, which was directly used without further purification.

Step 5: A solution of compound **S14** (2.09 g, 8.0 mmol) and 4-dimethylaminopyridine (97.8 mg, 0.8 mmol, 0.1 equiv) in DCM (8.0 mL) was stirred at 0 °C in an ice bath. Then Et₃N (1.3 mL, 1.2 equiv) and 4-toluenesulfonyl chloride (1.83 g, 1.2 equiv) was added to the solution. The reaction system was warmed to room temperature and stirred for 12 h. Upon completion, water (15 mL) was added to the solution and the resulting mixture was extracted with CH_2Cl_2 for 3 times (3 × 20 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 4/1) to afford the compound **S15** as a yellow solid (2.36 g, 71% yield).

Step 6: A solution of compound **S15** (2.08 g, 5.0 mmol, 1.0 equiv) in THF (0.2 M) was stirred at 0 °C in an ice bath for 10 min. Afterwards, 'BuOK (5.5 mL, 1.1 equiv, 1.0 M in THF) was added dropwise for 15 min. The resulting mixture was allowed to stir for another 10 min. Upon completion, the reaction was quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with CH₂Cl₂ for 3 times (3 × 15 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 30/1) to afford the substrate d_3 -1a as a colorless oil (0.91 g, 75% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 4H), 7.50 – 7.43 (m, 3H), 5.31 (s, 2H), 2.40 – 2.39 (m, 0.3H), 2.14 – 2.13 (m, 0.26H), 1.18 – 1.17 (m, 0.3H); **HRMS** (EI) m/z: [M]⁺ Calcd. for C₁₆H₉D₅O₂ 243.1302; found 243.1305.

Synthesis of Deuterated Substrate *d*₂-2g¹¹

Step 1: In an oven-dried round bottom flask equipped with a magnetic stir bar, triphenylphosphine (1.31 g, 5.0 mmol, 1 equiv) and THF (25 mL) was added. The mixture was stirred at room temperature for 10 min. Then CD₃I (0.37 mL, 6.0 mmol, 1.2 equiv) was added dropwise. Upon completion, the mixture was filtered and washed by anhydrous THF (20 mL). The (methyl- d_3)triphenylphosphonium iodide was obtained as a white solid (1.34 g, 66% yield).

Step 2: A solution of (methyl- d_3)triphenylphosphonium iodide (1.22 g, 3.0 mmol, 1.5 equiv) and 'BuOK (336.6 mg, 3.0 mmol, 1.5 equiv) in THF (10 mL) was stirred at room temperature for 1.0 h. Afterwards 4-(*tert*-butyl)benzaldehyde (0.34 mL, 2.0 mmol, 1.0 equiv) in THF (3.0 mL) was added and the resulting solution was stirred for another 11 h. Upon completion, the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (PE) to afford the substrate d_2 -2g (246.0 mg, 76% yield) as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 4H), 6.74 – 6.63 (m, 1H), 5.69 (d, *J* = 17.6 Hz, 0.17H), 5.17 (d, *J* = 10.8 Hz, 0.17H), 1.32 (s, 9H).

4. General Procedure for the Synthesis of Products

General Procedure C for the Synthesis of Product 3

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate 1 (0.2 mmol, 1.0 equiv), alkene 2 (1.0 mmol, 5.0 equiv), Co(dmgH)₂(4-CN-py)Cl (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), isonicotinonitrile (20.8 mg, 1.0 equiv) and KH_2PO_4 (81.6 mg, 3.0 equiv) were added. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified product **3**.

General Procedure D for the Synthesis of Product 4

 $\begin{array}{c} \label{eq:condition} \mathsf{EWG} \\ \end{tabular} \mathbf{L} \\ \end{tabular}$

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate 1 (0.2 mmol, 1.0 equiv), $Co(dmgH)_2(4$ -CN-py)Cl (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), and KH₂PO₄ (81.6 mg, 3.0 equiv) were added. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified product 4.

For most of these cobalt-catalyzed reactions, the color of reaction solutions would change from yellow to brown after light irradiation. Here, we take the model reaction (1a and 2a) as an example.

Figure S2. Color changes of the model reaction (left: before irradiation; right: after irradiation)

5. Mechanistic Studies

5.1 Radical Trapping Experiments

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **1a** (47.7 mg, 0.2 mmol, 1.0 equiv), styrene **2a** (0.11 mL, 1.0 mmol, 5.0 equiv), $Co(dmgH)_2(4-CN-py)Cl$ (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), isonicotinonitrile (20.8 mg, 1.0 equiv), TEMPO (62.5 mg, 2.0 equiv) and KH₂PO₄ (81.6 mg, 3.0 equiv) were added. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then, the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure. Products **3aa** and **4a** were not detected, and substrate **1a** was almost kept unchanged. Also, we did not obtain any TEMPO-adduct.

5.2 UV/vis Absorption Studies

All the UV-Vis absorption spectra were recorded on the SHIMADZU UV-2600 UV-visible spectrophotometer.

Figure S3. UV-Vis absorption spectra of HEH (0.1 mM) in DCE

Figure S4. UV-Vis absorption spectra of 1a (0.1 mM) in DCE

Figure S5. UV-Vis absorption spectra of Co(dmgH)₂(4-CN-py)Cl (0.1 mM) in DCE

Figure S6. UV-Vis absorption spectra of the standard reaction mixtures (black line, using the model substrate BCB **1a** and styrene **2a**) and after 15 min (red line) of irradiation with 30 W purple LED under Ar. Two absorption bands at 450-500 nm and 550-700 nm appeared after 15 min irradiation and agreed with the formation of Co^{II} and Co^{I} intermediates, respectively.¹²

5.3 Emission Quenching Studies¹³

All the emission intensities were recorded by Hitachi F-4600 FL spectrometer. Solutions of HEH (1 \times 10⁻² M) in dry DCE were excited at 405 nm and the emission intensity was collected at the maximum wavelength 445 nm. Solutions of different concentration of Co(dmgH)₂(4-CN-py)Cl, **1a** and **2a** were prepared respectively and introduced to a 1.0 cm path length quartz cuvette equipped with a Teflon® septum.

Figure S7. Stern-Volmer Quenching of HEH with [Co]

Figure S8. Stern-Volmer Quenching of HEH with Substrate 1a

Figure S9. Stern-Volmer Quenching of HEH with 2a

Figure S10. Stern-Volmer Quenching of HEH with [Co], 1a, and 2a

5.4 Dark-light Experiment

In a flame dried Schlenk tube (50 mL) equipped with a magnetic stir bar, substrate **1a** (0.48 g, 2.0 mmol, 1.0 equiv), styrene **2a** (1.1 mL, 10 mmol, 5.0 equiv), Co(dmgH)₂(4-CN-py)Cl (85.6 mg, 10

mol%), HEH (1.52g, 3.0 equiv), isonicotinonitrile (208.2 mg, 1.0 equiv), and KH₂PO₄ (0.82 g, 3.0 equiv) were added. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then, the degassed solvent DCE (20 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. The lights were turned on and off per two hours, and samples taken from the solution (0.3 mL per time) were analyzed by ¹H NMR with 1,3,5-trimethoxybenzene as an internal standard.

Time (h)	0	2	4	6	8	10	12
Yield (%)	0	11	11	23	23	35	35

Figure S11. Light/dark cycle experiments

5.5 Investigation of the Transformations of 4a

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **4a** (0.2 mmol, 1.0 equiv), alkene **2a** (1.0 mmol, 5.0 equiv), $Co(dmgH)_2(4-CN-py)Cl$ (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), isonicotinonitrile (20.8 mg, 1.0 equiv) and KH₂PO₄ (81.6 mg, 3.0 equiv) were added. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill

for three times. Then, the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by a silica gel flash chromatography to afford the product **3aa** in 73% yield. In addition, the substrate **4a** was recovered in 25% yield.

5.6 Investigation of Catalytic Amount of HEH

Based on general procedures C and D, a catalytic amount of HEH (0.2 equiv) was added to the two above reactions, respectively. We found that most of substrate **1a** was recovered in these Co-catalyzed reactions.

5.7 Deuterium Studies

Deuterated Hantzsch Esters and KD₂PO₄ Used Instead

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **1a** (0.2 mmol, 47.7 mg, 1.0 equiv), alkene **2g** (1.0 mmol, 160.3 mg, 5.0 equiv), $Co(dmgH)_2(4-CN-py)Cl$ (8.6 mg, 10 mol%), d_3 -HEH (153.8 mg, 3.0 equiv), isonicotinonitrile (20.8 mg, 1.0 equiv) and KD₂PO₄ (82.9 mg, 3.0 equiv, 98% D, which is commercially available) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred

for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the products **3ag** and **4a** with 0% deuterium incorporation.

Figure S12. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 3ag) of deuterium studies with d_3 -HEH and KD₂PO₄

Figure S13. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 4a) of deuterium studies with d_3 -HEH and KD₂PO₄

D₂O was Added under the Standard Conditions

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **1a** (0.2 mmol, 47.7 mg, 1.0 equiv), alkene **2g** (1.0 mmol, 160.3 mg, 5.0 equiv), $Co(dmgH)_2(4-CN-py)Cl$ (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), isonicotinonitrile (20.8 mg, 1.0 equiv) KH₂PO₄ (81.6 mg, 3.0 equiv), and D₂O (11 µL, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then, the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain

temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified products **3ag** and **4a** with 0% deuterium incorporation.

Figure S14. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 3ag) of deuterium studies with D₂O

Figure S15. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 4a) of deuterium studies with D₂O

Deuterated Hantzsch Esters and KD₂PO₄ Used Instead in Absence of Alkene

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **1a** (0.2 mmol, 47.7 mg, 1.0 equiv), Co(dmgH)₂(4-CN-py)Cl (8.6 mg, 10 mol%), d_3 -HEH (153.8 mg, 3.0 equiv), and KD₂PO₄ (82.9 mg, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then, the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the product **4a** in 82% yield with 0%

deuterium incorporation.

Figure S16. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 4a) of deuterium studies with d_3 -HEH and KD₂PO₄

Deuterated Hantzsch Esters, KD₂PO₄ and D₂O Used Instead in Absence of Alkene

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **1a** (0.2 mmol, 47.7 mg, 1.0 equiv), Co(dmgH)₂(4-CN-py)Cl (8.6 mg, 10 mol%), d_3 -HEH (153.8 mg, 3.0 equiv), D2O (15 μ L, 4.0 equiv), and KD₂PO₄ (82.9 mg, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a

fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the product **4a** in 74% yield with 0% deuterium incorporation.

Figure S17. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 4a) of deuterium studies with d_3 -HEH, KD₂PO₄ and D₂O

The Substrate d₂-2g Was Used Instead

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **1a** (0.2 mmol, 47.7 mg, 1.0 equiv), alkene d_2 -2g (1.0 mmol, 162.3 mg, 5.0 equiv), Co(dmgH)₂(4-CN-py)Cl (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), isonicotinonitrile (20.8 mg, 1.0 equiv) and KH₂PO₄

(81.6 mg, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then, the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified products.

Figure S18. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 3ag) of deuterium studies with *d*₂-2g

Figure S19. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 4a) of deuterium studies with d₂-2g

The Substrate d₅-1a Was Used Instead

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate d_3 -1a (0.2 mmol, 48.7 mg, 1.0 equiv), alkene 2g (1.0 mmol, 160.3 mg, 5.0 equiv), Co(dmgH)₂(4-CN-py)Cl (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), isonicotinonitrile (20.8 mg, 1.0 equiv) and KH₂PO₄ (81.6 mg, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a

silica gel flash chromatography to afford the purified product.

Figure S20. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 3ag) of deuterium studies with d_5 -1a

The Substrate *d*₅-1a and *d*₂-2g Was Used Instead

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate d_5 -1a (0.2 mmol, 48.7 mg, 1.0 equiv), alkene d_2 -2g (1.0 mmol, 160.3 mg, 5.0 equiv), Co(dmgH)₂(4-CN-py)Cl (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), isonicotinonitrile (20.8 mg, 1.0 equiv) and KH₂PO₄ (81.6 mg, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then, the degassed solvent DCE (2.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away
from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified product.

Figure S21. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 3ag) of deuterium studies with d_5 -1a and d_2 -2g

The Substrate d₅-1a Was Used Instead in the Absence of Alkene

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate d_5 -1a (0.2 mmol, 48.7 mg, 1.0 equiv), Co(dmgH)₂(4-CN-py)Cl (8.6 mg, 10 mol%), HEH (152.0 mg, 3.0 equiv), and KH₂PO₄ (81.6 mg, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (2.0 mL, 0.1

M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified product.

Figure S22. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 3ag) of deuterium studies with d_5 -1a in the absence of alkene

Stoichiometric Co(dmgH)₂(butyl)py Was Used Instead in the Absence of Alkene

In a flame dried Schlenk tube (10 mL) equipped with a magnetic stir bar, substrate **1a** (0.1 mmol, 24.3 mg, 1.0 equiv) and Co(dmgH)₂(butyl)py (42.5 mg, 1.0 equiv) were added. The reaction tube

was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (1.0 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 12 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the product **4a** in 78% yield.

To further determine whether Co-H adds to BCB directly, stoichiometric Co(dmgH)₂(butyl)py was used. Under irradiation, such Co-complex would generate Co-H.^{8c} If this Co-H adds to the BCB, the C3 position should have less than 1 D incorporation. This is inconsistent with the experimental results.

Figure S23. ¹H NMR (400 MHz, CDCl₃) spectrum (compound 4a) of deuterium studies with S39

Stoichiometric Co(dmgH)₂(butyl)py in the absence of alkene.

5.8 Detection of Generated Hydrogen Gas

Qualitative detection of hydrogen was achieved by GC-2060 on TDX-01 packed column. In a flame dried Schlenk tube (50 mL) equipped with a magnetic stir bar, substrate **1a** (0.24 g, 1.0 mmol, 1.0 equiv), styrene **2a** (0.57 mL, 5.0 mmol, 5.0 equiv), Co(dmgH)₂(4-CN-py)Cl (42.8 mg, 10 mol%), HEH (0.76g, 3.0 equiv), isonicotinonitrile (104.1 mg, 1.0 equiv), and KH₂PO₄ (0.41 g, 3.0 equiv) were added. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then, the degassed solvent DCE (10 mL, 0.1 M) was injected into the tube under argon. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the sealed tube was cooled in liquid nitrogen. Nitrogen (3 mL) was injected into the reaction tube as an internal standard. Then gas in the tube was injected into gas chromatography with syringe. By comparing the retention time with the standard mixed gas (10% H₂ in N₂), it is determined that the generated gas is hydrogen gas.

Figure S24. Detection of generated hydrogen gas with GC

6. Analysis of Internal Mixtures and Some Unsuccessful Examples

6.1 Analysis of Internal Mixtures

According to the general procedure C, the internal reaction mixture includes the hydroalkenylation product **3**, isomerization product **4**, as well as a dimer from alkene.

Herein, we take the model substrate **1a** (0.2 mmol) as an example. The side-product **2a'** generated probably through cobalt hydride catalyzed dimerization of styrene **2a** was obtained as a colorless oil (39.6 mg, 95% yield, calculated based on 0.2 mmol).

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 8H), 7.23 – 7.17 (m, 2H), 6.46 – 6.34 (m, 2H), 3.64 (qd, J = 7.0, 4.8 Hz, 1H), 1.47 (d, J = 7.0 Hz, 3H). The spectroscopic data were consistent with those of previously reported.¹²

The corresponding pyridine compound (HP) transformed from HEH was also isolated (78% conversion calculated based on 0.6 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 4.40 (q, *J* = 7.1 Hz, 4H), 2.85 (s, 6H), 1.42 (t, *J* = 7.1 Hz, 6H).

6.2 Analysis of Some Unsuccessful Examples

In the investigation on the substrate scope, some examples were tested but failed to afford the desired products. Herein we provide the detailed transformations of corresponding reactions.

For the unsuccessful BCBs

The substrate **10** could not afford the desired hydroalkenylation product under the standard conditions. Apart from other complexes, we isolated the cyclobutane product **40** in 71% yield in this protocol.

The substrate 1p was almost converted into the product 4p under the standard conditions.

For the unsuccessful alkenes

When the alkenes 2v-2z were used as substrates, no coupling products 3 were obtained under the standard conditions. the isomerization product 4a was obtained as a single product.

7. Proposed Reaction Mechanism

Scheme S1. Proposed Mechanism

Scheme S2. Infeasible Mechanism involving Direct CoH Addition

Based on the PdH-enabled hydroalkenylation of BCBs protocol, we also consider the possibility of a direct CoH addition promoted mechanism. However, deuterium labeling studies revealed that the H source from the additives did not participate in the BCBs transformations process, which was different from the situation in the PdH-catalyzed method. As a result, we could not explain the origination of CoH species and how this reaction was initiated. Even so, this CoH addition mechanism could not be excluded considering the π -like property of BCB. Herein, we supplement this CoH enabled direct CoH addition as a potential mechanism for reference.

8. Synthetic Applications

8.1 Scale-up Experiments.

In a flame dried Schlenk tube (100 mL) equipped with a magnetic stir bar, substrate **1e** (0.87 g, 4.0 mmol, 1.0 equiv), alkene **2a** (20.0 mmol, 2.3 mL, 5.0 equiv), $Co(dmgH)_2(4-CN-py)Cl$ (85.6 mg, 5 mol%), HEH (3.04 g, 3.0 equiv), isonicotinonitrile (416.4 mg, 1.0 equiv) and KH₂PO₄ (1.63 g, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (40 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified product **3ea** (1.04 g, 81% yield).

In a flame dried Schlenk tube (100 mL) equipped with a magnetic stir bar, substrate **1h** (3.0 mmol, 0.83 g, 1.0 equiv), alkene **2a** (15.0 mmol, 1.7 mL, 5.0 equiv), $Co(dmgH)_2(4-CN-py)Cl$ (64.2 mg, 5 mol%), HEH (2.28 g, 3.0 equiv), isonicotinonitrile (312.3 mg, 1.0 equiv) and KH₂PO₄ (1.22 g, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (30 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified product **3ha** (0.59 g, 52% yield).

In a flame dried Schlenk tube (100 mL) equipped with a magnetic stir bar, substrate **11** (5.0 mmol, 0.84 g, 1.0 equiv), $Co(dmgH)_2(4-CN-py)Cl$ (107.0 mg, 5 mol%), HEH (3.80 g, 3.0 equiv), and KH₂PO₄ (2.04 g, 3.0 equiv) were added. The reaction tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then the degassed solvent DCE (50 mL, 0.1 M) was injected into the tube. The resulting mixture was stirred for 10 min before being placed 5.0 cm away from the purple LED (30 W) and stirred for 24 h with a fan to maintain temperature. Upon completion, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography to afford the purified product **4**.

8.2 Product Transformations

Synthesis of Compound 5

A solution of compound **3ea** (96.0 mg, 0.3 mmol) in DCM (0.6 mL) was stirred at 0 °C in an ice bath for 5.0 min, then DIBAL-H (1.2 mL, 1.0 M) was injected into the tube slowly. The reaction system was warmed to room temperature and stirred for 3.0 h. Upon completion, a solution of NaOH (1.0 M) was added into the reaction tube and the resulting mixture was filtered with a pad of celite. The filtrate was concentrated to dryness and the residue was purified by a flash column chromatography on silica gel (PE/EA = 10/1) to afford the product **5** (54.2 mg, 96% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.24 – 7.19 (m, 1H), 6.42 (d, *J* = 16.1 Hz, 1H), 6.26 (d, *J* = 16.1 Hz, 1H), 3.65 (s, 2H), 2.15 – 2.06 (m, 2H), 2.03 – 1.87 (m, 4H), 1.55 (br, 1H); ¹³**C NMR** (151 MHz, CDCl₃) δ 137.1, 135.0, 129.0, 128.5, 127.2, 126.1, 68.7, 46.1, 28.5, 15.5; **IR (neat)**: v 3364, 3025, 2976, 2931, 1646, 1599, 1493, 1448, 1027, 966, 747 cm⁻¹; **HRMS** (EI) m/z: [M]⁺ Calcd. for C₁₃H₁₆O 188.1196; found 188.1204.

Synthesis of Compound 6

A solution of compound **3ea** (96.0 mg, 0.3 mmol) in DCM (0.6 mL) was stirred at 0 °C in an ice bath for 5.0 min, then DIBAL-H (1.2 mL, 1.0 M) was injected into the tube slowly. The reaction system was warmed to room temperature and stirred for 3.0 h. Upon completion, a solution of NaOH (1.0 M) was added into the tube and the resulting mixture was filtered with a pad of celite. The filtrate was concentrated to dryness and the residue was dissolved with DCM (6.0 mL). In an ice bath, a solution of Dess-Martin periodinane (190.8 mg, 0.45 mmol) in DCM (3.0 mL) was injected into the mixture. The reaction system was warmed to room temperature and stirred for another 2.0 h. Upon completion, aqueous saturated sodium bicarbonate was added and the resulting mixture was extracted with CH₂Cl₂ for 3 times (3 × 5.0 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel (PE/EA = 10/1) to afford the product **6** (42.4 mg, 76% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 9.59 (s, 1H), 7.39 (d, J = 7.0 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.27 – 7.22 (m, 1H), 6.46 (d, J = 16.3 Hz, 1H), 6.32 (d, J = 16.3 Hz, 1H), 2.58 – 2.48 (m, 2H), 2.26 – 2.15 (m, 2H), 2.04 – 1.89 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 199.9, 136.6, 131.2, 128.9, 128.6, 127.8, 126.3, 55.3, 27.8, 15.6; **IR (neat)**: v 3028, 2940, 1719, 1606, 1493, 1450, 1275, 1176, 1072, 750 cm⁻¹; **HRMS** (EI) m/z: [M]⁺ Calcd. for C₁₃H₁₄O 186.1039; found 186.1043.

Synthesis of Compound 7

To a flask was added compound **3ea** (64.0 mg, 0.2 mmol), Pd/C (21.3 mg, 0.1 equiv, 10% Pd) and menthol (8.0 mL). The mixture was stirred vigorously at room temperature for 8.0 hours under 1.0 atm H₂. Upon completion, the resulting mixture was filtered with a pad of celite. The filtrate was

concentrated to dryness and the residue was purified by a flash column chromatography on silica gel (PE/EA = 10/1) to afford the product 7 (60.0 mg, 93% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 – 7.15 (m, 4H), 7.15 – 7.07 (m, 6H), 4.03 (t, *J* = 6.5 Hz, 2H), 2.63 (t, *J* = 7.7 Hz, 2H), 2.49 – 2.33 (m, 4H), 2.08 – 1.96 (m, 2H), 1.96 – 1.79 (m, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 176.9, 141.9, 141.1, 128.41, 128.35, 128.32, 128.28, 126.0, 125.8, 63.6, 47.7, 39.9, 32.2, 31.4, 30.3, 30.1, 15.7; **IR (neat)**: v 3026, 2937, 2857, 1721, 1602, 1495, 1452, 1323, 1162, 1101, 1029, 910, 743, 696 cm⁻¹; **HRMS** (EI) m/z: [M]⁺ Calcd. for C₂₂H₂₆O₂ 322.1927; found 322.1930.

Synthesis of Compound 8

An oven-dried Schlenk tube (10 mL) equipped with a magnetic stir bar was added compound **3** (64.0 mg, 0.2 mmol) and CCl₄ (4.0 mL). Then bromine (16 μ L, 1.5 equiv) was added into the tube. The mixture was allowed to stir at 0 °C for 2.0 h. Upon completion, 10% aqueous sodium thiosulfate and aqueous saturated sodium bicarbonate were added and the resulting mixture was extracted with CH₂Cl₂ for 3 times (3 × 5.0 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel (PE/EA = 10/1) to afford the product **8** (90.7 mg, 95% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.43 – 7.28 (m, 9H), 7.26 – 7.17 (m, 5H), 5.68 – 5.53 (m, 1.6H), 4.85 (d, *J* = 10.5 Hz, 0.6H), 4.67 (d, *J* = 8.2 Hz, 1H), 4.32 – 4.27 (m, 1.2H), 4.24 – 4.12 (m, 2H), 2.84 – 2.79 (m, 1.2H), 2.76 – 2.71 (m, 2H), 2.68 – 2.58 (m, 1H), 2.56 – 2.48 (m, 1.6H), 2.34 – 1.97 (m, 6H), 1.93 – 1.83 (m, 2.6H), 1.70 – 1.62 (m, 1H), 1.54 – 1.51 (m, 0.6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 173.6 (*minor isomer*), 173.5, 141.0 (*minor isomer*), 140.9, 140.8 (*minor isomer*), 139.1, 128.8, 128.7 (*minor isomer*), 128.62, 128.57, 128.5, 128.43, 128.37, 128.3, 127.8 (*mixtures of major and minor isomer between* 128.62 – 127.8), 126.10, 126.07 (*minor isomer*), 66.6, 64.5 (*minor isomer*), 64.4, 63.5 (*minor isomer*), 57.4, 53.4 (*minor isomer*), 53.1 (*minor isomer*),

52.9, 35.4, 32.33 (*minor isomer*), 32.29, 32.2, 32.0 (*minor isomer*), 30.3 (*minor isomer*), 30.2, 15.9 (*minor isomer*), 15.8; **IR (neat)**: v 3026, 2950, 1726, 1495, 1453, 1201, 1157, 1029, 745 cm⁻¹; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₄O₂Br₂Na 501.0035; found 501.0031.

Synthesis of Compound 9

A solution of compound **3ha** (76.2 mg, 0.2 mmol), 3-chloroperoxybenzoic acid (61.6 mg, 2.0 equiv, 85%) and sodium bicarbonate (20.2 mg, 1.2 equiv) in DCM (10 mL) was stirred at room temperature for 24 h. Upon completion, the resulting mixture was filtered with a pad of celite. The filtrate was concentrated to dryness and the residue was purified by a flash column chromatography on silica gel (PE/EA = 4/1) to afford the product **9** (49.4 mg, 62% yield) as a yellow oil **¹H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 6H), 7.24 – 7.19 (m, 5H), 7.16 – 7.09 (m, 4H), 4.52 (s, 2H), 4.42 (s, 2H), 3.85 (d, *J* = 2.2 Hz, 1H), 3.36 (d, *J* = 2.1 Hz, 1H), 2.73 – 2.59 (m, 2H), 2.28 – 2.15 (m, 2H), 2.03 – 1.90 (m, 1H), 1.87 – 1.77 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 174.7, 137.0, 136.7, 136.3, 128.8, 128.5, 128.3, 128.0, 127.5, 127.2, 126.8, 125.6, 65.5, 55.7, 49.7, 48.6, 47.6, 29.1, 28.3, 15.7; **IR (neat)**: v 2947, 1634, 1495, 1452, 1417, 1362, 1223, 1076, 891, 749 cm⁻¹; **HRMS** (EI) m/z: [M]⁺ Calcd. for C₂₇H₂₇O₂N 397.2036; found 397.2045.

9. X-ray Data.

Single crystals of **3aa** were grown in EtOAc and hexanes. EtOAc (1.0 mL) was added to **3** (30 mg in a 4.0 mL vial) followed by hexanes (0.5 mL). The 4.0 mL vial was capped with a needle and placed at room temperature in the experimental cabinet for 48 h, whereupon the crystals were formed.

The crystal data of **3aa** have been deposited in CCDC with number 2327264. Empirical Formula: $C_{24}H_{22}O_2$; Formula Weight: 342.41; Crystal Color, Habit: colorless, Crystal Dimensions: 0.190 x 0.150 x 0.050 mm; Crystal System: Triclinic; Lattice Parameters: a = 5.9017(13)Å, b = 7.7429(18)Å, c = 20.619(5)Å, $\alpha = 81.177(7)^\circ$, $\beta = 85.875(7)^\circ$, $\gamma = 86.043(7)^\circ$, V = 927.0(4)Å³; Space group: P -1; Z = 2; $D_{calc} = 1.227$ g/cm³; $F_{000} = 364$; Final R induces [I>2sigma(I)]: R1 = 0.0663; wR2 = 0.1310.

Empirical formula	C24 H22 O2	
Formula weight	342.41	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 5.9017(13) Å	α= 81.177(7)°.
	b = 7.7429(18) Å	β= 85.875(7)°.
	c = 20.619(5) Å	$\gamma = 86.043(7)^{\circ}$.
Volume	927.0(4) Å ³	
Z	2	
Density (calculated)	1.227 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	364	
Crystal size	0.190 x 0.150 x 0.050 mm ³	
Theta range for data collection	2.667 to 25.999°.	
Index ranges	-7<=h<=7, -9<=k<=9, -25<=l<=25	
Reflections collected	16436	
Independent reflections	3633 [R(int) = 0.0621]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6142	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3633 / 36 / 254	
Goodness-of-fit on F ²	1.078	
Final R indices [I>2sigma(I)]	R1 = 0.0663, wR2 = 0.1310	
R indices (all data)	R1 = 0.1337, wR2 = 0.1628	
Extinction coefficient	0.023(4)	
Largest diff. peak and hole	0.223 and -0.162 e.Å ⁻³	

Table S7. Crystal data and structure refinement for 3aa.

10. Characterization Data of Substrates

 naphthalen-2-ylmethyl bicyclo[1.1.0]butane-1-carboxylate (1a): A colorless

 oil, 667.1 mg, 56% yield. Eluent: PE/EA = 30/1. ¹H NMR (400 MHz, CDCl₃) δ

 7.87 - 7.77 (m, 4H), 7.53 - 7.41 (m, 3H), 5.31 (s, 2H), 2.41 (d, J = 3.6 Hz, 2H),

2.15 – 2.09 (m, 1H), 1.20 – 1.15 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 173.0, 133.6, 133.1, 133.0, 128.3, 127.9, 127.7, 127.1, 126.24, 126.18, 125.7, 66.5, 35.7, 16.9, 9.1; **IR (neat)**: v 3057, 2943, 1709, 1509, 1407, 1367, 1192, 1142, 1019, 816, 749 cm⁻¹; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₄O₂Na 261.0886; found 261.0887.

benzyl bicyclo[1.1.0]butane-1-carboxylate (1b): A colorless oil, 602.2 mg, 64%
yield. Eluent: PE/EA = 30/1. The spectroscopic data were consistent with those of previously reported.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 5H), 5.15 (s, 2H), 2.39 (d, J = 3.5 Hz, 2H), 2.14 – 2.06 (m, 1H), 1.16 (d, J = 2.8 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.9, 136.2, 128.5, 128.0, 127.9, 66.2, 35.6, 16.7, 9.1.

3,5-dichlorobenzyl bicyclo[1.1.0]butane-1-carboxylate (1c): A colorless oil, 694.0 mg, 54% yield. Eluent: PE/EA = 30/1. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.22 (s, 2H), 5.08 (s, 2H), 2.40 (d, *J* = 3.5 Hz, 2H), 2.20 – 2.13 (m, 1H), 1.21 (d, *J* = 2.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.6, 139.6, 135.1, 128.2, 126.1, 64.6, 35.8, 17.4, 9.0; **IR (neat)**: v 2967, 1710, 1592, 1570, 1433, 1403, 1352, 1190, 1132, 1102, 888, 849, 797, 752 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₁₂H₁₂O₂Cl₂ 257.0131; found 257.0125.

phenyl bicyclo[1.1.0]butane-1-carboxylate (1d): A colorless oil, 453.0 mg, 34% yield. Eluent: PE/EA = 30/1. The spectroscopic data were consistent with those of previously reported.¹⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, *J* = 7.7 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 2H), 2.52 (d, *J* = 3.5 Hz, 2H), 2.37 – 2.31 (m, 1H), 1.31 (d, *J* = 2.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.7, 150.8, 129.3, 125.6, 121.5, 36.2, 18.1, 9.3.

3-phenylpropyl bicyclo[1.1.0]butane-1-carboxylate (1e): A colorless oil, 703.0

mg, 65% yield. Eluent: PE/EA = 30/1. The spectroscopic data were consistent with those of previously reported.¹⁵ ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.23 – 7.14 (m, 3H), 4.12 (t, *J* = 6.5 Hz, 2H), 2.72 – 2.64 (m, 2H), 2.34 (d, *J* = 3.5 Hz, 2H), 2.08 – 2.02 (m, 1H), 2.00 – 1.91 (m, 2H), 1.14 (d, *J* = 2.8 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 173.0, 141.2, 128.4, 128.3, 125.9, 63.9, 35.5, 32.1, 30.2, 16.4, 9.0.

ethyl bicyclo[1.1.0]butane-1-carboxylate (1f): A colorless oil, 327.9 mg, 52% yield. Eluent: PE/EA = 30/1. The spectroscopic data were consistent with those of previously reported.¹⁶ ¹H NMR (400 MHz, CDCl₃) δ 4.16 (q, *J* = 7.1 Hz, 2H), 2.36 (d, *J* = 3.1 Hz, 2H), 2.10 – 2.02 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.17 – 1.11 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 173.0, 60.5, 35.4, 28.0, 16.2, 14.2.

tert-butyl bicyclo[1.1.0]butane-1-carboxylate (1g): A colorless oil, 447.0 mg, 58% yield. Eluent: PE/EA = 30/1. The spectroscopic data were consistent with those of previously reported.¹⁶ ¹H NMR (400 MHz, CDCl₃) δ 2.29 (d, J = 4.6 Hz, 2H), 2.02 – 1.95 (m, 1H), 1.45 (s, 9H), 1.08 (d, J = 1.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 80.2, 35.3, 28.0, 15.7, 10.0.

 $\begin{array}{l} & \textbf{N,N-dibenzylbicyclo[1.1.0]butane-1-carboxamide (1h): A yellow solid, 693.0 mg,} \\ & 50\% \text{ yield. Eluent: PE/EA} = 4/1. \text{ The spectroscopic data were consistent with those of} \\ & \text{previously reported.}^2 \ ^1\text{H} \ \textbf{NMR} \ (400 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 7.53 - 7.03 \ (m, \ 10\text{H}), \ 4.82 \ (s, \ 2\text{H}), \ 4.58 \ (s, \ 2\text{H}), \ 2.27 \ (d, \ J = 3.4 \ \text{Hz}, \ 2\text{H}), \ 2.10 \ (t, \ J = 3.1 \ \text{Hz}, \ 1\text{H}), \ 1.10 \ (d, \ J = 2.5 \ \text{Hz}, \ 2\text{H}); \ ^{13}\text{C} \ \textbf{NMR} \ (151 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 172.0, \ 137.1, \ 128.9, \ 128.5, \ 128.3, \ 127.4, \ 126.6, \ 50.5, \ 47.7, \ 36.9, \ 13.4, \ 8.2. \end{array}$

 $\frac{N-\text{benzyl-}N-\text{methylbicyclo}[1.1.0]\text{butane-1-carboxamide (1i): A pale yellow solid,}}{523.1 \text{ mg}, 52\% \text{ yield. Eluent: PE/EA} = 4/1. The spectroscopic data were consistent with those of previously reported.²$ *Note* $: this compound is a mixture of rotamers in a 1:1 ratio. ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.41 – 7.15 (m, 10H, mixture of rotamers), 4.91 (s, 2H), 4.61 (s, 2H), 3.15 (s, 3H), 2.92 (s, 3H), 2.33 – 2.26 (m, 2H), 2.25 – 2.20 (m, 2H), 2.09 – 1.95 (m, 2H, mixture of rotamers).

rotamers), 1.23 – 1.15 (m, 2H), 1.13 – 1.04 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.0, 171.6, 137.3, 128.8, 128.6, 128.1, 127.4, 127.3, 126.5, 54.2, 51.0, 37.3, 36.7, 36.0, 33.6, 13.9, 13.0, 8.1.

N-methoxy-N-methylbicyclo[1.1.0]butane-1-carboxamide (1j): A colorless liquid,310.0 mg, 44% yield. Eluent: PE/EA = 4/1. The spectroscopic data were consistent $with those of previously reported.¹⁷ ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 3.72 (s, 3H), 3.25 (s, 3H), 2.41 – 2.36 (m, 2H), 2.17 – 2.09 (m, 1H), 1.16 – 1.11 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.8, 61.0, 36.1, 33.4, 15.0, 8.4.

bicyclo[1.1.0]butan-1-yl(thiomorpholino)methanone (1k): A white solid, 522.3 mg, 57% yield. Eluent: PE/EA = 4/1. The spectroscopic data were consistent with those of previously reported.² ¹H NMR (400 MHz, CDCl₃) δ 4.47 – 3.71 (m, 4H), 2.89 – 2.43 (m, 4H), 2.21 (d, J = 3.4 Hz, 2H), 2.03 – 1.94 (m, 1H), 1.17 (d, J = 2.5 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 170.6, 49.2, 44.7, 37.1, 28.2, 27.1, 13.8, 7.8.

bicyclo[1.1.0]butan-1-yl(morpholino)methanone (11): A pale yellow oil, 426.1 mg,
51% yield. Eluent: PE/EA = 4/1. The spectroscopic data were consistent with those of previously reported.¹⁸ ¹H NMR (400 MHz, CDCl₃) δ 3.95 – 3.53 (m, 8H), 2.23 (d, J = 3.4 Hz, 2H), 2.03 – 1.95 (m, 1H), 1.18 (d, J = 2.5 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 66.8, 47.2, 42.6, 37.1, 13.9, 7.6.

1-(phenylsulfonyl)bicyclo[1.1.0]butane (1m): A white solid, 516.2 mg, 54% yield. Eluent: PE/EA = 4/1. The spectroscopic data were consistent with those of previously reported.³ ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.67 – 7.52 (m, 3H), 2.61 – 2.55 (m, 1H), 2.52 (d, J = 3.7 Hz, 2H), 1.39 (d, J = 2.5 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 141.9, 133.0, 129.1, 127.1, 38.2, 23.0, 12.6.

naphthalen-2-ylmethyl 3-methylbicyclo[1.1.0]butane-1-carboxylate (1n): A colorless oil, 1.25 g, 62% yield. Eluent: PE/EA = 20/1. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 4H), 7.53 – 7.41 (m, 3H), 5.31 (s, 2H), 2.28 – 2.20 (m, 2H), 1.49 (s, 3H), 1.29 – 1.22 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.0, 134.0, 133.1, 133.0, 128.2, 127.9, 127.6, 127.1, 126.2, 126.1, 125.8, 66.2, 38.8, 28.0, 13.1, 12.7; **IR (neat)**: v 2963, 1695, 1454, 1377, 1319, 1209, 1138, 955, 862, 748 cm⁻¹; **HRMS** (EI) m/z: [M]⁺ Calcd. for C₂₄H₂₂O₂ 252.1145; found 252.1152.

bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (10): A white solid, 562.3 mg, 54% yield. Eluent: PE/EA = 10/1. The spectroscopic data were consistent with those of previously reported.⁴ ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.05 – 7.80 (m, 4H), 7.63 – 7.51 (m, 2H), 2.70 (d, J = 3.6 Hz, 2H), 2.36 – 2.12 (m, 1H), 1.55 (d, J = 3.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 199.7, 135.1, 135.1, 132.2, 130.3, 129.3, 128.0, 128.0, 127.8, 126.7, 124.8, 38.0, 21.4, 17.1.

 $\begin{array}{c} \mbox{methyl 3-(4-fluorophenyl)bicyclo[1.1.0]butane-1-carboxylate (1p): A white solid, 494.9 mg, 48% yield. Eluent: PE/EA = 30/1. The spectroscopic data were consistent with those of previously reported.⁵ ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.31 – 7.22 (m, 2H), 7.07 – 6.94 (m, 2H), 3.50 (s, 3H), 2.93 – 2.84 (m, 2H), 1.64 – 1.57 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 169.9, 162.1 (d, *J* = 246.1 Hz), 129.4 (d, *J* = 3.5 Hz), 127.5 (d, *J* = 8.4 Hz), 115.5 (d, *J* = 21.8 Hz), 51.8, 35.9, 32.3, 22.8.

1-tosyl-3-vinyl-1H-indole (2q): A white solid, 650.0 mg, 55% yield. Eluent: PE/EA = 6/1. The spectroscopic data were consistent with those of previously reported.⁷ ¹H **NMR** (600 MHz, CDCl₃) δ 7.99 (d, J = 8.7 Hz, 1H), 7.79 – 7.70 (m, 3H), 7.60 (s, 1H), 7.36 – 7.29 (m, 1H), 7.26 (s, 1H), 7.20 (d, J = 4.9 Hz, 2H), 6.80 – 6.72 (m, 1H), 5.78 (dd, J = 17.8, 3.6 Hz, 1H), 5.34 (dd, J = 11.5, 3.6 Hz, 1H), 2.32 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 145.0, 135.5, 135.1, 129.9, 129.0, 127.5, 126.8, 124.9, 124.0, 123.5, 120.9, 120.4, 115.3, 113.7, 21.5;

11. Characterization Data of Products

2H), 7.29 (td, J = 7.6, 2.0 Hz, 2H), 7.25 – 7.19 (m, 1H), 6.57 – 6.42 (m, 2H), 5.32 (s, 2H), 2.71 – 2.58 (m, 2H), 2.33 – 2.24 (m, 2H), 2.00 – 1.90 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.3, 136.9, 133.6, 133.2, 133.0, 131.2, 129.2, 128.6, 128.3, 128.0, 127.7, 127.5, 127.0, 126.3, 126.24, 126.17, 125.6, 66.6, 50.0, 30.9, 16.0; **IR (neat)**: v 3055, 3025, 2943, 2853, 1727, 1447, 1219, 1197, 1100, 964, 815, 743 cm⁻¹; **HRMS** (DART) m/z: [M]⁺ Calcd. for C₂₄H₂₂O₂ 342.1614; found 342.1603.

CLOCK I

benzyl (*E*)-1-styrylcyclobutane-1-carboxylate (3ba): A colorless oil, 42.0 mg, 72% yield. Eluent: PE/EA = 15/1. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.26 (m,

9H), 7.25 – 7.20 (m, 1H), 6.51 (d, J = 16.8 Hz, 1H), 6.46 (d, J = 16.4 Hz, 1H), 5.17 (s, 2H), 2.63 (dt, J = 11.5, 8.2 Hz, 2H), 2.28 (dt, J = 11.2, 7.6 Hz, 2H), 2.00 – 1.89 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 136.9, 136.2, 131.2, 129.1, 128.53, 128.50, 128.1, 127.8, 127.4, 126.3, 66.4, 50.0, 30.9, 16.0; **IR (neat)**: v 3028, 2945, 1724, 1496, 1455, 1284, 1217, 1196, 1097, 963, 741, 692 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₀H₂₁O₂ 293.1536; found 293.1530.

3,5-dichlorobenzyl (*E*)-1-styrylcyclobutane-1-carboxylate (3ca): A colorless oil, 61.2 mg, 85% yield. Eluent: PE/EA = 15/1. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.6 Hz, 2H), 7.35 – 7.18 (m, 6H), 6.53 (d, *J* = 16.0 Hz, 1H), 6.45 (d,

J = 16.0 Hz, 1H), 5.09 (s, 2H), 2.63 (dt, J = 11.7, 8.2 Hz, 2H), 2.35 – 2.25 (m, 2H), 2.01 – 1.91 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 174.9, 139.5, 136.7, 135.1, 130.7, 129.6, 128.5, 128.2, 127.6, 126.3, 125.9, 64.7, 49.8, 30.9, 16.0; **IR (neat)**: v 3074, 2945, 1728, 1592, 1569, 1432, 1363, 1216, 1196, 1102, 936, 852, 797, 742 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₀H₁₉O₂Cl₂ 361.0757; found 361.0749.

phenyl (E)-1-styrylcyclobutane-1-carboxylate (3da): A colorless oil, 45.5 mg, 82% yield. Eluent: PE/EA = 15/1. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 7.7 Hz, 2H), 7.40 – 7.30 (m, 4H), 7.26 – 7.18 (m, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.65 (d, *J* = 16.1

Hz, 1H), 6.59 (d, J = 16.1 Hz, 1H), 2.78 (dt, J = 11.7, 8.2 Hz, 2H), 2.39 (dt, J = 11.9, 7.8 Hz, 2H), 2.11 – 1.98 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 151.0, 136.8, 130.6, 129.7, 129.4, 128.6, 127.6, 126.4, 125.7, 121.4, 50.1, 31.0, 16.0; IR (neat): v 2944, 1744, 1592, 1491, 1447, 1186, 1161, 1082, 1068, 964, 740, 688 cm⁻¹; **HRMS** (DART) m/z: $[M+H]^+$ Calcd. for C₁₉H₁₉O₂ 279.1380; found 279.1374.

3-phenylpropyl (E)-1-styrylcyclobutane-1-carboxylate (3ea): A colorless oil, 53.0 mg, 83% yield. Eluent: PE/EA = 15/1. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.3 Hz, 2H), 7.31 (t, J = 7.1 Hz, 2H), 7.28 – 7.11 (m, 6H), 6.53 (d, J =

16.1 Hz, 1H), 6.47 (d, J = 16.1 Hz, 1H), 4.14 (t, J = 6.5 Hz, 2H), 2.68 (t, J = 7.8 Hz, 2H), 2.66 -2.56 (m, 2H), 2.33 – 2.22 (m, 2H), 2.03 – 1.89 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 175.5, 141.1, 136.9, 131.4, 129.0, 128.5, 128.39, 128.37, 127.4, 126.3, 126.0, 64.0, 50.0, 32.1, 30.9, 30.2, 16.0; IR (neat): v 2945, 2858, 1723, 1491, 1453, 1283, 1239, 1218, 1197, 1103, 964, 814, 742, 693 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₂H₂₅O₂ 321.1849; found 321.1843.

ethyl (E)-1-styrylcyclobutane-1-carboxylate (3fa): A colorless oil, 35.0 mg, 76% yield. Eluent: PE/EA = 15/1. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 6.8 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.26 – 7.20 (m, 1H), 6.52 (d, J = 16.1 Hz, 1H), 6.46 (d, J =16.0 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.61 (dt, J = 12.3, 8.6 Hz, 2H), 2.26 (dt, J = 11.3, 7.8 Hz, 2H), 1.99 - 1.89 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.5, 137.0, 131.4, 128.8, 128.5, 127.4, 126.3, 60.8, 49.9, 30.9, 15.9, 14.2; IR (neat): v 2981, 1723, 1447, 1365, 1239, 1199, 1099, 1026, 963, 742 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ Calcd. for C₁₅H₁₉O₂ 231.1380; found 231.1376.

81% yield. Eluent: PE/EA = 15/1. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.3 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.25 – 7.20 (m, 1H), 6.50 (d, *J* = 16.1 Hz, 1H), 6.44 (d, *J* = 16.1 Hz, 1H), 2.56 (dt, *J* = 12.2, 8.2 Hz, 2H), 2.27 – 2.16 (m, 2H), 1.96 – 1.86 (m, 2H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.8, 137.2, 132.0, 128.51, 128.45, 127.3, 126.3, 80.4, 50.7, 30.9, 28.0, 15.8; **IR (neat)**: v 2976, 1718, 1494, 1448, 1391, 1366, 1289, 1250, 1161, 1106, 963, 848, 742 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₁₇H₂₃O₂ 259.1693; found 259.1686.

 $(E)-N,N-dibenzyl-1-styrylcyclobutane-1-carboxamidee (3ha): A yellow oil, 43.4 mg, 57% yield. Eluent: PE/EA = 4/1. ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.33 - 7.19 (m,

13H), 7.13 (d, J = 6.8 Hz, 2H), 6.55 (d, J = 16.2 Hz, 1H), 6.40 (d, J = 16.2 Hz, 1H), 4.53 (s, 2H), 4.27 (s, 2H), 2.87 – 2.74 (m, 2H), 2.25 – 2.14 (m, 2H), 2.10 – 1.94 (m, 1H), 1.90 – 1.76 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 175.7, 137.3, 136.7, 136.3, 132.1, 128.8, 128.6, 128.5, 127.5, 127.43, 127.36, 127.0, 126.2, 50.5, 49.7, 47.3, 32.2, 15.2; **IR (neat)**: v 2940, 2863, 1632, 1494, 1450, 1413, 1361, 1216, 1075, 1028, 965, 744, 694 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₇H₂₈ON 382.2165; found 382.2159.

(E)-N-benzyl-N-methyl-1-styrylcyclobutane-1-carboxamide (3ia): A yellow oil, 39.8 mg, 65% yield. Eluent: PE/EA = 4/1. Note: this compound is a mixture of rotamers in a 2.5:1 ratio. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 11H), 7.25
- 7.20 (m, 2H), 7.14 (d, J = 7.5 Hz, 1H), 6.54 (d, J = 15.2 Hz, 1.8H), 6.41 (d, J = 16.2 Hz, 1H), 4.61
(s, 2H), 4.36 (s, 0.8H), 2.85 (s, 1.2H), 2.80 – 2.73 (m, 2.8H), 2.73 (s, 3H), 2.28 – 2.17 (m, 2.8H), 2.08 – 1.98 (m, 1.4H), 1.89 – 1.78 (m, 1.4H); ¹³C NMR (151 MHz, CDCl₃) δ 175.7 (minor isomer), 175.1, 137.5, 136.9, 136.8 (minor isomer), 136.5 (minor isomer), 132.2 (minor isomer), 131.8, 128.7 (minor isomer), 128.6, 128.1, 128.0 (minor isomer), 127.49 (minor isomer), 127.45, 127.4 (minor isomer), 127.3, 126.23 (minor isomer), 126.16, 52.9 (minor isomer), 51.5, 50.6 (minor isomer), 50.4, 34.8, 33.6 (minor isomer), 32.02 (minor isomer), 31.98, 15.2 (minor isomer), 15.1; IR (neat): v 2935, 1629, 1494, 1448, 1396, 1265, 1069, 1028, 965, 744 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ Calcd. for C₂₁H₂₄ON 306.1852; found 306.1847.

(E)-N-methoxy-N-methyl-1-styrylcyclobutane-1-carboxamide (3ja): A yellow oil, 27.0 mg, 55% yield. Eluent: PE/EA = 4/1. Containing a trace amount of impurity that failed to be separated. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 6.9 Hz, 2H), 7.35 –

7.29 (m, 2H), 7.25 - 7.22 (m, 1H), 6.53 (d, J = 16.0 Hz, 1H), 6.49 (d, J = 16.4 Hz, 1H), 3.60 (s, 3H), 3.17 (s, 3H), 2.64 (td, J = 9.5, 2.7 Hz, 2H), 2.26 – 2.17 (m, 2H), 2.02 – 1.93 (m, 1H), 1.85 – 1.73 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 137.1, 131.8, 128.7, 128.6, 127.4, 126.2, 60.8, 50.4, 31.3, 30.4, 15.7; **IR (neat)**: v 3055, 2039, 2872, 1652, 1494, 1447, 1370, 1181, 998, 966, 747 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₁₅H₂₀O₂N 246.1489; found 246.1489.

(E)-(1-styrylcyclobutyl)(thiomorpholino)methanone (3ka): A colorless oil, 35.0 mg, 61% yield. Eluent: PE/EA = 4/1. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.36 - 7.30 (m, 2H), 7.27 - 7.22 (m, 1H), 6.49 (d, J = 16.0 Hz, 1H), 6.44 (d, 16.4 Hz, 1H), 3.90 (t, J = 5.0 Hz, 2H), 3.49 (t, J = 5.0 Hz, 2H), 2.74 – 2.66 (m, 2H), 2.63 (t, J = 5.0Hz, 2H), 2.48 (t, J = 5.0 Hz, 2H), 2.27 – 2.16 (m, 2H), 2.10 – 1.95 (m, 1H), 1.83 (dtt, J = 11.4, 9.5, 3.9 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 136.7, 132.0, 128.7, 128.2, 127.6, 126.2, 50.3, 48.1, 44.6, 31.9, 27.5, 27.4, 15.1; **IR (acetone)**: v 2915, 1711, 1628, 1448, 1418, 1288, 1252, 1197, 1025, 961, 745, 693 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ Calcd. for C₁₇H₂₂ONS 288.1417; found 288.1411.

(E)-morpholino(1-styrylcyclobutyl)methanone (3la): A colorless oil, 34.1 mg, 63% yield. Eluent: PE/EA = 4/1. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.35 -7.30 (m, 2H), 7.26 - 7.22 (m, 1H), 6.50 (d, J = 16.2 Hz, 1H), 6.45 (d, J = 16.2 Hz, 1H), 3.75 - 3.60 (m, 4H), 3.53 (t, J = 4.8 Hz, 2H), 3.25 (t, J = 4.8 Hz, 2H), 2.76 - 2.64 (m, 2H), 2.27 - 2.15 (m, 2H), 2.08 - 1.97 (m, 1H), 1.90 - 1.81 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 173.8, 136.7, 132.1, 128.7, 128.1, 127.6, 126.2, 67.0, 66.4, 50.1, 46.3, 42.5, 31.9, 15.2; IR (acetone): v 2956, 2852, 1629, 1448, 1423, 1271, 1229, 1112, 1055, 965, 845, 746, 693 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₁₇H₂₂O₂N 272.1645; found 272.1640.

62% yield. Eluent: PE/EA = 4/1. M.p.: 75 – 77 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.0 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.35 – 7.27 (m, 5H), 6.23 (s, 2H), 3.07 – 2.97 (m, 2H), 2.27 – 2.19 (m, 2H), 2.17 – 2.09 (m, 1H), 2.04 – 1.95 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 135.8, 135.7, 134.5, 133.5, 129.8, 128.7, 128.5, 128.3, 126.5, 125.7, 67.2, 27.8, 15.2; **IR** (acetone): v 2958, 2852, 1445, 1139, 1108, 1024, 819, 764, 719 cm⁻¹; **HRMS** (EI) m/z: [M]⁺ Calcd. for C₁₈H₁₈O₂S 298.1022; found 298.1030.

naphthalen-2-ylmethyl (*E*)-3-methyl-1-styrylcyclobutane-1-carboxylate (3na): A colorless oil, 30.6 mg, 43% yield. Eluent: PE/EA = 10/1, *d.r.* = 5:3. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.74 (m, 6.4H), 7.49 – 7.43 (m, 4.8H), 7.38 – 7.28 (m, 6.4H), 7.24 – 7.20 (m, 1.6H), 6.56 (d, *J* = 16.1 Hz, 1H), 6.53 – 6.45 (m, 1.6H), 6.39 (d, *J* = 16.0 Hz, 0.6H), 5.34 (s, 1.2H), 5.31 (s, 2H), 2.86 – 2.73 (m, 1.6H), 2.51 – 2.32 (m, 4.4H), 2.28 – 2.20 (m, 2H), 2.00 – 1.85 (m, 1.6H), 1.10 – 1.06 (m, 4.8H); ¹³C NMR (151 MHz, CDCl₃) δ 175.6 (*minor isomer*), 175.3, 136.9, 133.65 (*minor isomer*), 133.61, 133.2 (*minor isomer*), 133.0, 132.4 (*minor isomer*), 131.0, 129.3, 129.2 (*minor isomer*), 128.54, 128.52 (*minor isomer*), 128.32 (*minor isomer*), 128.30, 128.0 (*minor isomer*), 127.7, 127.5, 127.4 (*minor isomer*), 126.9, 126.34, 126.27 (*minor isomer*), 126.22, 126.15 (*minor isomer*), 125.59, 125.58 (*minor isomer*), 24.2, 22.0 (*minor isomer*), 21.5; **IR (acetone)**: v 2950, 2864, 1724, 1600, 1450, 1220, 1199, 1120, 963, 855, 814, 743 cm⁻¹; **HRMS** (EI) m/z: [M]⁺ Calcd. for C₂₅H₂₄O₂ 356.1771; found 356.1774.

naphthalen-2-ylmethyl (*E*)-1-(4-fluorostyryl)cyclobutane-1-carboxylate (3ab): A colorless oil, 46.8 mg, 65% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.71 (m, 4H), 7.52 – 7.40 (m, 3H), 7.29 (dd, *J* = 8.8, 5.4 Hz, 2H), 6.98 (t, *J* = 8.7 Hz, 2H), 6.45 (d, *J* = 16.0 Hz, 1H), 6.39 (d,

 $J = 16.1 \text{ Hz}, 1\text{H}, 5.33 \text{ (s, 2H)}, 2.71 - 2.58 \text{ (m, 2H)}, 2.27 \text{ (dt}, J = 12.5, 7.9 \text{ Hz}, 2\text{H}), 2.01 - 1.88 \text{ (m, 2H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta 175.2, 162.23 \text{ (d}, J = 246.7 \text{ Hz}), 133.6, 133.1, 133.04, 133.01, 131.0 \text{ (d}, J = 2.8 \text{ Hz}), 128.3, 128.0, 127.9, 127.8, 127.8, 127.7, 127.0, 126.2 \text{ (d}, J = 8.3 \text{ Hz}), 125.6, 115.4 \text{ (d}, J = 21.9 \text{ Hz}), 66.6, 50.0, 30.9, 16.0; {}^{19}\text{F} \text{ NMR} (565 \text{ MHz}, \text{CDCl}_3) \delta -114.7; IR (acetone):$

v 2945, 1724, 1601, 1507, 1225, 1194, 1157, 1091, 964, 854, 812, 745 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₄H₂₂O₂F 361.1598; found 361.1629.

naphthalen-2-ylmethyl (*E*)-1-(4-chlorostyryl)cyclobutane-1-carboxylate (3ac): A colorless oil, 50.4 mg, 67% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.74 (m, 4H), 7.52 – 7.41 (m, 3H), 7.25 (s, 4H), 6.47 (d, *J* = 16.0 Hz, 1H), 6.42 (d, *J* = 16.4 Hz, 1H), 5.33 (s, 2H), 2.65 (dt, *J*

= 11.0, 8.4 Hz, 2H), 2.33 – 2.22 (m, 2H), 1.99 – 1.89 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.1, 135.4, 133.5, 133.1, 133.0, 131.9, 128.7, 128.3, 128.0, 127.9, 127.7, 127.5, 127.1, 126.3, 126.2, 125.6, 66.6, 50.0, 30.9, 16.0; **IR (acetone)**: v 3066, 2934, 2872, 1723, 1489, 1218, 1089, 1012, 965, 855, 811, 764 cm⁻¹; **HRMS** (DART) m/z: [M]⁺ Calcd. for C₂₄H₂₁O₂Cl 376.1225; found 376.1216.

naphthalen-2-ylmethyl (*E*)-1-(4-bromostyryl)cyclobutane-1-carboxylate (3ad): A colorless oil, 57.1 mg, 68% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.73 (m, 4H), 7.50 – 7.42 (m, 3H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.48 (d, *J* = 16.1 Hz, 1H), 6.40 (d, *J* =

16.1 Hz, 1H), 5.33 (s, 2H), 2.71 – 2.59 (m, 2H), 2.33 – 2.21 (m, 2H), 2.00 – 1.90 (m, 2H); ¹³C **NMR** (151 MHz, CDCl₃) δ 175.0, 135.8, 133.5, 133.1, 133.0, 132.0, 131.6, 128.3, 128.0, 127.9, 127.8, 127.7, 127.1, 126.3, 126.2, 125.6, 121.2, 66.6, 50.0, 30.9, 16.0; **IR (acetone)**: v 3055, 2944, 1725, 1487, 1274, 1218, 1195, 1097, 1072, 1008, 965, 855, 813, 747 cm⁻¹; **HRMS** (DART) m/z: [M]⁺ Calcd. for C₂₄H₂₂O₂Br 421.0798; found 421.0806.

naphthalen-2-ylmethyl (*E*)-1-(4-(trifluoromethyl)styryl)cyclobutane -1carboxylate (3ae): A white solid, 50.8 mg, 62% yield. Eluent: PE/EA = 10/1. M.p.: 88 – 90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.73 (m, 4H), 7.56 – 7.40 (m, 7H), 6.59 (d, *J* = 16.1 Hz, 1H), 6.50 (d, *J* = 16.1 Hz, 1H),

5.34 (s, 2H), 2.67 (dt, J = 12.5, 8.3 Hz, 2H), 2.35 – 2.24 (m, 2H), 2.02 – 1.92 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 174.9, 140.4, 134.0, 133.5, 133.14, 133.07, 129.3 (q, J = 32.6 Hz), 128.4,

128.0, 127.9, 127.7, 127.2, 126.5, 126.31, 126.28, 125.7, 125.47 (q, J = 4.0 Hz), 124.2 (q, J = 272.0 Hz), 66.7, 50.1, 30.9, 16.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.4; **IR (acetone)**: v 2946, 1726, 1615, 1508, 1321, 1161, 1116, 1066, 1015, 966, 855, 814, 746 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₅H₂₂O₂F₃ 411.1566; found 411.1548.

naphthalen-2-ylmethyl (*E*)-1-(4-methylstyryl)cyclobutane-1-carboxylate (3af): A colorless oil, 53.4 mg, 75% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.72 (m, 4H), 7.49 – 7.41 (m, 3H), 7.25 (d, *J* = 8.2 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.46 (d, *J* = 16.1 Hz, 1H), 6.43 (d, *J* =

16.1 Hz, 1H), 5.32 (s, 2H), 2.70 – 2.57 (m, 2H), 2.32 (s, 3H), 2.31 – 2.23 (m, 2H), 1.99 – 1.89 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.4, 137.2, 134.1, 133.6, 133.1, 133.0, 130.1, 129.2, 129.0, 128.3, 127.9, 127.6, 126.9, 126.21, 126.17, 126.1, 125.6, 66.5, 50.0, 30.9, 21.1, 16.0; **IR (acetone)**: v 2944, 1724, 1511, 1437, 1511, 1437, 1219, 1195, 1095, 965, 855, 812, 745 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₅H₂₅O₂ 357.1849; found 357.1864.

naphthalen-2-ylmethyl (*E*)-1-(4-(tert-butyl)styryl)cyclobutane -1carboxylate (3ag): A white solid, 66.1 mg, 83% yield. Eluent: PE/EA = 10/1. M.p.: 81 – 83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.70 (m, 4H), 7.51 – 7.40 (m, 3H), 7.39 – 7.24 (m, 4H), 6.51 (d, *J* = 16.1 Hz, 1H), 6.45 (d,

J = 16.1 Hz, 1H), 5.32 (s, 2H), 2.64 (dt, *J* = 12.1, 8.1 Hz, 2H), 2.34 – 2.22 (m, 2H), 2.01 – 1.87 (m, 2H), 1.31 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.4, 150.6, 134.1, 133.6, 133.2, 133.0, 130.4, 129.0, 128.3, 128.0, 127.6, 126.9, 126.2, 126.1, 126.0, 125.6, 125.5, 66.5, 50.0, 34.5, 31.3, 30.9, 16.0; **IR (acetone)**: v 2951, 2915, 1724, 1558, 1456, 1266, 1221, 1098, 967, 856, 817, 741 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₈H₃₁O₂ 399.2319; found 399.2315.

naphthalen-2-ylmethyl (E)-1-(4-methoxystyryl)cyclobutane-1-carboxy

late (3ah): A colorless oil, 64.7 mg, 87% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.73 (m, 4H), 7.50 – 7.41 (m, 3H), 7.32 – 7.25 (m, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.45 (d, J = 16.0 Hz, 1H), 6.35 (d,

J = 16.0 Hz, 1H), 5.32 (s, 2H), 3.79 (s, 3H), 2.70 – 2.57 (m, 2H), 2.34 – 2.21 (m, 2H), 2.01 – 1.86 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.4, 159.1, 133.7, 133.1, 133.0, 129.6, 129.0, 128.6, 128.3, 127.9, 127.6, 127.5, 126.9, 126.2, 126.1, 125.6, 113.9, 66.5, 55.2, 50.0, 31.0, 16.0; **IR** (acetone): v 2960, 2852, 1730, 1652, 1456, 1260, 1088, 1019, 797 cm⁻¹; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd. for C₂₅H₂₄O₃Na 395.1618; found 395.1624.

methyl (*E*)-4-(2-(1-((naphthalen-2-ylmethoxy)carbonyl)cyclobutyl) vinyl)benzoate (3ai): A white solid, 49.6 mg, 62% yield. Eluent: PE/EA = 10/1. M.p.: 98 – 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.5 Hz, 2H), 7.84 – 7.74 (m, 4H), 7.51 – 7.42 (m, 3H), 7.39 (d, *J* = 8.4 Hz,

2H), 6.62 (d, J = 16.1 Hz, 1H), 6.51 (d, J = 16.1 Hz, 1H), 5.34 (s, 2H), 3.90 (s, 3H), 2.72 – 2.60 (m, 2H), 2.35 – 2.24 (m, 2H), 2.01 – 1.92 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 174.9, 166.8, 141.4, 133.9, 133.4, 133.1, 133.0, 129.9, 128.9, 128.34, 128.32, 127.9, 127.7, 127.1, 126.3, 126.23, 126.18, 125.6, 66.7, 52.0, 50.1, 30.9, 16.0; **IR (acetone)**: v 2990, 2937, 2870, 1713, 1603, 1455, 1437, 1268, 1182, 972, 816, 748 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₈H₃₁O₂ 401.1747; found 401.1740.

naphthalen-2-ylmethyl (*E*)-1-(4-cyanostyryl)cyclobutane-1-carboxylate (3aj): A colorless oil, 41.8 mg, 57% yield. Eluent: PE/EA = 6/1. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.75 (m, 4H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.51 – 7.42 (m, 3H), 7.38 (d, *J* = 8.4 Hz, 2H), 6.62 (d, *J* = 16.1 Hz, 1H), 6.46 (d, *J*

= 16.1 Hz, 1H), 5.34 (s, 2H), 2.67 (dt, *J* = 12.3, 8.6 Hz, 2H), 2.35 – 2.23 (m, 2H), 2.03 – 1.93 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 174.7, 141.4, 135.3, 133.4, 133.11, 133.07, 132.3, 128.4, 127.9, 127.7, 127.2, 126.8, 126.34, 126.32, 125.7, 118.9, 110.6, 66.8, 50.1, 30.9, 16.0; **IR (acetone)**: v 2985, 2945, 2224, 1724, 1603, 1282, 1219, 1197, 1099, 967, 857, 815, 748 cm⁻¹; **HRMS** (DART)

m/z: $[M+H]^+$ Calcd. for $C_{25}H_{22}O_2N$ 368.1645; found 368.1652.

naphthalen-2-ylmethyl(E)-1-(3-chlorostyryl)cyclobutane-1-carboxylate (3ak): A colorless oil, 49.5 mg, 66% yield. Eluent: PE/EA = $10/1. ^{1}$ H NMR (400 MHz, CDCl₃) δ 7.85 – 7.75 (m, 4H), 7.52 – 7.40 (m,

3H), 7.34 (s, 1H), 7.22 – 7.15 (m, 3H), 6.51 (d, J = 16.1 Hz, 1H), 6.41 (d, J = 16.1 Hz, 1H), 5.33 (s, 2H), 2.65 (dt, J = 12.1, 8.4 Hz, 2H), 2.33 – 2.21 (m, 2H), 2.01 – 1.89 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.0, 138.8, 134.5, 133.5, 133.1, 133.0, 132.8, 129.7, 128.4, 127.94, 127.92, 127.7, 127.4, 127.1, 126.3, 126.2, 125.6, 124.6, 66.6, 50.0, 30.9, 16.0; **IR (acetone)**: v 3057, 2945, 2867, 1725, 1593, 1565, 1473, 1272, 1196, 1101, 962, 889, 855, 815, 775, 747 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₄H₂₂O₂Cl 377.1303; found 377.1292.

naphthalen-2-ylmethyl(E)-1-(3-methoxystyryl)cyclobutane-1-carboxylate (3al): A light-yellow oil, 47.4 mg, 64% yield. Eluent:PE/EA = 8/1. ¹H NMR (400 MHz, CDCl₃) δ 7.85 - 7.74 (m, 4H), 7.50

- 7.42 (m, 3H), 7.26 - 7.16 (m, 1H), 6.96 (dt, J = 7.6, 1.3 Hz, 1H), 6.89 (t, J = 2.1 Hz, 1H), 6.79 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 6.55 - 6.42 (m, 2H), 5.33 (s, 2H), 3.78 (s, 3H), 2.71 - 2.59 (m, 2H), 2.34 - 2.23 (m, 2H), 2.02 - 1.89 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.3, 159.8, 138.3, 133.6, 133.1, 133.0, 131.5, 129.5, 129.1, 128.3, 128.0, 127.6, 127.0, 126.22, 126.16, 125.6, 119.0, 113.3, 111.5, 66.5, 55.2, 50.0, 30.9, 16.0; **IR (acetone)**: v 3046, 2943, 1724, 1597, 1578, 1453, 1433, 1261, 1192, 1155, 1099, 1045, 964, 814, 746 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₅H₂₅O₃ 373.1798; found 373.1840.

naphthalen-2-ylmethyl (*E*)-1-(2,6-difluorostyryl)cyclobutane -1carboxylate (3am): A colorless oil, 46.2 mg, 61% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.76 (m, 4H), 7.52 – 7.42 (m,

3H), 7.18 – 7.07 (m, 1H), 6.93 – 6.79 (m, 3H), 6.56 (d, J = 16.5 Hz, 1H), 5.34 (s, 2H), 2.72 – 2.59 (m, 2H), 2.32 (dt, J = 12.4, 7.9 Hz, 2H), 2.02 – 1.91 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.0, 160.84 (d, J = 251.4 Hz), 160.80 (d, J = 251.4 Hz), 138 (t, J = 8.1 Hz), 133.6, 133.1 (d, J = 20.7 Hz),

128.3, 127.99, 127.96, 127.9, 127.8, 127.7, 126.9, 126.2, 126.1, 125.5, 115.9, 114.2 (t, J = 16.4 Hz), 111.5 (d, J = 5.6 Hz), 111.4 (d, J = 5.6 Hz), 66.6, 50.9, 30.8, 16.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -113.2; **IR (acetone)**: v 2947, 1727, 1583, 1463, 1264, 1231, 1198, 1103, 997, 972, 815, 778, 746 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₄H₂₁O₂F₂ 379.1504; found 379.1530.

naphthalen-2-ylmethyl (*E*)-1-(2-methylstyryl)cyclobutane-1carboxylate (3an): A colorless oil, 52.7 mg, 74% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.71 (m, 4H), 7.50 – 7.37 (m,

4H), 7.17 – 7.06 (m, 3H), 6.72 (d, J = 16.0 Hz, 1H), 6.36 (d, J = 16.0 Hz, 1H), 5.32 (s, 2H), 2.72 – 2.60 (m, 2H), 2.35 – 2.22 (m, 5H), 2.03 – 1.88 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.3, 136.0, 135.3, 133.6, 133.1, 133.0, 132.6, 130.2, 128.3, 127.9, 127.6, 127.3, 127.1, 127.0, 126.2, 126.1, 126.0, 125.63, 125.59, 66.5, 50.2, 31.0, 19.7, 16.0; **IR (acetone)**: v 2944, 1724, 1601, 1508, 1272, 1189, 1094, 964, 854, 814, 744 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₅H₂₅O₂ 357.1849; found 357.1840.

naphthalen-2-ylmethyl (*E*)-1-(3-fluoro-2-methoxystyryl)cyclobutane -1-carboxylate (3ao): A yellow oil, 56.3 mg, 72% yield. Eluent: PE/EA = 8/1. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 4H), 7.50 – 7.43 (m,

3H), 7.23 – 7.18 (m, 1H), 7.01 – 6.91 (m, 2H), 6.81 (d, J = 16.2 Hz, 1H), 6.54 (d, J = 16.2 Hz, 1H), 5.33 (s, 2H), 3.82 (s, 3H), 2.72 – 2.60 (m, 2H), 2.37 – 2.25 (m, 2H), 2.02 – 1.90 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.2, 155.87 (d, J = 246.2 Hz), 144.98 (d, J = 11.3 Hz), 133.5, 133.3, 133.1, 133.0, 132.04 (d, J = 2.9 Hz), 128.3, 127.9, 127.6, 127.0, 126.25, 126.19, 125.6, 123.6 (d, J = 8.7Hz), 122.9 (d, J = 4.1 Hz), 121.6 (d, J = 3.6 Hz), 115.5 (d, J = 19.6 Hz), 66.6, 61.4 (d, J = 5.6 Hz), 50.3, 30.9, 16.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -131.2. **IR (acetone)**: v 3055, 2937, 1724, 1474, 1430, 1275, 1250, 1208, 1100, 1069, 1004, 972, 855, 813, 775, 744 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₅H₂₄O₃F 391.1704; found 391.1739.

naphthalen-2-ylmethyl (E)-1-(2-(pyridin-3-yl)vinyl)cyclobutane-1-

carboxylate (3ap): A yellow oil, 41.9 mg, 61% yield. Eluent: PE/EA = 6/1. ¹**H** NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.46 (d, J = 5.1 Hz, 1H), 7.87 – 7.74 (m, 4H), 7.65 (dt, J = 8.0, 2.0 Hz, 1H), 7.53 – 7.41 (m, 3H), 7.22 (dd, J = 8.0, 4.8 Hz, 1H), 6.57 (d, J = 16.3 Hz, 1H), 6.47 (d, J = 16.1 Hz, 1H), 5.34 (s, 2H), 2.73 – 2.61 (m, 2H), 2.35 – 2.24 (m, 2H), 2.03 – 1.92 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 174.9, 148.5, 148.3, 133.6, 133.4, 133.13, 133.07, 132.7, 128.4, 127.9, 127.7, 127.2, 126.32, 126.27, 125.70, 125.65, 66.8, 50.1, 30.9, 16.0; **IR (acetone)**: v 3027, 2944, 2850, 1723, 1568, 1413, 1272, 1243, 1191, 1098, 965, 855, 815, 748, 707 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₃H₂₂O₂N 344.1645; found 344.1674.

naphthalen-2-ylmethyl(E)-1-(2-(1-tosyl-1H-indol-3-yl)vinyl)cyclobutane-1-carboxylate (3aq):A yellow oil, 60.0 mg, 52% yield.Eluent:PE/EA = 4/1. 1 H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.3 Hz,

1H), 7.86 – 7.79 (m, 3H), 7.78 – 7.70 (m, 3H), 7.62 (d, J = 7.9 Hz, 1H), 7.55 (s, 1H), 7.52 – 7.40 (m, 3H), 7.35 – 7.26 (m, 1H), 7.23 – 7.11 (m, 3H), 6.6 (d, J = 16.4 Hz, 1H), 6.5 (d, J = 16.4 Hz, 1H), 5.35 (s, 2H), 2.67 (dt, J = 12.3, 8.2 Hz, 2H), 2.40 – 2.21 (m, 5H), 2.03 – 1.91 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.2, 145.0, 135.5, 135.1, 133.5, 133.14, 133.05, 132.6, 129.9, 128.9, 128.4, 127.9, 127.7, 127.2, 126.8, 126.3, 126.2, 125.7, 124.9, 123.7, 123.4, 120.4, 120.1, 119.8, 113.7, 66.7, 50.3, 30.9, 21.5, 16.0; **IR (acetone)**: v 3057, 2937, 1725, 1445, 1372, 1271, 1187, 1173, 1122, 1041, 974, 813, 745 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₃₃H₃₀O₄NS 536.1890; found 536.1890.

naphthalen-2-ylmethyl (*E*)-1-(2-(thiophen-2-yl)vinyl)cyclobutane- 1carboxylate (3ar): A yellow oil, 38.4 mg, 55% yield. Eluent: PE/EA = 12/1. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.74 (m, 4H), 7.52 – 7.41 (m, 3H),

7.15 (d, J = 5.1 Hz, 1H), 6.98 – 6.93 (m, 1H), 6.91 (dd, J = 3.7, 1.2 Hz, 1H), 6.64 (d, J = 15.9 Hz, 1H), 6.35 (d, J = 15.9 Hz, 1H), 5.33 (s, 2H), 2.69 – 2.57 (m, 2H), 2.32 – 2.19 (m, 2H), 2.00 – 1.88 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.1, 142.1, 133.6, 133.2, 133.0, 130.8, 128.3, 128.0, 127.7, 127.3, 126.9, 126.2, 126.2, 125.6, 125.5, 124.1, 122.7, 66.6, 49.9, 30.9, 16.0; **IR (acetone)**: v 3060, 2944, 1726, 1496, 1271, 1196, 1098, 953, 854, 814, 747 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺

Calcd. for $C_{22}H_{21}O_2S$ 349.1257; found 349.1259.

naphthalen-2-ylmethyl (*E*)-1-(2-(naphthalen-2-yl)vinyl)cyclobutane-1-carboxylate (3as): A colorless oil, 53.2 mg, 68% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.72 (m, 7H), 7.66 (s, 1H), 7.59 (d, *J* = 8.6 Hz, 1H), 7.51 – 7.38 (m, 5H), 6.7 (d, *J* = 16.0 Hz, 1H), 6.6

(d, J = 16.0 Hz, 1H), 5.36 (s, 2H), 2.69 (dt, J = 12.3, 8.3 Hz, 2H), 2.34 (dt, J = 12.0, 7.7 Hz, 2H), 2.04 – 1.92 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 134.3, 133.62, 133.58, 133.2, 133.0, 132.9, 131.6, 129.3, 128.3, 128.2, 128.0, 127.9, 127.7, 127.6, 127.1, 126.3, 126.24, 126.21, 126.18, 125.8, 125.7, 123.5, 66.6, 50.2, 31.0, 16.1; **IR (EtOH)**: v 3054, 2944, 1723, 1598, 1507, 1360, 1271, 1217, 1096, 961, 893, 856, 811, 742 cm⁻¹; **HRMS** (DART) m/z: [M]⁺ Calcd. for C₂₈H₂₄O₂ 392.1771; found 392.1759.

naphthalen-2-ylmethyl (*E*)-1-(2-(1H-inden-2-yl)vinyl)cyclobutane-1carboxylate (3at): A colorless oil, 39.0 mg, 55% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 2H), 7.71 (s, 1H), 7.67 (d, *J* = 6.8 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.41 – 7.30 (m, 3H), 7.25 (t, *J* =

7.3 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 6.76 (s, 1H), 5.31 (s, 2H), 3.37 (s, 2H), 2.81 – 2.69 (m, 2H), 2.48 – 2.35 (m, 2H), 2.03 – 1.90 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 175.1, 149.9, 144.5, 143.3, 133.5, 133.1, 133.0, 128.3, 128.0, 127.6, 127.5, 126.9, 126.4, 126.2, 126.2, 125.5, 124.4, 123.6, 120.7, 66.6, 50.2, 38.4, 31.6, 16.4; **IR (acetone)**: v 3055, 2946, 1726, 1603, 1459, 1272, 1226, 1195, 1106, 1093, 855, 814, 751 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₅H₂₃O₂ 355.1693; found 355.1728.

naphthalen-2-ylmethyl 1-(2-phenylallyl)cyclobutane-1-carboxylate (3au):

A colorless oil, 54.1 mg, 76% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.84 - 7.75 (m, 3H), 7.72 (s, 1H), 7.49 - 7.44 (m, 2H), 7.38

- 7.31 (m, 3H), 7.29 - 7.22 (m, 3H), 5.19 (d, *J* = 1.1 Hz, 1H), 5.02 (s, 2H), 4.94 (d, *J* = 1.5 Hz, 1H), 3.04 (s, 2H), 2.50 - 2.40 (m, 2H), 2.04 - 1.95 (m, 2H), 1.94 - 1.85 (m, 2H); ¹³C NMR (151 MHz,

CDCl₃) δ 176.4, 145.5, 141.9, 133.6, 133.1, 133.0, 128.15, 128.08, 127.9, 127.6, 127.3, 127.0, 126.4, 126.2, 126.1, 125.7, 114.4, 66.2, 47.4, 42.9, 30.3, 15.8; **IR (acetone)**: v 3055, 2943, 1725, 1319, 1246, 1191, 1115, 898, 855, 815, 777, 746 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₂₅H₂₅O₂ 357.1849; found 357.1847.

naphthalen-2-ylmethyl cyclobut-1-ene-1-carboxylate (4a): A colorless oil, 41.0 mg, 86% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.86 - 7.79 (m, 4H), 7.51 - 7.44 (m, 3H), 6.86 - 6.78 (m, 1H), 5.33 (s, 2H), 2.79 - 2.70 (m, 2H), 2.46 (td, J = 3.4, 1.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.0, 147.1, 138.4, 133.5, 133.2, 133.1, 128.3, 128.0, 127.7, 127.3, 126.25, 126.20, 125.9, 65.9, 29.1, 27.2; IR (acetone): v 3055, 2928, 1713, 1603, 1313, 1277, 1237, 1108, 907, 855, 814, 748 cm⁻¹; HRMS (DART) m/z: [M]⁺ Calcd. for C₁₂H₁₃O₂ 238.0988; found 238.0985.

benzyl cyclobut-1-ene-1-carboxylate (4b): A colorless oil, 34.3 mg, 91% yield. Eluent: PE/EA = 10/1. The spectroscopic data were consistent with those of previously reported.¹⁹ ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 6.83 – 6.79 (m, 1H), 5.18 (s, 2H), 2.75 (t, *J* = 3.2 Hz, 2H), 2.50 – 2.44 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.0, 147.0, 138.4, 136.1, 128.5, 128.1, 65.7, 29.1, 27.2;

3,5-dichlorobenzyl cyclobut-1-ene-1-carboxylate (4c): A yellow oil, 47.7 mg,
93% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 1H), 7.26 – 7.23 (m, 2H), 6.94 – 6.81 (m, 1H), 5.11 (s, 2H), 2.76 (t, J = 3.3 Hz, 2H), 2.54 – 2.47 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 161.5, 147.9, 139.4, 137.9, 135.1, 128.2, 126.3, 64.0, 29.1, 27.3; IR (neat): v 2973, 2920, 1719, 1570, 1432, 1367, 1312, 1237, 1186, 1112, 851, 798 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ Calcd. for C₁₂H₁₁O₂Cl₂ 257.0131; found 257.0126.

phenyl cyclobut-1-ene-1-carboxylate (4d): A colorless oil, 31.3 mg, 90% yield. Eluent: PE/EA = 10/1. The spectroscopic data were consistent with those of previously reported.¹⁹ ¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, *J* = 7.8 Hz, 2H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.01 – 6.96 (m, 1H), 2.84 (t, *J* = 3.2 Hz 2H), 2.55 (t, *J* = 3.4 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 160.2, 150.5, 148.9, 138.0, 129.3, 125.7, 121.5, 29.2, 27.4;

^{Ph} **3-phenylpropyl cyclobut-1-ene-1-carboxylate (4e)**: A colorless oil, 41.0 mg, 95% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* = 7.6 Hz, 2H), 7.21 – 7.15 (m, 3H), 6.78 – 6.74 (m, 1H), 4.14 (t, *J* = 6.6 Hz, 2H), 2.75 – 2.67 (m, 4H), 2.46 (t, *J* = 3.4 Hz, 2H), 2.05 – 1.93 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.2, 146.3, 141.1, 138.7, 128.33, 128.31, 125.9, 63.3, 32.1, 30.1, 29.0, 27.0; **IR (neat)**: v 2928, 1715, 1603, 1496, 1315, 1238, 1186, 1116, 908, 744 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₁₄H₁₇O₂ 217.1223; found 217.1220.

ethyl cyclobut-1-ene-1-carboxylate (4f): A colorless liquid, 23.8 mg, 94% yield. Eluent: PE/EA = 10/1. The spectroscopic data were consistent with those of previously reported.¹⁹ ¹H NMR (400 MHz, CDCl₃) δ 6.82 – 6.71 (m, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 2.73 (t, *J* = 3.3 Hz, 2H), 2.46 (t, *J* = 3.4 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.4, 146.2, 138.9, 60.1, 29.1, 27.0, 14.3.

 $+ \underbrace{tert-butyl cyclobut-1-ene-1-carboxylate (4g): A colorless liquid, 26.5 mg, 86\% yield.}_{Eluent: PE/EA = 10/1. The spectroscopic data were consistent with those of previously reported.¹⁹ ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 6.69 – 6.64 (m, 1H), 2.68 (t, *J* = 3.2 Hz, 2H), 2.44 – 2.38 (m, 2H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 161.9, 144.9, 140.4, 80.2, 29.1, 28.1, 26.4.

 $\begin{array}{c} \text{Bn}_{2}\text{N}, \textbf{N-dibenzylcyclobut-1-ene-1-carboxamide (4h): A yellow oil, 40.0 mg, 72\% yield.} \\ \text{Eluent: PE/EA} = 4/1. \ ^{1}\text{H NMR} (400 \text{ MHz, CDCl}_{3}) \ \delta \ 7.43 - 7.27 \ (\text{m, 6H}), 7.26 - 7.22 \ (\text{m, 2H}), 7.18 \ (\text{d}, J = 7.5 \text{ Hz}, 2\text{H}), 6.44 - 6.34 \ (\text{m, 1H}), 4.61 \ (\text{s, 2H}), 4.58 \ (\text{s, 2H}), 2.87 - 2.81 \ (\text{m, 2H}), 2.46 - 2.39 \ (\text{m, 2H}); \ ^{13}\text{C NMR} (151 \text{ MHz, CDCl}_{3}) \ \delta \ 164.3, 141.6, 140.6, 136.9, 136.7, 128.8, \end{array}$

128.5, 128.4, 127.5, 127.3, 126.5, 49.9, 47.9, 31.6, 27.0; **IR (neat)**: v 2925, 1711, 1624, 1581, 1452, 1421, 1360, 1247, 1077, 954, 737 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₁₉H₂₀ON 278.1539; found 278.1535.

^{Ph} N-benzyl-*N*-methylcyclobut-1-ene-1-carboxamide (4i): A yellow oil, 29.8 mg, 74% yield. Eluent: PE/EA = 4/1. *Note*: this compound is a mixture of rotamers in a 1:1 ratio. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 8H), 7.19 (d, *J* = 7.5 Hz, 2H), 6.55 – 6.43 (m, 1H), 6.40 – 6.26 (m, 1H), 4.71 (s, 2H), 4.63 (s, 2H), 3.06 (s, 3H), 2.94 (s, 3H), 2.88 (t, *J* = 3.3 Hz, 2H), 2.82 (t, *J* = 3.3 Hz, 2H), 2.48 (t, *J* = 3.6 Hz, 2H), 2.42 (t, *J* = 3.4 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 164.6, 163.6, 141.8, 140.8, 137.1, 136.9, 128.8, 128.6, 128.1, 127.5, 127.3, 126.4, 53.6, 51.1, 35.1, 33.6, 31.6, 27.1, 27.0; **IR (neat)**: v 2928, 2841, 1709, 1623, 1581, 1401, 1359, 1220, 1074, 738 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₁₃H₁₆ON 202.1226; found 202.1224.

 $\frac{N-\text{methoxy-}N-\text{methylcyclobut-1-ene-1-carboxamide (4j): A colorless liquid, 24.8 mg, 88% yield. Eluent: PE/EA = 4/1. ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 6.69 - 6.64 (m, 1H), 3.70 (s, 3H), 3.24 (s, 3H), 2.84 - 2.79 (m, 2H), 2.52 - 2.45 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.8, 144.7, 139.3, 61.4, 32.5, 30.5, 27.5; IR (neat): v 2933, 1634, 1585, 1417, 1381, 1261, 1185, 989, 950, 915, 851 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ Calcd. for C₇H₁₂O₂N 142.0863; found 142.0880.

 $\begin{array}{l} \textbf{cyclobut-1-en-1-yl(thiomorpholino)methanone (4k): A yellow oil, 31.1 mg, 85\% \\ yield. Eluent: PE/EA = 4/1. ^{1}H NMR (400 MHz, CDCl_3) \delta 6.44 - 6.38 (m, 1H), 3.96 - 3.88 (m, 4H), 2.86 - 2.81 (m, 2H), 2.67 - 2.62 (m, 4H), 2.50 (t, <math>J = 3.4$ Hz, 2H); ^{13}C NMR (151 MHz, CDCl_3) δ 162.8, 140.6, 48.4, 44.3, 31.7, 27.3; IR (neat): v 2948, 2919, 1616, 1581, 1457, 1427, 1253, 1118, 1126, 959, 839 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ Calcd. for C₉H₁₄ONS 184.0791; found 184.0804. \\ \end{array}

cyclobut-1-en-1-yl(morpholino)methanone (41): A yellow oil, 26.0 mg, 78% yield.

Eluent: PE/EA = 4/1. ¹**H NMR** (400 MHz, CDCl₃) δ 6.46 – 6.39 (m, 1H), 3.72 – 3.66 (m, 8H), 2.87 – 2.81 (m, 2H), 2.52 – 2.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 141.0, 140.5, 66.8, 46.2, 41.9, 31.6, 27.4; **IR (neat)**: v 2953, 2920, 2849, 1615, 1583, 1429, 1279, 1249, 1111, 1026, 913, 832 cm⁻¹; **HRMS** (DART) m/z: [M+H]⁺ Calcd. for C₉H₁₄O₂N 168.1019; found 168.1017.

(cyclobut-1-en-1-ylsulfonyl)benzene (4m): A colorless oil, 31.9 mg, 82% yield.
Eluent: PE/EA = 3/1. ¹H NMR (400 MHz, CDCl₃) δ 7.94 - 7.88 (m, 2H), 7.68 - 7.62 (m, 1H), 7.60 - 7.53 (m, 2H), 6.78 - 6.57 (m, 1H), 2.81 - 2.74 (m, 2H), 2.56 - 2.51 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 144.7, 143.6, 138.8, 133.5, 129.2, 127.9, 29.9, 26.9; IR (neat):
v 2933, 1622, 1477, 1302, 1149, 1120, 1078, 866, 757 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd. for C₁₀H₁₀O₂S 194.0396; found 194.0404.

naphthalen-2-ylmethyl 3-methylcyclobut-1-ene-1-carboxylate (4n): A colorless oil, 27.8 mg, 55% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.82 (m, 4H), 7.50 – 7.46 (m, 3H), 6.86 (d, J = 1.2

Hz, 1H), 5.33 (s, 2H), 2.90 (dd, J = 13.2, 4.3 Hz, 1H), 2.86 – 2.79 (m, 1H), 2.23 (dd, J = 13.2, 1.5 Hz, 1H), 1.18 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.5, 152.0, 136.3, 133.4, 133.14, 133.06, 128.3, 127.9, 127.7, 127.3, 126.22, 126.18, 125.9, 65.9, 36.4, 34.9, 18.1; **IR (neat)**: v 2956, 1716, 1604, 1452, 1372, 1274, 1235, 1145, 893, 855, 747 cm⁻¹; **HRMS** (EI) m/z: [M]⁺ Calcd. for C₁₇H₁₆O₂ 252.1145; found 252.1148.

cyclobutyl(naphthalen-2-yl)methanone (40): A colorless oil, 32.0 mg, 76%
yield. Eluent: PE/EA = 10/1. The spectroscopic data were consistent with those of previously reported.²⁰ ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.97 (dd, J = 18.7, 8.3 Hz, 2H), 7.91 - 7.83 (m, 2H), 7.63 - 7.50 (m, 2H), 4.23 - 4.10 (m, 1H), 2.56 - 2.43 (m, 2H), 2.42 - 2.32 (m, 2H), 2.20 - 2.06 (m, 1H), 2.01 - 1.90 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 201.0, 135.5, 133.0, 132.6, 129.8, 129.5, 128.4, 128.3, 127.7, 126.6, 124.2, 42.3, 25.2, 18.2;

methyl 3-(4-fluorophenyl)cyclobut-2-ene-1-carboxylate (4p): A colorless oil,

36.3 mg, 88% yield. Eluent: PE/EA = 10/1. The spectroscopic data were consistent with those of previously reported.⁵ ¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.05 – 6.99 (m, 2H), 6.21 (d, *J* = 1.6 Hz, 1H), 3.72 (s, 3H), 3.66 – 3.63 (m, 1H), 3.05 (dd, *J* = 13.0, 4.7 Hz, 1H), 2.98 (dd, *J* = 13.0, 2.2 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 173.8, 162.7 (d, *J* = 248.3 Hz), 147.1, 130.1 (d, *J* = 3.5 Hz), 126.5 (d, *J* = 8.7 Hz), 123.9 (d, *J* = 3.4 Hz), 115.3 (d, *J* = 22.1 Hz), 51.8, 41.1, 32.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -112.6.

12. NMR Spectra

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

110 100 90 f1 (ppm) 70 60 50 240 230 220 210 200 190 180 170 160 150 140 130 120 80 50 40 30 20 10 0 -10 -20 -30 -40 -5

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 50 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

7,410 7,339 7,332 7,332 7,259 7,7259 7,7256 7,7256 7,7256 7,7256 7,7256 7,7169 7,7169 7,7140 7,7149

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

150 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 50 80 70 50 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

150 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 50 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 f1 (ppm) 50 -20 -30 -40 -5 -10

 7.392

 7.3738

 7.3736

 7.3736

 7.3736

 7.3736

 7.336

 7.336

 7.336

 7.336

 7.336

 7.336

 7.336

 7.336

 7.338

 7.338

 7.3323

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3328

 7.3338

 7.3405

 7.3406

 7.3406

 7.3406

 7.3406

50 240 230 220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

f1 (ppm)
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>
 -10 -20 -30 -40 -5

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 fl (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

150 240 230 220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

$\begin{array}{c} 7.825\\ 7.7825\\ 7.7825\\ 7.7825\\ 7.7825\\ 7.7862\\ 7.7862\\ 7.7862\\ 7.7862\\ 7.7862\\ 7.7862\\ 7.7862\\ 7.7862\\ 7.7862\\ 7.7866\\ 7.7866\\ 7.7866\\ 7.7866\\ 7.7866\\ 7.7866\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.71916\\ 7.72255\\ 7.7255\\ 7$

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

150 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 fl (ppm)

50 240 230 220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

 7.826

 7.773

 7.773

 7.773

 7.773

 7.773

 7.774

 7.774

 7.7491

 7.7450

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7451

 7.7453

 7.7453

 7.7453

 7.7453

 7.7453

 7.7453

 7.7453

 7.7453

 7.7453

 7.7453

 7.7463

 7.7463

 7.7219

50 240 230 220 210 200 190 180 170 160 150 140 130 120 f1 (ppm) -10 -20 -30 -40 -5

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 fl (ppm)

150 240 230 220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 f1 (ppm) -10 -20 -30 -40 -5

^{150 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -2} f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 50 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

S113

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 1 50 40 30 20 10 0 -10 -20 -30 -40

100 90 f1 (ppm) 50 240 230 220 210 200 190 180 170 160 150 140 130 120 -5 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 110

110 100 90 f1 (ppm) 50 240 230 220 210 200 190 180 170 160 150 140 130 120 20 -30 -5 80 70 60 50 40 30 10 0 -10 -20 -40

110 100 90 f1 (ppm) 50 240 230 220 210 200 190 180 170 160 150 140 130 120 30 20 -30 80 70 60 50 40 10 0 -10 -20 -40 -5

150 240 250 220 210 200 190 180 170 180 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

150 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

100 90 f1 (ppm) 50 240 230 220 210 200 190 180 170 160 150 140 130 120 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 110

100 90 f1 (ppm) 50 240 230 220 210 200 190 180 170 160 150 140 130 120 80 70 60 1 50 40 30 20 10 0 -10 -20 -30 -40 -5 110

150 240 250 250 250 200 190 180 170 180 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

150 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

f1 (ppm) -10

fl (ppm) 50 240 230 220 210 200 190 180 170 160 150 140 130 120 -30 -5 -10 -20 -40

100 90 f1 (ppm) 50 240 230 220 210 200 190 180 170 160 150 140 130 120 80 70 60 1 50 40 30 20 10 0 -10 -20 -30 -40 -5 110

150 240 230 220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -240 fl (ppm)

^{50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5} f1 (ppm)

 $\begin{array}{c} 7.487\\ 7.463\\ 7.463\\ 7.463\\ 7.463\\ 7.463\\ 7.402\\ 7.402\\ 7.3353\\ 7.402\\ 7.3353\\ 7.2305\\ 7.2305\\ 7.23353\\ 7.23352\\$

110 100 f1 (ppm) 50 240 230 220 210 200 190 180 170 160 150 140 130 -10 -20 -30 -40 -5

S136

13. Reference

 B. D. Schwartz, A. P. Smyth, P. E. Nashar, M. G. Gardiner and L. R. Malins, Investigating Bicyclobutane–Triazolinedione Cycloadditions as a Tool for Peptide Modification, *Org. Lett.*, 2022, 24, 1268-1273.

2) H. Wang, H. Shao, A. Das, S. Dutta, H. T. Chan, C. Daniliuc, K. N. Houk and F. Glorius, Dearomative ring expansion of thiophenes by bicyclobutane insertion, *Science*, 2023, **381**, 75-81.

3) H. Gao, L. Guo, C. Shi, Y. Zhu, C. Yang and W. Xia, Transition Metal-Free Radical α-Oxy C-H Cyclobutylation via Photoinduced Hydrogen Atom Transfer, *Adv. Synth. Catal.*, 2022, **364**, 2140-2145.

4) D. Ni, S. Hu, X. Tan, Y. Yu, Z. Li and L. Deng, Intermolecular Formal Cycloaddition of Indoles with Bicyclo[1.1.0]butanes by Lewis Acid Catalysis, *Angew. Chem. Int. Ed.*, 2023, **62**, e202308606-e202308606.

5) S.-L. Lin, Y.-H. Chen, H.-H. Liu, S.-H. Xiang and B. Tan, Enantioselective Synthesis of Chiral Cyclobutenes Enabled by Bronsted Acid-Catalyzed Isomerization of BCBs, *J. Am. Chem. Soc.*, 2023, **145**, 21152-21158.

6) R. Guo, Y.-C. Chang, L. Herter, C. Salome, S. E. Braley, T. C. Fessard and M. K. Brown, Strain-Release $[2\pi + 2\sigma]$ Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer, *J. Am. Chem. Soc.*, 2022, **144**, 7988-7994.

7) S. Yu, A. Noble, R. B. Bedford and V. K. Aggarwal, Methylenespiro[2.3]hexanes via Nickel-Catalyzed Cyclopropanations with [1.1.1]Propellane, *J. Am. Chem. Soc.*, 2019, **141**, 20325-20334.

8) (a) J.-L. Tu, W. Tang, S.-H. He, M. Su and F. Liu, Acceptorless dehydrogenative amination of alkenes for the synthesis of *N*-heterocycles, *Sci. China Chem.*, 2022, 65, 1330-1337; (b) X. Sun, J. Chen and T. Ritter, Catalytic dehydrogenative decarboxyolefination of carboxylic acids, *Nat. Chem.*, 2018, 10, 1229-1233; (c) K. C. Cartwright, E. Joseph, C. G. Comadoll and J. A. Tunge, Photoredox/Cobalt Dual-Catalyzed Decarboxylative Elimination of Carboxylic Acids: Development and Mechanistic Insight, *Chem. Eur. J.*, 2020, 26, 12454-12471.

9) X.-Y. Zhang, C. Ning, B. Mao, Y. Wei and M. Shi, A visible-light mediated ring opening

reaction of alkylidenecyclopropanes for the generation of homopropargyl radicals, *Chem. Sci.*, 2021, **12**, 9088-9095.

10) S. Miki, S.-i. Matsumura, T. Ohno and Z.-i. Yoshida, Co(II)porphyrin catalyzed isomerization of bicyclobutanecarbonitrile, *Tetrahedron Lett.*, 1986, **27**, 3669-3672.

11) Y.-H. Yao, H.-Y. Yang, M. Chen, F. Wu, X.-X. Xu and Z.-H. Guan, Asymmetric Markovnikov Hydroaminocarbonylation of Alkenes Enabled by Palladium-Monodentate Phosphoramidite Catalysis, *J. Am. Chem. Soc.*, 2021, **143**, 85-91.

12) H. Cao, Y. Kuang, X. Shi, K. L. Wong, B. B. Tan, J. M. C. Kwan, X. Liu and J. Wu, Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes, *Nat. Commun.*, 2020, **11**, 1956.

13) E. Bergamaschi, V. J. Mayerhofer and C. J. Teskey, Light-Driven Cobalt Hydride Catalyzed Hydroarylation of Styrenes, *ACS Catal.*, 2022, **12**, 14806-14811.

14) X. Wu, W. Hao, K.-Y. Ye, B. Jiang, G. Pombar, Z. Song and S. Lin, Ti-Catalyzed Radical Alkylation of Secondary and Tertiary Alkyl Chlorides Using Michael Acceptors, *J. Am. Chem. Soc.*, 2018, **140**, 14836-14843.

15) M. Ociepa, A. J. Wierzba, J. Turkowska and D. Gryko, Polarity-Reversal Strategy for the Functionalization of Electrophilic Strained Molecules via Light-Driven Cobalt Catalysis, *J. Am. Chem. Soc.*, 2020, **142**, 5355-5361.

16) T. Pinkert, M. Das, M. L. Schrader and F. Glorius, Use of Strain-Release for the Diastereoselective Construction of Quaternary Carbon Centers, *J. Am. Chem. Soc.*, 2021, **143**, 7648-7654.

17) P.-F. Chen, D.-S. Li, W.-T. Ou, F. Xue and H.-P. Deng, 2-Isopropylthioxanthone-Catalyzed Divergent Functionalization of Bicyclo[1.1.0]butanes under Visible-Light Irradiation, *Org. Lett.*, 2023, **25**, 6184-6188.

18) K. J. Woelk, K. Dhake, N. D. Schley and D. C. Leitch, Enolate addition to bicyclobutanes enables expedient access to 2-oxo-bicyclohexane scaffolds, *Chem. Commun.*, 2023, **59**, 13847-13850.

19) Y.-J. Chen, T.-J. Hu, C.-G. Feng and G.-Q. Lin, Synthesis of chiral cyclobutanes via rhodium/diene-catalyzed asymmetric 1,4-addition: a dramatic ligand effect on the

diastereoselectivity, Chem. Commun., 2015, 51, 8773-8776.

20) Y.-J. Wu, C. Ma, J.-F. Qiao, X.-Y. Cheng and Y.-F. Liang, Nickel-catalysed highly regioselective synthesis of β -acyl naphthalenes under reductive conditions, *Chem. Commun.*, 2024, **60**, 5723-5726.