Supporting Information

Visible-light induced three component radical cascade 1,2dialkylation of alkenes to access alcohols

Yu-Zhao Wang,^{†,a} Di-Di Tang,^{†,a,b} Han-Yue Zhang,^a Xiao-Yue Ma,^a De-Hua Xing,^a Chenjiang Liu,^{*b} Yu Xia^{*b} and Yan Li^{*a} ^aSchool of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China. ^bUrumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China. Email: pxylej@126.com; 18509487642@163.com; liyann@sdfmu.edu.cn

Table of Contents

1. General information	2
2. General procedure for the synthesis of 4	2
3. Optimization of the reaction conditions	3
4. Scale-up reaction and synthetic applications	7
5. Cyclic voltammetry measurements	8
6. Mechanism studies	10
7. Proposed mechanism via RRPCO process	12
8. Characterization data of compounds 4	13
9. Copies of NMR spectra	42

1. General information

¹H NMR spectra were recorded on a Bruker AVANCE III 800 spectrometer with 800 MHz frequencies, and ¹³C NMR spectra were recorded on a Bruker AVANCE III 800 spectrometer with 200 MHz frequencies. The chemical shifts of ¹H NMR spectra in CDCl₃ were determined with Si(CH₃)₄ as the internal standard ($\delta = 0.0$ ppm). The chemical shifts in ¹³C NMR spectra were determined based on the chemical shift of CDCl₃ ($\delta = 77.0$ ppm). Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), td (triplet of doublet) or m (multiplet). Deuterated solvents were purchased from Cambridge Isotope Laboratories. HRMS spectra were measured using a Q-TOF instrument equipped with an ESI source.

A 40 W Kessil blue LED lamp (440 nm) was used as the light source. The distance of the tube from the light source is 4–5 cm.

Unless otherwise noted, the chemicals are either commercially available or known compounds that can be prepared following reported procedures. All the solvents are anhydrous or of analytical grade and are used without further purification. Analytical TLC was performed with silica gel GF254 plates, and 200–300 mesh silica gel was employed for column chromatography.

2. General procedure for the synthesis of 4

Procedure A: 1 and **2** are solid.

 Cs_2CO_3 (0.4 mmol, 2.0 equiv.), 4CzIPN (5.0 mol%), vinylarenes 1 (0.3 mmol, 1.5 equiv.), APEs 2 (0.2 mmol, 1.0 equiv.) and aldehyde 3 (0.3 mmol, 1.5 equiv.) were added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and rubber stopper, the tube was evacuated and backfilled with argon (repeated three times). Then, DMF (2.0 mL) was added to the tube, and the reaction mixture was irradiated with a 40 W kessil blue LED lamp (440 nm, 75% intensity) at ambient temperature for 13 h. After completion of the reaction, the reaction mixture was treated with HCl (1 M,

2 mL), extracted into EtOAc (3×10 mL) and washed with water and brine (20 mL). Then organic phase was combined, dried with Na₂SO₄, filtered, and concentrated in vacuo. And the residue was purified with chromatography column on silica gel (eluting with PE /EA) to afford products **4**.

Procedure B: 1 and 2 are liquid.

 Cs_2CO_3 (0.4 mmol, 2.0 equiv.) and 4CzIPN (5.0 mol%) were added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and rubber stopper, the tube was evacuated and backfilled with argon (repeated three times). Vinylarenes 1 (0.3 mmol, 1.5 equiv.), APEs 2 (0.2 mmol, 1.0 equiv.) and aldehyde 3 (0.3 mmol, 1.5 equiv.) were added into the tube. Then, DMF (2.0 mL) was added to the tube, and the reaction mixture was irradiated with a 40 W kessil blue LED lamp (440 nm, 75% intensity) at ambient temperature for 13 h. After completion of the reaction, the reaction mixture was treated with HCl (1 M, 2 mL), extracted into EtOAc (3×10 mL) and washed with water and brine (20 mL). Then the organic phase was combined, dried with Na₂SO₄, filtered, and concentrated in vacuo. And the residue was purified with chromatography column on silica gel (eluting with PE/EA) to afford products 4.

Figure S1. Reaction setup

3. Optimization of the reaction conditions

Table S1. Screen of solvent

entry	Solvent	yield (%)
1	DMF	81%
2	DCE	43%
3	DCM	37%
4	1,4-dioxane	39%
5	DMA	62%
6	MeOH	trace
7	NMP	65%
8	THF	38%
9	DMSO	69%

Reaction conditions: **1a** (1.5 equiv., 0.3 mmol), **2a** (0.2 mmol), **3a** (1.5 equiv., 0.3 mmol), 4CzIPN (5.0 mol%), Cs_2CO_3 (2.0 equiv., 0.4 mmol), solvent (2.0 mL), 40W kessil blue LED (440 nm, 75% intensity), room temperature, 13 h, under an argon atmosphere. Isolated yield.

Table S2. Screen of photocatalyst

F ₃ C	$\Rightarrow + + + + + + + + + + + + + + + + + + +$	5.0 mol%) (2.0 equiv.) , 13 h, blue LEDs
1a	2a 3a	F ₃ C 4a
entry	Photocatalyst	yield (%)
1	PC-1	81%
2	PC-2	75%
3	PC-3	20%
4	PC-4	22%
5	PC-5	48%
6	PC-6	NR

Reaction conditions: **1a** (1.5 equiv., 0.3 mmol), **2a** (0.2 mmol), **3a** (1.5 equiv., 0.3 mmol), PC (5.0 mol%), Cs_2CO_3 (2.0 equiv., 0.4 mmol), DMF (2.0 mL), 40W kessil blue LED (440 nm, 75% intensity), room temperature, 13 h, under an argon atmosphere. isolated yield.

Table S3.Screen of base				
F ₃ C	+ Bpin +	$Ph H \overline{D}$	4CzIPN (5.0 mol%) base (2.0 equiv.) MF, Ar, rt, 13 h, blue LEI	Ph OH
1a	2a	3a		F ₃ C 4a
entry		Base		yield (%)
1		NaOMe	e	61%
2		NaOH		76%
3		K ₃ PO ₄		72%
4	DM	IAP (30 n	nol%)	trace
5	PF	Ph ₃ (30 m	ol%)	trace
6	DABCO (30 mol%)		ND	
7	'BuOK		ND	
8	'BuONa		ND	
9	Cs ₂ CO ₃		81%	
10	K ₂ CO ₃ 33%		33%	
11	Na ₂ CO ₃ 42%		42%	
12	NaHCO ₃ 69%		69%	
13	CH ₃ COONa 32%		32%	
14		morpholine 43%		43%
15		Pyrrolidi	ne	trace
16	,	2,6-Lutid	ine	69%
17	none 15%			

Reaction conditions: **1a** (1.5 equiv., 0.3 mmol), **2a** (0.2 mmol), **3a** (1.5 equiv., 0.3 mmol), 4CzIPN (5.0 mol%), base (2.0 equiv., 0.4 mmol), DMF (2.0 mL), 40W kessil blue LED (440 nm, 75% intensity), room temperature, 13 h, under an argon atmosphere. isolated yield.

F ₃ C 1a	+ Bpin O 4CzIPN + Ph H <u>base (2</u> DMF, Ar, rt 2a 3a	(5.0 mol%) 2.0equiv.) ;, blue LEDs F ₃ C 4a
entry	Time	yield (%)
1	6 h	53%
2	10 h	70%
3	13 h	81%
4	15 h	63%

Table S4. Screen of reaction time

Reaction conditions: **1a** (1.5 equiv., 0.3 mmol), **2a** (0.2 mmol), **3a** (1.5 equiv., 0.3 mmol), 4CzIPN (5.0 mol%), Cs₂CO₃ (2.0 equiv., 0.4 mmol), DMF (2.0 mL), 40W kessil blue LED (440 nm, 75% intensity), room temperature, under an argon atmosphere. isolated yield.

2	440 nm	81%
3	456 nm	44%
4	25%	47%
5	50%	71%
6	75%	81%
7	100%	72%

Reaction conditions: **1a** (1.5 equiv., 0.3 mmol), **2a** (0.2 mmol), **3a** (1.5 equiv., 0.3 mmol), 4CzIPN (5.0 mol%), Cs_2CO_3 (2.0 equiv., 0.4 mmol), DMF (2.0 mL), 40W kessil blue LED (440 nm, 75% intensity), room temperature, 13 h, under an argon atmosphere. isolated yield.

Table So. Scieen of failo		
F ₃ C 1a (X equiv.)	+ Bpin + O + Cs ₂ CO ₃ (Ph H <u>DMF</u> , Ar, rt, 12 2a 3a (Y equiv.)	IPN (Z equiv.) 3 h, blue LEDs
		F ₃ C 4a
entry	variation	yield (%)
1	1 (1.0 equiv.)	64%
2	1 (1.5 equiv.)	81%
3	1 (2.0 equiv.)	77%
4	3 (1.0 equiv.)	66%
5	3 (1.5 equiv.)	81%
6	3 (2.0 equiv.)	56%
7	4CzIPN (1.0 mol%)	58%
8	4CzIPN (2.0 mol%)	68%
9	4CzIPN (5.0 mol%)	81%
10	DMF (0.5 mL)	67%
11	DMF (1.0 mL)	60%
12	DMF (1.5 mL)	64%
13	DMF (2.0 mL)	81%
14	Cs_2CO_3 (1.0 equiv.)	59%
15	Cs_2CO_3 (1.5 equiv.)	58%
16	Cs ₂ CO ₃ (2.0 equiv.)	81%
17	Cs_2CO_3 (2.5 equiv.)	64%
18	Cs ₂ CO ₃ (3.0 equiv.)	62%

Table S6. Screen of ratio

Reaction conditions: **1a** (X equiv.), **2a** (0.2 mmol), **3a** (Y equiv.), 4CzIPN, Cs₂CO₃ (Z equiv.), DMF, 40W kessil blue LED (440 nm, 75% intensity), room temperature, 13 h, under an argon atmosphere. isolated yield.

Table S7. Unsuccessful substrates

4. Scale-up reaction and synthetic applications

4.1 Gram-scale experiment:

Cs₂CO₃ (12.0 mmol, 2.0 equiv.) and 4CzIPN (5.0 mol%) were added into a 100 mL oven-dried glass flask equipped with a magnetic stirring bar and rubber stopper, the flask was evacuated and backfilled with argon (repeated three times). Vinyl arenes **1a** (9.0 mmol, 1.5 equiv.), cyclohexylboronic acid pinacol ester **2a** (6.0 mmol, 1.0 equiv.) and benzaldehyde **3a** (9.0 mmol, 1.5 equiv.) were added into the flask. Then, DMF (30 mL) was added to the flask, and the reaction mixture was irradiated with 2 \Re 40 W kessil blue LED lamp (440 nm, 75% intensity) at ambient temperature for 36 h. After completion of the reaction, the reaction mixture was treated with HCl (1 M, 15 mL), extracted into EtOAc (3×20 mL) and washed with water and brine (20 mL). Then the organic phase was combined, dried with Na₂SO₄, filtered, and concentrated in vacuo. And the residue was purified with chromatography column on silica gel (eluting with PE /EA) to afford products **4** in 72% yield (1.56g).

4.2 Three-component 1,2-alkylbenzoylation for the synthesis of 5:

 Cs_2CO_3 (0.4 mmol, 2.0 equiv.) and 4CzIPN (5.0 mol%) were added into a 15 mL ovendried glass tube equipped with a magnetic stirring bar and rubber stopper, the tube was evacuated and backfilled with argon (repeated three times). Vinylarenes 1 (0.3 mmol, 1.5 equiv.), APEs 2 (0.2 mmol, 1.0 equiv.) and aldehyde 3 (0.3 mmol, 1.5 equiv.) were added into the tube. Then, DMF (2.0 mL) was added to the tube, and the reaction mixture was irradiated with a 40 W kessil blue LED lamp (440 nm, 75% intensity) at ambient temperature for 13 h. After completion of the reaction, the reaction mixture was treated with HCl (1 M, 2 mL) and extracted into EtOAc (3×10 mL). The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was removed under reduced pressure. Then DCM (2 mL) and DMP (1.2 equiv., 0.24 mmol) were added in turn under N_2 flow. The mixture was allowed to react at room temperature for approximately 2.5 h. After completion, the mixture was evaporated to dryness under reduced pressure and then the resulting residue was purified by column chromatography on silica gel to afford the desired product **5**.

5. Cyclic voltammetry measurements

Determination of the potential of substrates was performed by cyclic voltammetry using a CHI760E potentiostation. Cyclic voltammetry (CV) measurement was conducted in a 40 mL glass vial fitted with a glassy carbon working electrode (3 mm in diameter), a saturated calomel reference electrode, and a platinum wire counter electrode.

DMF (40 mL) containing nBu_4NBF_4 (4.0 mmol), CyBpin (0.032 mmol) and Cs₂CO₃ (2.0 equiv., 0.064 mmol) were poured into the electrochemical cell and stirred for 5 min. The scan rate is 100 mV/s, ranging from 0 V to 2.0 V.

CV plotting convention	Solvent Electrolyte	
IUPAC	DMF	0.1 M <i>n</i> -Bu ₄ NBF ₄
Working electrode	Counter electrode	Reference electrode
glassy carbon electrode	platinum electrode	saturated calomel electrode
	Analyte (0.1M)	
	CyBpin + Cs ₂ CO ₃	
Starting point	Direction of scan	Solvent deoxygenation
0 (V)	positive	blow nitrogen to solvent
	Polishing method	
8-shaped grinding	g on sandpaper with polishi	ng powder and water
	Polishing material	
ixture of cerium oxide, alumi	na, iron oxide, silicon oxide	, zirconium oxide, chromium oxide

Table S8. Information about cyclic voltammetry experiments

Figure S2. Cyclic voltammogram of $Cs_2CO_3+CyBpin$ (0.8 mM) in DMF, $E_{1/2}^{red} = +1.18 V vs SCE$.

6. Mechanism studies

6.1 TEMPO trapping experiment

 Cs_2CO_3 (0.4 mmol, 2.0 equiv.), TEMPO (3.0 equiv., 0.6 mmol) and 4CzIPN (5.0 mol%) were added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and rubber stopper, the tube was evacuated and backfilled with argon (repeated three times). Styrene **1a** (0.3 mmol, 1.5 equiv.), APEs **2a** (0.2 mmol, 1.0 equiv.) and aldehyde **3a** (0.3 mmol, 1.5 equiv.) were added into the tube. Then, DMF (2.0 mL) was added to the tube, and the reaction mixture was irradiated with a 40 W kessil blue LED lamp (440 nm, 75% intensity) at ambient temperature for 13 h. After completion of the reaction, the reaction mixture was treated with HCl (1 M, 2 mL), extracted into EtOAc (2 mL). TLC analysis indicates that no reaction took place, and TEMPO-coupled

product **6a** and **6b** were detected by HRMS, respectively. **6a** (HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{15}H_{30}NO^+$: 240.2322; found, 240.2310.), **6b** (HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{24}H_{37}F_3NO^+$: 412.2822; found, 412.2805.).

Figure S4. HRMS data of 6b.

6.2 BHT trapping experiment

 Cs_2CO_3 (0.4 mmol, 2.0 equiv.), BHT (3.0 equiv., 0.6 mmol) and 4CzIPN (5.0 mol%) were added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and rubber stopper, the tube was evacuated and backfilled with argon (repeated three times). Styrene **1a** (0.3 mmol, 1.5 equiv.), APEs **2a** (0.2 mmol, 1.0 equiv.) and aldehyde **3a** (0.3 mmol, 1.5 equiv.) were added into the tube. Then, DMF (2.0 mL) was added to the tube, and the reaction mixture was irradiated with a 40 W kessil blue LED lamp (440 nm, 75% intensity) at ambient temperature for 13 h. After completion of the reaction, the reaction mixture was treated with HCl (1 M, 2.0 mL), extracted into EtOAc (2.0 mL). The target product **4a** was obtained in 38% yield.

6.3 Isotope-labelling study

Cs₂CO₃ (0.4 mmol, 2.0 equiv.) and 4CzIPN (5.0 mol%) were added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and rubber stopper, the tube was evacuated and backfilled with argon (repeated three times). Styrene **1a** (0.3 mmol, 1.5 equiv.), APEs **2a** (0.2 mmol, 1.0 equiv.) and D₂O (2.0 mmol, 10.0 equiv.) were added into the tube. Then, DMF (2.0 mL) was added to the tube, and the reaction mixture was irradiated with a 40 W kessil blue LED lamp (440 nm, 75% intensity) at ambient temperature for 13 h. After completion of the reaction, the reaction mixture was treated with HCl (1 M, 2.0 mL), extracted into EtOAc (2.0 mL). The α -D-substituted product **7** was purified with chromatographycolumn on silica gel (PE/EA = 50:1 – 200:1) and afforded as a colorless oil in 76% yield (39.5 mg).

 Cs_2CO_3 (0.4 mmol, 2.0 equiv.) and 4CzIPN (5.0 mol%) were added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and rubber stopper, the tube

was evacuated and backfilled with argon (repeated three times). Styrene **1a** (0.3 mmol, 1.5 equiv.), APEs **2a** (0.2 mmol, 1.0 equiv.), D_2O (2.0 mmol, 10.0 equiv.) and aldehyde **3a** (2.0 mmol, 10.0 equiv.) were added into the tube. Then, DMF (2.0 mL) was added to the tube, and the reaction mixture was irradiated with a 40 W kessil blue LED lamp (440 nm, 75% intensity) at ambient temperature for 13 h. After completion of the reaction, the reaction mixture was treated with HCl (1 M, 2.0 mL), extracted into EtOAc (2.0 mL). The target product **4a** was obtained in 58% yield.

7. Proposed mechanism via RRPCO process

Initially, a Lewis base-APE adduct **A** was generated from Alk-Bpin via the Lewis base (Cs_2CO_3) activation. Subsequently, single-electron transfer (SET) between the excited photocatalyst 4CzIPN* and **A** produced an anionic catalyst radical and alkyl radical **B**. The latter undergoes fragmentation to give the alky radical **C**, which is subsequently trapped by alkene to deliver the radical intermediate **D**. Then, the SET reduction by anionic catalyst radical converts **D** to carbanion **E**, Meanwhile, the reduced anionic catalyst radical of 4CzIPN returned to the ground state to furnish the catalytic cycle. Finally, the carbanion **E** reacts with aldehydes via nucleophilic attack and protonation process to afford the final product **4**.

8. Characterization data of compounds 4

3-Cyclohexyl-1-phenyl-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4a) The resultant residue was purified by flash silica gel column chromatography to afford **4a** as yellow oil (58.7 mg, 81%, dr = 1.7 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.54 (d, J = 8.0 Hz, 3H), 7.41 (d, J = 8.0 Hz, 1H), 7.30-7.27 (m, 6H), 7.25-7.24 (m, 1H), 7.20-7.19 (m, 3H), 7.18-7.15 (m, 2H), 7.09 (d, J = 8.0 Hz, 1H), 7.02-7.01 (m, 1H), 4.65-4.63 (m, 2H), 3.11-3.08 (m, 1H), 3.06-3.03 (m, 1H), 2.16 (s, 1H), 1.90 (s, 1H), 1.75-1.71 (m, 1H), 1.70-1.65 (m, 3H), 1.59-1.56 (m, 3H), 1.55-1.50 (m, 5H), 1.43 (d, J = 12.8 Hz, 1H), 1.23-1.20 (m, 1H), 1.07-0.96 (m, 7H), 0.87-0.82 (m, 2H), 0.80-0.74 (m, 2H), 0.66-0.61 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.1, 146.0, 142.57, 142.46, 129.2, 128.8 (q, J = 32 Hz), 128.5 (q, J = 32 Hz), 128.3, 128.0, 127.9, 126.7, 126.3, 125.2 (q, J = 3.6 Hz), 124.8 (q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 78.8, 78.5, 39.6, 37.4, 34.6, 34.5, 34.4, 34.3, 31.94, 31.88, 26.5, 26.4, 26.2, 26.1, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₅F₃ONa⁺: 385.1750; found, 385.1744.

3-Cyclohexyl-2-(4-fluorophenyl)-1-phenylpropan-1-ol (**4b**) The resultant residue was purified by flash silica gel column chromatography to afford **4b** as yellow oil (40.6 mg, 65%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.32 (m, 2H), 7.29-7.26 (m, 1H), 7.24 (m, 2H), 7.22-7.20 (m, 2H), 7.18-7.15 (m, 3H), 7.06 (m, 2H), 7.02-6.99 (m, 2H), 6.96-6.94 (m, 2H), 6.89-6.86 (m, 2H), 4.69 (d, J = 6.4 Hz, 1H), 4.65 (d, J = 8.0 Hz, 1H), 3.07-3.04 (m, 1H), 3.00-2.97 (m, 1H), 1.91 (s, 1H), 1.74-1.64 (m, 5H), 1.60-1.57 (m, 2H), 1.55-1.50 (m, 6H), 1.44-1.41 (m, 1H), 1.20-1.17 (m, 1H), 1.10-1.03 (m, 3H), 1.02-0.89 (m, 6H), 0.80-0.74 (m, 2H), 0.65-0.60 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 161.7 (d, J = 243 Hz), 161.4 (d, J = 243 Hz), 142.73, 142.68, 137.1 (d, J = 3.4

Hz), 137.0 (d, J = 3.3 Hz), 130.2 (d, J = 7.4 Hz), 130.1 (d, J = 7.4 Hz), 128.3, 127.9, 127.8, 127.3, 126.8, 126.4, 115.3 (d, J = 21 Hz), 114.8 (d, J = 21 Hz), 79.0, 78.9, 50.2, 49.7, 39.7, 37.7, 34.6, 34.5, 34.4, 34.3, 32.0, 31.9, 26.5, 26.4, 26.2, 26.1, 26.0, 25.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₁H₂₅FONa⁺: 335.1782; found, 335.1782.

2-(4-Chlorophenyl)-3-cyclohexyl-1-phenylpropan-1-ol (**4c**) The resultant residue was purified by flash silica gel column chromatography to afford **4c** as yellow oil (51.9 mg, 79%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 400 MHz) δ : 7.34-7.32 (m, 1H), 7.31-7.27 (m, 4H), 7.24 (t, J = 1.2 Hz, 1H), 7.23-7.21 (m, 2H), 7.20-7.17 (m, 2H), 7.16-7.13 (m, 4H), 7.07 (m, 2H), 6.93 (m, 2H), 4.69-4.64 (m, 2H), 3.07-3.02 (m, 1H), 3.00-2.95 (m, 1H), 1.91 (d, J = 3.6 Hz, 1H), 1.74 (d, J = 3.2 Hz, 1H), 1.71-1.64 (m, 4H), 1.58-1.49 (m, 8H), 1.44-1.40 (m, 1H), 1.22-1.15 (m, 1H), 1.10-0.93 (m, 7H), 0.87-0.82 (m, 2H), 0.80-0.70 (m, 2H), 0.66-0.61 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 142.6, 140.1, 140.0, 132.4, 131.9, 130.2, 128.6, 128.3, 128.1, 128.0, 127.8, 127.4, 126.8, 126.4, 78.9, 78.7, 39.6, 37.6, 34.6, 34.5, 34.41, 34.36, 31.9, 31.8, 26.5, 26.4, 26.2, 26.1, 26.0, 25.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₁H₂₅ClONa⁺: 351.1486; found, 351.1483.

2-(3-Chlorophenyl)-3-cyclohexyl-1-phenylpropan-1-ol (**4d**) The resultant residue was purified by flash silica gel column chromatography to afford **4d** as green oil (54.6 mg, 83%, dr = 1.3 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.35-7.32 (m, 3H), 7.31-7.24 (m, 5H), 7.22-7.19 (m, 4H), 7.18-7.14 (m, 2H), 7.11-7.10 (m, 2H), 7.04-7.03 (m, 2H), 4.74 (d, J = 6.4 Hz, 1H), 4.64 (d, J = 8.0 Hz, 1H), 3.08-3.05 (m, 1H), 3.01-2.98 (m, 1H), 1.93 (s, 1H), 1.78 (s, 1H), 1.74-1.71 (m, 2H), 1.68-1.65 (m, 2H), 1.58-1.55 (m, 3H), 1.54-1.49 (m, 5H), 1.42-1.39 (m, 1H), 1.15-1.12 (m, 1H), 1.07-1.05 (m, 2H), 1.01-0.96 (m, 4H), 0.93-0.85 (m, 3H), 0.78-0.72 (m, 2H), 0.62-0.57 (m, 1H); ¹³C NMR

(CDCl₃, 200 MHz) δ : 143.9, 142.5, 134.3, 133.8, 129.6, 129.2, 128.8, 128.7, 128.3, 128.0, 127.9, 127.4, 127.2, 127.1, 126.9, 126.8, 126.5, 126.3, 78.9, 78.6, 50.7, 50.3, 39.6, 37.2, 34.6, 34.5, 34.4, 34.3, 32.0, 31.9, 26.5, 26.4, 26.2, 26.1, 25.95, 25.87; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₁H₂₅ClONa⁺: 351.1486; found, 351.1487.

2-(2-Chlorophenyl)-3-cyclohexyl-1-phenylpropan-1-ol (4e) The resultant residue was purified by flash silica gel column chromatography to afford 4e as yellow oil (51.4 mg, 78%, dr = 1.4 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.35-7.33 (m, 2H), 7.31-7.23 (m, 12H), 7.19 (t, J = 7.2 Hz, 2H), 7.15 (t, J = 8.0 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 4.80 (s, 1H), 4.66 (d, J = 7.2 Hz, 1H), 3.82-3.73 (m, 2H), 1.92 (s, 1H), 1.81-1.76 (m, 3H), 1.68 (d, J = 13.6 Hz, 1H), 1.56-1.48 (m, 9H), 1.44-1.42 (m, 1H), 1.31-1.27 (m, 1H), 1.08-0.94 (m, 6H), 0.93-0.83 (m, 3H), 0.81-0.76 (m, 1H), 0.68-0.62 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 142.8, 142.7, 139.7, 139.5, 136.1, 134.8, 129.7, 129.5, 129.3, 128.5, 128.3, 128.0, 127.8, 127.6, 127.5, 127.2, 127.0, 126.9, 126.6, 126.1, 79.2, 45.2, 39.7, 35.5, 34.7, 34.7, 34.6, 34.4, 32.3, 32.1, 26.6, 26.5, 26.3, 26.2, 26.01, 26.00; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₁H₂₅ClONa⁺: 351.1486; found, 351.1484.

2-(4-Bromophenyl)-3-cyclohexyl-1-phenylpropan-1-ol (**4f**) The resultant residue was purified by flash silica gel column chromatography to afford **4f** as green oil (38.1 mg, 51%, dr = 1 : 1); ¹H NMR (CDCl₃, 400 MHz) δ : 7.43 (m, 2H), 7.34-7.29 (m, 5H), 7.25-7.22 (m, 3H), 7.20-7.18 (m, 2H), 7.09-7.06 (m, 4H), 6.88 (m, 2H), 4.69 (dd, J = 6.8, 3.2 Hz, 1H), 4.65 (dd, J = 7.6, 2.4 Hz, 1H), 3.06-3.01 (m, 1H), 3.00-2.94 (m, 1H), 1.90 (d, J = 6.4 Hz, 1H), 1.73 (d, J = 4.8 Hz, 1H), 1.71-1.63 (m, 4H), 1.50-1.55 (m, 3H), 1.54-1.48 (m, 4H), 1.45-1.40 (m, 1H), 1.22-1.15 (m, 1H), 1.10-1.04 (m, 3H), 1.03-0.91 (m, 5H), 0.87-0.82 (m, 2H), 0.79-0.71 (m, 2H), 0.67-0.57 (m, 1H); ¹³C NMR

(CDCl₃, 200 MHz) δ : 142.60, 142.58, 140.63, 140.61, 131.5, 131.1, 130.58, 130.56, 128.3, 128.0, 127.8, 127.4, 126.8, 126.4, 120.5, 120.0, 78.9, 78.6, 50.4, 49.9, 39.6, 37.5, 34.6, 34.5, 34.39, 34.36, 31.9, 31.8, 26.4, 26.2, 26.1, 26.0, 25.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₁H₂₅BrONa⁺: 395.0981; found, 395.0978.

Methyl 4-(3-cyclohexyl-1-hydroxy-1-phenylpropan-2-yl)benzoate (4g)The resultant residue was purified by flash silica gel column chromatography to afford 4g as green oil (63.4 mg, 90%, dr = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.98 (d, J = 8.0Hz, 2H), 7.84 (dd, J = 8.0 Hz, 2H), 7.32-7.31 (m, 2H), 7.29-7.27 (m, 3H), 7.25-7.24 (m, 2H), 7.20-7.15 (m, 3H), 7.08-7.06 (m, 4H), 4.72 (t, *J* = 7.2 Hz, 2H), 3.91 (s, 3H), 3.87 (s, 3H), 3.14-3.12 (m, 1H), 3.09-3.06 (m, 1H), 2.03-2.00 (s, 1H), 1.81-1.76 (m, 2H), 1.77-1.71 (m, 1H), 1.70-1.66 (m, 2H), 1.62-1.57 (m, 3H), 1.55-1.50 (m, 5H), 1.43-1.41 (m, 1H), 1.23-1.20 (m, 1H), 1.08-1.04 (m, 2H), 1.01-0.92 (m, 5H), 0.86-0.83(m, 2H), 0.80-0.75 (m, 2H), 0.65-0.60 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 167.13, 167.10, 147.39, 147.36, 129.6, 129.3, 128.90, 128.89, 128.6, 128.3, 128.1, 128.0, 127.8, 127.4, 126.8, 126.4, 78.9, 78.6, 52.0, 51.9, 50.9, 50.7, 39.6, 37.7, 34.65, 34.60, 34.5, 34.3, 32.0, 31.9, 26.5, 26.4, 26.2, 26.1, 25.95, 25.87; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₃H₂₈O₃Na⁺: 375.1931; found, 375.1927.

2-([1,1'-Biphenyl]-4-yl)-3-cyclohexyl-1-phenylpropan-1-ol (**4h**) The resultant residue was purified by flash silica gel column chromatography to afford **4h** as green oil (61.5 mg, 83%, dr = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.62-7.61 (m, 2H), 7.58-7.56 (m, 4H), 7.46-7.40 (m, 6H), 7.36-7.29 (m, 9H), 7.23-7.21 (m, 2H), 7.19-7.17 (m, 1H), 7.15-7.13 (m, 2H), 7.11 (dd, J = 5.6Hz, 2H), 4.78 (d, J = 6.4 Hz, 1H), 4.68 (d, J = 8.8 Hz, 1H), 3.14-3.11 (m, 1H), 3.06-3.03 (m, 1H), 1.95 (s, 1H), 1.82 (s, 1H), 1.77-1.71

(m, 3H), 1.68-1.65 (m, 1H), 1.60-1.57 (m, 3H), 1.56-1.53 (m, 5H), 1.46-1.43 (m, 1H), 1.18-1.15 (m, 1H), 1.10-1.06 (m, 2H), 1.05-0.98 (m, 5H), 0.94-0.90 (m, 2H), 0.81-0.75 (m, 2H), 0.64-0.59 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 142.8, 142.7, 140.83, 140.81, 140.8, 140.7, 139.6, 139.0, 129.22, 129.17, 128.73, 128.68, 128.3, 127.9, 127.8, 127.22, 127.16, 127.14, 127.03, 127.01, 127.0, 126.9, 126.4, 79.2, 78.7, 50.7, 50.0, 39.6, 37.0, 34.7, 34.5, 34.41, 34.39, 32.0, 31.9, 26.6, 26.5, 26.2, 26.1, 26.0, 25.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₇H₃₀ONa⁺: 393.2189; found, 393.2184.

3-Cyclohexyl-1,2-diphenylpropan-1-ol (**4i**) The resultant residue was purified by flash silica gel column chromatography to afford **4i** as green oil (46.5 mg, 79%, dr = 1.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.34-7.32 (m, 2H), 7.29-7.27 (m, 1H), 7.26-7.24 (m, 3H), 7.23-7.21 (m, 5H), 7.20-7.18 (m, 1H), 7.13-7.08 (m, 6H), 7.03 (t, J = 2.4 Hz, 1H), 6.88 (dt, J = 7.2, 1.6 Hz, 1H), 4.71 (dd, J = 2.4, 6.4 Hz, 1H), 4.65 (dd, J = 1.6, 8.0 Hz, 1H), 3.05-3.02 (m, 1H), 2.99-2.96 (m, 1H), 1.93 (d, J = 4.0 Hz, 1H), 1.76 (d, J = 3.2 Hz, 1H), 1.70-1.65 (m, 5H), 1.60-1.57 (m, 2H), 1.55-1.51 (m, 5H), 1.44-1.42 (m, 1H), 1.18-1.14 (m, 1H), 1.10-1.05 (m, 3H), 1.02-0.96 (m, 4H), 0.91-0.87 (m, 2H), 0.79-0.74 (m, 2H), 0.64-0.59 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 142.9, 142.7, 141.6, 141.5, 128.82, 128.80, 128.6, 128.3, 128.1, 127.8, 127.1, 127.0, 126.8, 126.4, 126.3, 79.22, 79.21, 78.8, 51.1, 50.4, 39.6, 37.1, 34.6, 34.5, 34.4, 32.0, 31.8, 26.6, 26.5, 26.2, 26.1, 26.0, 25.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₁H₂₆ONa⁺: 317.1876; found, 317.1873.

3-Cyclohexyl-1-phenyl-2-(p-tolyl)propan-1-ol (**4j**) The resultant residue was purified by flash silica gel column chromatography to afford **4j** as yellow oil (50.0 mg, 81%, dr= 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.34-7.30 (m, 4H), 7.29-7.27 (m, 1H), 7.23-7.21 (m, 2H), 7.18-7.16 (m, 1H), 7.15-7.11 (m, 6H), 7.01 (d, J = 7.2 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 4.71 (d, J = 6.4 Hz, 1H), 4.60 (d, J = 8.8 Hz, 1H), 3.05-3.02 (m, 1H), 2.96-2.93 (m, 1H), 2.34 (s, 3H), 2.28 (s, 3H), 1.94 (d, J = 4.8 Hz, 1H), 1.80 (s, 1H), 1.70-1.66 (m, 3H), 1.61-1.59 (m, 1H), 1.58-1.56 (m, 2H), 1.53-1.48 (m, 6H), 1.41-1.39 (m, 1H), 1.11-1.09 (m, 1H), 1.07-1.04 (m, 2H), 1.02-0.96 (m, 5H), 0.89-0.86 (m, 2H), 0.77-0.69 (m, 2H), 0.60-0.55 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 142.9, 142.8, 138.5, 138.3, 136.3, 135.6, 129.3, 128.8, 128.61, 125.58, 128.2, 127.7, 127.6, 127.0, 126.9, 126.4, 79.2, 78.6, 50.6, 49.8, 39.6, 36.9, 34.6, 34.44, 34.38, 34.32, 31.9, 31.7, 26.5, 26.4, 26.2, 26.1, 25.9, 25.8, 21.1, 21.0; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₈ONa⁺: 331.2032; found, 331.2027.

ОН

3-Cyclohexyl-1-phenyl-2-(m-tolyl)propan-1-ol (**4k**) The resultant residue was purified by flash silica gel column chromatography to afford **4k** as yellow oil (44.7 mg, 72%, *dr* = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ: 7.35-7.31 (m, 4H), 7.29-7.27 (m, 1H), 7.24-7.21 (m, 3H), 7.19-7.16 (m, 1H), 7.13-7.12 (m, 2H), 7.10 (t, *J* = 8.8 Hz, 1H), 7.08-7.05 (m, 3H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.85 (d, *J* = 7.2 Hz, 2H), 4.74 (d, *J* = 5.6 Hz, 1H), 4.61 (d, *J* = 8.8 Hz, 1H), 3.05-3.02 (m, 1H), 2.96-2.93 (m, 1H), 2.36 (s, 3H), 2.27 (s, 3H), 1.93 (s, 1H), 1.79 (s, 1H), 1.72-1.67 (m, 3H), 1.60-1.55 (m, 4H), 1.53-1.48 (m, 6H), 1.42-1.39 (m, 1H), 1.10-1.04 (m, 4H), 1.00-0.97 (m, 3H), 0.91-0.86 (m, 2H), 0.77-0.69 (m, 2H), 0.60-0.54 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ: 142.9, 142.7, 141.6, 141.5, 138.1, 137.5, 129.6, 129.4, 128.4, 128.2, 127.9, 127.74, 127.68, 127.65, 127.07, 127.05, 127.0, 126.3, 125.77, 125.76, 79.3, 78.6, 51.0, 50.2, 34.6, 34.5, 34.4, 34.3, 32.0, 31.8, 26.6, 26.5, 26.2, 26.1, 25.9, 25.8, 21.5, 21.4; HRMS-ESI (m/z) [M + Na]⁺ calcd for C_{22H28}ONa⁺: 331.2032; found, 331.2026.

3-Cyclohexyl-1-phenyl-2-(o-tolyl)propan-1-ol (41) The resultant residue was purified by flash silica gel column chromatography to afford **4I** as yellow oil (42.8 mg, 69%, dr = 1.3 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.32 (t, J = 8.0 Hz, 3H), 7.28-7.26 (m, 3H), 7.22-7.20 (m, 4H), 7.18-7.14 (m, 6H), 7.06 (td, J = 8.0, 1.6 Hz, 1H), 7.03-7.02 (m, 1H), 4.70 (d, J = 6.4 Hz, 1H), 4.60 (d, J = 8.0 Hz, 1H), 3.38-3.36 (m, 1H), 3.35-3.32 (m, 1H), 2.27 (s, 3H), 2.10 (s, 3H), 1.95 (s, 1H), 1.80-1.76 (m, 2H), 1.67-1.62 (m, 3H), 1.57-1.55 (m, 3H), 1.53-1.49 (m, 5H), 1.43-1.41 (m, 1H), 1.23-1.20 (m, 1H), 1.07-1.02 (m, 3H), 1.00-0.95 (m, 4H), 0.89-0.85 (m, 2H), 0.78-0.71 (m, 2H), 0.64-0.60 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 143.1, 142.9, 140.3, 139.9, 138.1, 136.7, 130.3, 128.2, 127.74, 127.72, 127.69, 127.66, 127.15, 127.13, 127.11, 127.0, 126.9, 126.5, 126.4, 126.2, 126.0, 125.9, 125.7, 78.8, 78.0, 44.9, 40.1, 37.0, 34.7, 34.6, 34.4, 32.5, 32.4, 26.5, 26.4, 26.2, 26.1, 26.0, 25.9, 20.1, 19.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C_{22H28}ONa⁺: 331.2032; found, 331.2029.

2-(4-(Tert-butyl)phenyl)-3-cyclohexyl-1-phenylpropan-1-ol (**4m**) The resultant residue was purified by flash silica gel column chromatography to afford **4m** as yellow solid (44.2 mg, 63%, dr = 1.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.36-7.31 (m, 5H), 7.29-7.27 (m, 1H), 7.24-7.22 (m, 5H), 7.19-7.16 (m, 3H), 7.14 (d, J = 7.2Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 4.76 (d, J = 3.2 Hz, 1H), 4.59 (d, J = 8.8Hz, 1H), 3.06-3.04 (m, 1H), 2.97-2.94 (m, 1H), 1.90 (d, J = 3.2 Hz, 1H), 1.79 (s, 1H), 1.73-1.66 (m, 3H), 1.58-1.55 (m, 1H), 1.54-1.48 (m, 8H), 1.43-1.40 (m, 1H), 1.33 (s, 8H), 1.29 (s, 10H), 1.11-1.05 (m, 3H), 1.04-0.98 (m, 5H), 0.89-0.86 (m, 2H), 0.77-0.72 (m, 1H), 0.70-0.65 (m, 1H), 0.59-0.54 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 149.6, 149.1, 142.9, 142.8, 138.5, 138.2, 128.31, 128.29, 128.24, 127.8, 127.7, 127.1, 126.9, 126.3, 125.5, 125.0, 79.3, 78.5, 50.6, 49.6, 39.6, 36.2, 34.6, 34.43, 34.40, 34.38, 34.33, 34.27, 32.0, 31.8, 31.38, 31.37, 26.6, 26.5, 26.2, 26.1, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₅H₃₄ONa⁺: 373.2502; found, 373.2497.

3-Cyclohexyl-2-(2,6-dichlorophenyl)-1-phenylpropan-1-ol (4n) The resultant residue was purified by flash silica gel column chromatography to afford **4n** as green oil (53.0 mg, 73%, dr = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.49-7.48 (m, 2H), 7.41-7.38 (m, 3H), 7.34-7.32 (m, 1H), 7.31 (dd, J = 8.0, 1.6 Hz, 1H), 7.26-7.25 (m, 2H), 7.14-7.11 (m, 4H), 7.10-7.08 (m, 1H), 7.01 (dd, J = 8.0, 1.6 Hz, 1H), 6.88 (t, J = 8.0Hz, 1H), 5.37 (d, J = 9.6 Hz, 1H), 5.28 (d, J = 10.4 Hz, 1H), 4.12 (td, J = 10.4, 4.0 Hz, 1H), 4.02 (td, J = 10.4, 4.0 Hz, 1H), 2.31-2.27 (m, 1H), 2.06-2.03 (m, 2H), 2.00-1.97 (m, 2H), 1.71 (s, 1H), 1.68-1.66 (m, 1H), 1.63-1.61 (m, 2H), 1.59-1.56 (m, 2H), 1.51-1.47 (m, 3H), 1.44-1.42 (m, 1H), 1.15-1.09 (m, 3H), 1.00-0.99 (m, 3H), 0.97-0.91 (m, 4H), 0.73-0.69 (m, 2H), 0.51-0.46 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 143.6, 143.0, 138.4, 137.6, 137.5, 137.1, 134.8, 134.7, 130.2, 129.7, 128.6, 128.5, 128.3, 128.1, 128.0, 127.8, 127.7, 127.5, 127.2, 126.1, 75.9, 75.5, 48.0, 47.9, 36.3, 35.7, 34.4, 34.1, 33.1, 32.5, 26.56, 26.55, 26.38, 26.37, 26.2, 26.1, 25.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₁H₂₄Cl₂ONa⁺: 385.1096; found, 385.1092.

3-Cyclohexyl-2-(naphthalen-2-yl)-1-phenylpropan-1-ol (**4o**) The resultant residue was purified by flash silica gel column chromatography to afford **4o** as green oil (51.0 mg, 74%, *dr* = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) *δ*: 7.84-7.82 (m, 3H), 7.78-7.77 (m, 1H), 7.73 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.71-7.69 (m, 2H), 7.50-7.45 (m, 3H), 7.44-7.39 (m, 3H), 7.35-7.34 (m, 4H), 7.31-7.28 (m, 1H), 7.20-7.18 (m, 3H), 7.16-7.13 (m, 3H), 4.84 (dd, *J* = 6.4 Hz, 1H), 4.74 (dd, *J* = 8.0 Hz, 1H), 3.27-3.24 (m, 1H), 3.19-3.16 (m, 1H), 1.97 (s, 1H), 1.86-1.81 (m, 2H), 1.76-1.71 (m, 3H), 1.68-1.64 (m, 1H), 1.57-1.46 (m, 7H), 1.43-1.41 (m, 1H), 1.21-1.17 (m, 1H), 1.01-0.92 (m, 7H), 0.90-0.86 (m, 2H), 0.80-0.74 (m, 2H), 0.65-0.60 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) *δ*: 142.8, 142.7, 139.2, 139.0, 133.5, 133.3, 132.6, 132.3, 128.4, 128.3, 128.1, 127.9, 127.8, 127.7

127.6, 127.59, 127.53, 127.47, 127.3, 127.2, 127.2, 126.41, 126.40, 126.3, 126.0, 125.7, 125.6, 125.3, 79.1, 78.7, 51.3, 50.5, 39.5, 37.2, 34.7, 34.5, 34.44, 34.42, 32.0, 31.8, 26.5, 26.4, 26.2, 26.1, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₅H₂₈ONa⁺: 367.2032; found, 367.2025.

3-Cyclohexyl-1,2,2-triphenylpropan-1-ol (4p) The resultant residue was purified by flash silica gel column chromatography to afford **4p** as yellow oil (43.7 mg, 59%); ¹H NMR (CDCl₃, 800 MHz) δ : 7.40 (d, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.25-7.24 (m, 1H), 7.23-7.21 (m, 2H), 7.16 (m, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 7.2 Hz, 2H), 7.07 (t, *J* = 8.0 Hz, 2H), 6.58 (d, *J* = 7.2 Hz, 2H), 5.59 (s, 1H), 2.19 (t, *J* = 3.2 Hz, 1H), 1.82 (dd, *J* = 4.8, 6.4 Hz, 1H), 1.59 (dd, *J* = 4.8, 14.4 Hz, 1H), 1.45-1.38 (m, 3H), 1.24-1.21 (m, 1H), 1.03-1.01 (m, 1H), 0.99-0.91 (m, 3H), 0.75-0.72 (m, 1H), 0.71-0.66 (m, 1H), 0.61-0.56 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.0, 141.7, 140.4, 130.91, 130.90, 129.3, 128.5, 128.0, 127.5, 127.0, 126.8, 126.4, 126.3, 78.3, 57.2, 45.7, 35.1, 35.0, 33.7, 26.5, 26.4, 26.3; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₇H₃₀ONa⁺: 393.2189; found, 393.2182.

3-Cyclohexyl-2-methyl-1,2-diphenylpropan-1-ol (**4q**) The resultant residue was purified by flash silica gel column chromatography to afford **4q** as yellow oil (44.4 mg, 72%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 400 MHz) δ: 7.42-7.40 (m, 2H), 7.36-7.31 (m, 2H), 7.26-7.23 (m, 6H), 7.21-7.17 (m, 3H), 7.16-7.11 (m, 5H), 6.88-6.85 (m, 2H), 4.68 (d, *J* = 2.4 Hz, 1H), 4.64 (d, *J* = 2.8 Hz, 1H), 2.00-1.95 (m, 2H), 1.89 (d, *J* = 2.6 Hz, 1H), 1.72-1.67 (m, 2H), 1.60 (d, *J* = 2.8 Hz, 1H), 1.55-1.44 (m, 7H), 1.35 (s, 3H), 1.28-1.27 (m, 4H), 1.19-1.13 (m, 2H), 1.11-0.98 (m, 7H), 0.97-0.93 (m, 2H), 0.87-0.78 (m, 2H), 0.74-0.64 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ: 144.5, 144.3, 141.0, 140.6, 128.2, 128.1, 127.9, 127.69, 127.68, 127.65, 127.39, 127.36, 127.0, 127.0, 126.3, 126.1,

82.83, 82.78, 47.2, 47.1, 45.9, 43.9, 35.9, 35.8, 35.3, 35.1, 34.1, 34.0, 26.5, 26.41, 26.39, 26.36, 26.3, 26.2, 19.4, 18.4; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₈ONa⁺: 331.2032; found, 331.2030.

3-Cyclohexyl-1-phenyl-2-(pyridin-2-yl)propan-1-ol (4r) The resultant residue was purified by flash silica gel column chromatography to afford **4r** as white solid (28.4 mg, 48%, *dr* = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) *δ*: 8.57-8.56 (m, 2H), 7.62 (td, *J* = 8.0, 2.4 Hz, 2H), 7.35-7.34 (m, 4H), 7.32-7.30 (m, 4H), 7.22 (t, *J* = 7.2 Hz, 2H), 7.20-7.18 (m, 2H), 7.08 (d, *J* = 7.2 Hz, 2H), 5.66 (s, 2H), 5.11 (d, *J* = 3.2 Hz, 2H), 3.11 (t, *J* = 3.2 Hz, 1H), 3.10 (t, *J* = 3.2 Hz, 1H), 1.79-1.75 (m, 2H), 1.67-1.65 (m, 2H), 1.57-1.50 (m, 6H), 1.41-1.39 (m, 2H), 1.38-1.35 (m, 2H), 1.02-0.98 (m, 6H), 0.80-0.76 (m, 4H), 0.60-0.55 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) *δ*: 164.1, 148.8, 142.6, 136.6, 127.9, 126.7, 126.0, 123.6, 121.7, 75.9, 49.7, 35.2, 34.6, 34.4, 32.1, 26.5, 26.2, 26.0; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₀H₂₅NONa⁺: 318.1828; found, 318.1824.

Benzyl 2-(cyclohexylmethyl)-3-hydroxy-3-phenylpropanoate (4s) The resultant residue was purified by flash silica gel column chromatography to afford 4s as yellow oil (36.6 mg, 52%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.34-7.28 (m, 15H), 7.27-7.25 (m, 3H), 7.20-7.19 (m, 2H), 5.18 (d, J = 12.0 Hz, 1H), 5.06 (m, 2H), 4.97 (d, J = 12.0 Hz, 1H), 4.91 (d, J = 12.0 Hz, 1H), 4.76 (d, J = 8.0 Hz, 1H), 2.96-2.93 (m, 1H), 2.89-2.87 (m, 1H), 2.82-2.81 (m, 1H), 2.73 (t, J = 3.2 Hz, 1H), 1.75-1.69 (m, 3H), 1.63-1.58 (m, 6H), 1.54-1.51 (m, 2H), 1.47-1.44 (m, 1H), 1.12-1.01 (m, 10H), 0.89-0.82 (m, 1H), 0.81-0.76 (m, 1H), 0.69-0.62 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 175.4, 175.0, 142.1, 141.5, 135.8, 135.6, 128.48, 128.47, 128.3, 128.24, 128.22, 128.21, 128.16, 127.9, 127.7, 126.33, 126.32, 126.1, 75.8, 74.5, 66.3, 50.50, 50.48, 37.3, 35.6, 35.3, 34.8, 34.0, 33.8, 32.2, 32.1, 26.4, 26.3, 26.2, 26.1, 26.0, 25.9; HRMS-ESI (m/z)

 $[M + Na]^+$ calcd for C₂₃H₂₈O₃Na⁺: 375.1931; found, 375.1924.

1-Phenyl-2-(4-(trifluoromethyl)phenyl)heptan-1-ol (4aa) The resultant residue was purified by flash silica gel column chromatography to afford **4aa** as yellow oil(19.4 mg, 29%, dr = 1.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.35-7.32 (m, 4H), 7.31-7.27 (m, 1H), 7.27 (d, J = 7.2 Hz, 2H), 7.23-7.21 (m, 2H), 7.20-7.18 (m, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.2 Hz, 2H), 4.78-4.76 (m, 2H), 3.00-2.97 (m, 1H), 2.93-2.90 (m, 1H), 2.00-1.95 (m, 1H), 1.92 (d, J = 3.2 Hz, 1H), 1.76-1.71 (m, 2H), 1.61-1.57 (m, 1H), 1.46-1.42 (m, 1H), 1.25-1.21 (m, 2H), 1.20-1.17 (m, 2H), 1.15-1.10 (m, 3H), 1.09-1.05 (m, 3H), 1.02-0.98 (m, 2H), 0.81-0.79 (m, 3H), 0.77-0.75 (m, 3H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.0, 145.9, 142.6, 142.5, 129.1, 128.9 (q, J = 32 Hz), 128.5 (q, J = 32 Hz), 128.4, 128.1, 127.9, 127.5, 126.7, 126.4, 126.3, 125.2 (q, J = 3.6 Hz), 124.9 (q, J = 3.6 Hz), 124.28 (q, J = 270 Hz), 78.5, 78.3, 53.9, 53.6, 31.9, 31.8, 31.6, 29.9, 27.1, 26.9, 22.44, 22.36, 14.0, 13.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₀H₂₃F₃ONa⁺: 359.1593; found, 359.1590.

5-Methyl-1-phenyl-2-(4-(trifluoromethyl)phenyl)hexan-1-ol (**4ab**) The resultant residue was purified by flash silica gel column chromatography to afford **4ab** as yellow oil (20.2 mg, 30%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.56 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.34-7.31 (m, 4H), 7.30-7.28 (m, 1H), 7.26 (d, J = 7.2 Hz, 2H), 7.23-7.21 (m, 2H), 7.20-7.18 (m, 1H), 7.12 (d, J = 7.2 Hz, 2H), 7.09 (d, J = 6.4 Hz, 2H), 4.79-4.77 (m, 2H), 2.96-2.94 (m, 1H), 2.90-2.88 (m, 1H), 2.04-1.99 (m, 1H), 1.93 (d, J = 3.2 Hz, 1H), 1.76-1.70 (m, 2H), 1.62-1.57 (m, 1H), 1.50-1.46 (m, 2H), 1.40-1.35 (m, 1H), 1.03-0.99 (m, 1H), 0.97-0.91 (m, 2H), 0.85-0.82 (m, 1H), 0.80 (dd,

J = 6.4, 9.6 Hz, 6H), 0.71 (dd, J = 6.4, 16 Hz, 6H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.0, 142.6, 142.5, 129.14, 129.12, 128.9 (q, J = 32 Hz), 128.5 (q, J = 32 Hz), 128.4, 128.1, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 3.6 Hz), 124.9 (q, J = 3.6 Hz), 124.29 (q, J = 270 Hz), 124.26 (q, J = 270 Hz), 78.45, 78.39, 54.1, 53.9, 36.6, 36.4, 29.8, 28.0, 27.8, 27.7, 22.8, 22.8, 22.1, 21.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₀H₂₃F₃ONa⁺: 359.1593; found, 359.1601.

1,5-Diphenyl-2-(4-(trifluoromethyl)phenyl)pentan-1-ol (4ac) The resultant residue was purified by flash silica gel column chromatography to afford **4ac** as yellow oil (35.5 mg, 46%, dr = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.55 (d, J = 7.2 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 3H), 7.25-7.24 (m, 2H), 7.23-7.18 (m, 7H), 7.15-7.11 (m, 2H), 7.10-7.07 (m, 4H), 7.04 (d, J = 7.2 Hz, 2H), 6.09 (d, J = 8.0 Hz, 2H), 4.76-4.75 (m, 2H), 3.02-2.99 (m, 1H), 2.96-2.93 (m, 1H), 2.61-2.57 (m, 1H), 2.52-2.48 (m, 2H), 2.41-2.37 (m, 1H), 2.08-2.03 (m, 1H), 1.92 (s, 1H), 1.82-1.77 (m, 1H), 1.75 (s, 1H), 1.68-1.63 (m, 1H), 1.53-1.50 (m, 1H), 1.43-1.39 (m, 2H), 1.36-1.31 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.7, 145.6, 142.50, 142.46, 142.2, 142.0, 129.13, 129.09, 129.0 (q, J = 32 Hz), 128.6 (q, J = 32 Hz), 128.4, 128.3, 128.23, 128.21, 128.1, 128.0, 127.6, 126.7, 126.4, 125.7, 125.3 (q, J = 3.6 Hz), 124.9 (q, J = 3.6 Hz), 124.24 (q, J = 270 Hz), 124.22 (q, J = 270 Hz), 78.4, 78.3, 53.7, 53.5, 35.8, 35.6, 31.6, 29.6, 29.3, 29.0; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₄H₂₃F₃ONa⁺: 407.1593; found, 407.1596.

4-Methyl-1-phenyl-2-(4-(trifluoromethyl)phenyl)pentan-1-ol (**4ad**) The resultant residue was purified by flash silica gel column chromatography to afford **4ad** as yellow solid (47.1 mg, 73%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz,

2H), 7.43 (d, J = 8.0 Hz, 2H), 7.34-7.32 (m, 4H), 7.30-7.28 (m, 1H), 7.26-7.25 (m, 2H), 7.23-7.20 (m, 2H), 7.20-7.18 (m, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.09-7.07 (m, 2H), 4.74-4.72 (m, 2H), 3.11-3.08 (m, 1H), 3.05-3.02 (m, 1H), 1.96 (s, 1H), 1.80-1.76 (m, 2H), 1.71-1.68 (m, 1H), 1.67-1.63 (m, 1H), 1.55 (s, 1H), 1.28-1.22 (m, 2H), 1.19-1.14 (m, 2H), 0.83 (d, J = 6.4 Hz, 3H), 0.77 (d, J = 6.4 Hz, 3H), 0.74 (d, J = 6.4 Hz, 2H), 0.71 (d, J = 6.4 Hz, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.9, 145.8, 142.5, 142.4, 129.19, 129.18, 128.9 (q, J = 32 Hz), 128.5 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 3.6 Hz), 124.9 (q, J = 3.6 Hz), 124.27 (q, J = 270 Hz), 124.25 (q, J = 270 Hz), 78.8, 78.6, 51.6, 51.3, 41.0, 39.0, 25.2, 25.1, 24.0, 23.7, 21.0, 20.9; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₂F₃O⁺: 323.1617; found, 323.1627.

3-Cyclopentyl-1-phenyl-2-(4-(trifluoromethyl)phenyl)propan-1-ol The (4ae) resultant residue was purified by flash silica gel column chromatography to afford 4ae as yellow oil (34.8 mg, 50%, dr = 1 :1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.35-7.32 (m, 4H), 7.29 (t, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.22-7.17 (m, 3H), 7.14 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 7.2 Hz, 2H), 4.75-4.73 (m, 2H), 3.06-3.03 (m, 1H), 3.00-2.97 (m, 1H), 1.98 (s, 1H), 1.94-1.91 (m, 1H), 1.85-1.77 (m, 3H), 1.65-1.61 (m, 2H), 1.59-1.57 (m, 1H), 1.55-1.50 (m, 3H), 1.48-1.42 (m, 3H), 1.39-1.32 (m, 5H), 1.30-1.26 (m, 1H), 1.06-1.00 (m, 2H), 0.93-0.87 (m, 2H); 13 C NMR (CDCl₃, 200 MHz) δ : 146.1, 146.0, 142.6, 142.5, 129.19, 129.17, 128.8 (q, J = 32 Hz), 128.5 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.0, 128.4, 128.0, 127.5, 126.7, 126.4, 125.2 (q, J = 32 Hz), 128.4, 128.4, 128.6, 128.4, 128.4, 128.6, 128.4, 128. J = 3.8 Hz), 124.8 (q, J = 3.6 Hz), 124.28 (q, J = 270 Hz), 124.26 (q, J = 270 Hz), 78.7, 78.4, 53.0, 52.7, 38.4, 37.4, 37.3, 36.4, 33.6, 33.3, 31.58, 31.57, 25.02, 24.99, 24.94, 24.91; HRMS-ESI (m/z) $[M + Na]^+$ calcd for C₂₁H₂₃F₃ONa⁺: 371.1593; found, 371.1591.

3-Cycloheptyl-1-phenyl-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4af) The resultant residue was purified by flash silica gel column chromatography to afford 4af as yellow oil (50.4 mg, 67%, dr = 1 : 1); ¹H NMR (CDCl₃, 400 MHz) δ : 7.56 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.35-7.28 (m, 5H), 7.25 (d, J = 2.0 Hz, 1H), 7.24-7.23 (m, 1H), 7.21-7.17 (m, 3H), 7.12 (d, J = 8.0 Hz, 2H), 7.09-7.06 (m, 2H), 4.74-4.71 (m, 2H), 3.12-3.07 (m, 1H), 3.06-3.00 (m, 1H), 1.94 (d, J = 3.2 Hz, 1H), 1.87-1.81 (m, 1H), 1.75-1.68 (m, 2H), 1.66-1.50 (m, 8H), 1.48-1.38 (m, 10H), 1.36-1.30 (m, 4H), 1.12-1.02 (m, 4H), 0.99-0.93 (m, 1H), 0.89-0.83 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.1, 146.0, 142.6, 142.5, 129.18, 129,16, 128.8 (q, J = 32 Hz), 128.5 (q, J = 32 Hz), 128.4, 128.0, 127.9, 127.5, 126.7, 126.3, 125.2 (q, J = 3.6 Hz), 124.9 (q, J = 3.6 Hz), 130.53 (q, J = 270 Hz), 130.51 (q, J = 270 Hz), 78.8, 78.6, 51.4, 51.1, 40.1, 37.9, 36.1, 36.0, 35.9, 35.8, 32.64, 32.60, 28.6, 28.45, 28.41, 28.3, 26.2, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₃H₂₇F₃ONa⁺: 399.1906; found, 399.1902.

1-Phenyl-3-(1,4-dioxaspiro[4.5]decan-8-yl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4ag) The resultant residue was purified by flash silica gel column chromatography to afford **4ag** as colorless oil (60.0 mg, 71%, dr = 1.9 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.58 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 4H), 7.35-7.31 (m, 4H), 7.29-7.28 (m, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 7.2 Hz, 4H), 7.19 (t, J = 7.2 Hz, 2H), 7.16 (d, J = 7.2 Hz, 4H), 7.09 (d, J = 7.2 Hz, 4H), 4.74 (d, J = 6.4 Hz, 2H), 4.70 (d, J = 7.2 Hz, 1H), 3.87-3.84 (m, 12H), 3.11-3.08 (m, 2H), 3.06-3.03 (m, 1H), 1.81-1.75 (m, 5H), 1.69-1.66 (m, 3H), 1.64-1.60 (m, 5H), 1.60-1.58 (m, 2H), 1.53-1.51 (m, 2H), 1.44 (d, J = 13.6 Hz, 1H), 1.37-1.32 (m, 3H), 1.31-1.27 (m, 5H), 1.24-1.20 (m, 3H), 1.14-1.07 (m, 3H), 1.02-0.94 (m, 3H), 0.92-0.87 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.9, 142.5, 142.4, 133.5, 130.1, 129.15, 129.10, 128.7 (q, J = 32 Hz), 128.48, 128.46, 128.1, 127.5, 126.7, 126.3, 125.3 (q, J = 3.8 Hz), 125.0 (q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 108.97, 108.91, 78.9, 78.4, 64.15, 64.13, 51.2, 50.9, 38.5, 35.9, 34.3, 34.2, 34.08, 34.02, 33.3, 33.1, 31.4, 31.2, 28.7, 28.6; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₄H₂₇F₃O₃Na⁺: 443.1805; found, 443.1800.

1-Phenyl-3-(tetrahydro-2H-pyran-4-yl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (**4ah**) The resultant residue was purified by flash silica gel column chromatography to afford **4ah** as yellow oil (56.8 mg, 78%, dr = 1.4 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.34-7.29 (m, 4H), 7.24-7.19 (m, 6H), 7.13 (d, J = 8.0 Hz, 2H), 7.09-7.07 (m, 2H), 4.75-4.73 (m, 2H), 3.85-3.81 (m, 3H), 3.80-3.77 (m, 1H), 3.22-3.17 (m, 2H), 3.16-3.11 (m, 4H), 3.08-3.05 (m, 1H), 2.03 (s, 1H), 1.86-1.79 (m, 3H), 1.71-1.67 (m, 1H), 1.55-1.51 (m, 2H), 1.40-1.38 (m, 1H), 1.33-1.25 (m, 3H), 1.18-1.15 (m, 2H), 1.13-1.08 (m, 1H), 1.06-1.01 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.5, 142.4, 129.14, 129.12, 128.7 (q, J = 32 Hz), 128.4, 128.09, 128.06, 127.6, 126.6, 126.3, 125.3 (q, J = 3.6 Hz), 125.0 (q, J = 3.6 Hz), 124.2 (q, J = 270 Hz), 78.7, 78.5, 67.8, 67.71, 67.68, 67.6, 50.3, 50.1, 39.1, 37.0, 34.0, 33.8, 32.1, 31.94, 31.91, 31.87; HRMS-ESI (m/z) [M + Na]⁺ calcd for C_{21H23F₃O₂Na⁺: 387.1542; found, 387.1545.}

Tert-butyl4-(3-hydroxy-3-phenyl-2-(4-

(trifluoromethyl)phenyl)propyl)piperidine-1-carboxylate (4ai) The resultant residue was purified by flash silica gel column chromatography to afford 4ai as black oil (80.8 mg, 87%, dr = 2.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 3H), 7.33-7.31 (m, 2H), 7.30-7.27 (m, 1H), 7.23-7.20 (m, 4H),

7.19-7.17 (m, 1H), 7.14 (d, J = 8.0 Hz, 3H), 7.08-7.07 (m, 3H), 4.72 (t, J = 6.4 Hz, 2H), 3.93 (s, 4H), 3.11-3.08 (m, 1H), 3.07-3.04 (m, 1H), 2.44-2.28 (m, 6H), 1.81-1.79 (m, 3H), 1.69-1.66 (m, 1H), 1.58 (d, J = 12.8 Hz, 2H), 1.41 (s, 12H), 1.39 (s, 6H), 1.28-1.25 (m, 1H), 1.09-1.06 (m, 3H), 1.02-0.93 (m, 3H), 0.82-0.81 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 154.7, 154.6, 145.7, 145.6, 142.5, 142.4, 129.1, 129.0, 128.6 (q, J = 32Hz), 128.4, 128.01, 127.97, 127.5, 126.6, 126.2, 125.3 (q, J = 3.0 Hz), 125.0 (q, J = 3.0Hz), 124.19 (q, J = 270 Hz), 124.17 (q, J = 270 Hz), 148.3, 142.0, 127.2, 126.5, 125.2, 121.9, 79.20, 79.19, 78.6, 78.3, 75.0, 50.5, 50.4, 44.1, 43.2, 38.7, 36.4, 33.2, 33.1, 32.9, 30.8, 28.37, 28.35, 24.7; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₆H₃₂F₃NO₃Na⁺: 486.2226; found, 486.2223.

4,4-Dimethyl-1-phenyl-2-(4-(trifluoromethyl)phenyl)pentan-1-ol (**4aj**) The resultant residue was purified by flash silica gel column chromatography to afford **4aj** as yellow oil (57.9 mg, 86%, dr = 1.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.53 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.32-7.30 (m, 2H), 7.28-7.26 (m, 1H), 7.23-7.21 (m, 4H), 7.20-7.17 (m, 3H), 7.11-7.10 (m, 2H), 4.69-4.67 (m, 2H), 3.09-3.05 (m, 2H), 1.97-1.95 (m, 2H), 1.79-1.74 (m, 3H), 1.54-1.52 (m, 1H), 0.69 (s, 10H), 0.64 (s, 8H); ¹³C NMR (CDCl₃, 200 MHz) δ : 148.0, 147.5, 142.5, 142.4, 129.6, 129.4, 128.7 (q, J = 32 Hz), 128.4 (q, J = 32 Hz), 128.3, 128.0, 127.9, 127.4, 126.9, 126.3, 125.0 (q, J = 3.6 Hz), 124.8 (q, J = 3.6 Hz), 124.28 (q, J = 270 Hz), 124.26 (q, J = 270 Hz), 79.5, 78.9, 50.5, 50.4, 45.5, 42.9, 31.1, 31.0, 30.0, 29.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₀H₂₃F₃ONa⁺: 359.1593; found, 359.1593.

3-Cyclohexyl-1-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4ba) The resultant residue was purified by flash silica gel column chromatography to afford 4ba

as yellow oil (52.5 mg, 70%, dr = 1.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.13-7.12 (m, 6H), 7.01 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H), 4.69 (d, J = 6.4 Hz, 1H), 4.66 (d, J = 8.0 Hz, 1H), 3.14-3.11 (m, 1H), 3.08-3.05 (m, 1H), 2.34 (s, 3H), 2.28 (s, 3H), 1.92 (s, 1H), 1.74-1.67 (m, 5H), 1.60-1.50 (m, 9H), 1.43-1.41 (m, 1H), 1.23-1.88 (m, 1H), 1.09-1.05 (m, 2H), 1.04-0.96 (m, 4H), 0.94-0.89 (m, 2H), 0.81-0.75 (m, 2H), 0.66-0.61 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.3, 146.1, 139.6, 139.4, 137.6, 137.1, 129.2, 129.12, 129.07, 128.71 (q, J = 32 Hz), 128.70, 128.4 (q, J = 32 Hz), 126.7, 126.3, 125.2 (q, J = 3.6 Hz), 124.8 (q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 78.7, 78.4, 50.6, 50.2, 39.7, 37.6, 34.6, 34.5, 34.38, 34.37, 32.0, 31.9, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.1, 21.0; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₃H₂₇F₃ONa⁺: 399.1906; found, 399.1907.

3-Cyclohexyl-1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (**4bb**) The resultant residue was purified by flash silica gel column chromatography to afford **4bb** as yellow oil (63.5 mg, 81%, dr = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.17 (dt, J = 8.8, 3.2 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.98-6.96 (m, 2H), 6.87-6.85 (m, 2H), 6.74-6.72 (m, 2H), 4.67 (d, J = 6.4 Hz, 1H), 4.65 (d, J = 8.0 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 3.13-3.10 (m, 1H), 3.06-3.03 (m, 1H), 1.93 (s, 1H), 1.77-1.74 (m, 1H), 1.72-1.66 (m, 4H), 1.62-1.50 (m, 9H), 1.43-1.40 (m, 1H), 1.21-1.18 (m, 1H), 1.09-1.06 (m, 2H), 1.03-0.96 (m, 4H), 0.94-0.90 (m, 2H), 0.81-0.76 (m, 2H), 0.66-0.61 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 159.2, 158.8, 146.3, 146.0, 134.7, 134.6, 129.2, 129.1, 128.8 (q, J = 32 Hz), 128.4 (q, J = 32 Hz), 127.9, 127.5, 125.2 (q, J = 3.6 Hz), 124.8

34.6, 34.5, 34.4, 34.3, 32.0, 31.8, 26.5, 26.4, 26.2, 26.1, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₃H₂₇F₃O₂Na⁺: 415.1855; found, 415.1856.

(q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 113.7, 113.3, 78.5, 78.2, 55.2, 55.1, 39.7, 37.8,

3-Cyclohexyl-1-(4-fluorophenyl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4bc) The resultant residue was purified by flash silica gel column chromatography to afford **4bc** as yellow oil (51.0 mg, 67%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.22-7.20 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 7.04-7.00 (m, 4H), 6.89 (t, J = 8.8 Hz, 2H), 4.71-4.70 (m, 2H), 3.11-3.08 (m, 1H), 3.04-3.01 (m, 1H), 1.98 (s, 1H), 1.77 (s, 1H), 1.74-1.65 (m, 4H), 1.61-1.51 (m, 9H), 1.45-1.42 (m, 1H), 1.27-1.89 (m, 1H), 1.09-0.97 (m, 6H), 0.94-0.90 (m, 2H), 0.82-0.75 (m, 2H), 0.66-0.61 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 162.3 (d, J = 244 Hz), 162.0 (d, J = 244 Hz), 145.72, 145.67, 138.3 (d, J = 3.4 Hz), 138.2 (d, J = 3.0 Hz), 129.2, 129.1, 129.0 (q, J = 32 Hz), 128.6 (q, J = 32 Hz), 128.33, 128.29, 128.0, 127.9, 125.3 (q, J = 3.6 Hz), 124.9 (q, J = 3.6 Hz), 124.2 (q, J = 270 Hz), 124.0 (q, J = 270 Hz), 115.2 (d, J = 21 Hz), 114.8 (d, J = 21 Hz), 78.1, 77.9, 50.9, 50.5, 39.6, 37.5, 34.6, 34.5, 34.4, 34.3, 32.0, 31.9, 26.5, 26.4, 26.1, 26.0, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂F₄ONa⁺: 403.1655; found, 403.1652.

1-(4-Chlorophenyl)-3-cyclohexyl-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4bd) The resultant residue was purified by flash silica gel column chromatography to afford **4bd** as yellow oil (63.3 mg, 80%, dr = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.56 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.30-7.28 (m, 4H), 7.18 (d, J = 8.0 Hz, 4H), 7.11 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 4.69-4.67 (m, 2H), 3.10 (m, 1H), 3.03-3.00 (m, 1H), 2.05 (s, 1H), 1.83 (s, 1H), 1.70-1.65 (m, 4H), 1.61-1.49 (m, 9H), 1.45-1.43 (m, 1H), 1.23-1.21 (m, 1H), 1.09-1.05 (m, 2H), 1.05-0.96 (m, 4H), 0.94-0.91 (m, 2H), 0.82-0.73 (m, 2H), 0.68-0.61 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.53, 145.48, 141.0, 140.9, 133.5, 133.1, 129.2, 129.1, 128.8 (q, J = 32 Hz), 128.5, 128.14, 128.07, 127.7, 125.3 (q, *J* = 3.8 Hz), 125.0 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 270 Hz), 78.1, 77.8, 50.7, 50.4, 39.5, 37.3, 34.6, 34.5, 34.4, 34.3, 31.92, 31.89, 26.5, 26.4, 26.1, 26.0, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₄ClF₃ONa⁺: 419.1360; found, 419.1346.

1-(4-Bromophenyl)-3-cyclohexyl-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4be) The resultant residue was purified by flash silica gel column chromatography to afford **4be** as yellow oil (59.8 mg, 67%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ :7.57 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 7.2 Hz, 2H), 7.13-7.11 (m, 4H), 6.95 (d, J = 8.8 Hz, 2H), 4.71-4.68 (m, 2H), 3,11-3.08 (m, 1H), 3.03-3.00 (m, 1H), 1.96 (s, 1H), 1.77 (s, 1H), 1.79-1.65 (m, 4H), 1.61-1.50 (m, 9H), 1.45-1.43 (m, 1H), 1.24-1.20 (m, 1H), 1.10-1.05 (m, 2H), 1.05-0.96 (m, 4H), 0.95-0.89 (m, 2H), 0.83-0.73 (m, 2H), 0.67-0.62 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.5, 145.4, 141.5, 141.4, 131.4, 131.1, 129.2, 129.1, 129.0 (q, J = 32 Hz), 128.7 (q, J = 32 Hz), 128.4, 128.1, 125.3 (q, J = 3.6 Hz), 125.0 (q, J = 3.6Hz), 124.42 (q, J = 270 Hz), 124.41 (q, J = 270 Hz), 121.7, 121.2, 78.1, 77.8, 50.6, 50.3, 39.5, 37.3, 34.6, 34.5, 34.4, 34.3, 31.91, 31.88, 26.44, 26.37, 26.37, 26.1, 26.0, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₄BrF₃ONa⁺: 463.0855; found, 463.0858.

3-Cyclohexyl-1-(4-(trifluoromethoxy)phenyl)-2-(4-(trifluoromethyl)phenyl)-

propan-1-ol (**4bf**) The resultant residue was purified by flash silica gel column chromatography to afford **4bf** as yellow oil (49.0 mg, 55%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.3 (d, J = 8.0 Hz, 2H), 7.27-7.25 (m, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.13-7.10 (m, 4H), 7.06 (d, J = 8.8 Hz, 2H), 7.11 (d, J = 8.8

8.0 Hz, 2H), 4.75 (t, J = 8.0 Hz, 2H), 3.11-3.09 (m, 1H), 3.05-3.02 (m, 1H), 1.99 (s, 1H), 1.78 (s, 1H), 1.73-1.70 (m, 2H), 1.69-1.64 (m, 2H), 1.61-1.51 (m, 9H), 1.46-1.44 (m, 1H), 1.25-1.21 (m, 1H), 1.09-1.05 (m, 2H), 1.05-0.97 (m, 4H), 0.95-0.90 (m, 2H), 0.82-0.74 (m, 2H), 0.68-0.63 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 148.7, 148.4, 145.5, 145.4, 141.2, 141.1, 129.2, 129.1, 128.8 (q, J = 32 Hz), 128.1, 127.8, 125.3 (q, J = 3.6 Hz), 125.0 (q, J = 3.6 Hz), 124.22 (q, J = 270 Hz), 124.19 (q, J = 270 Hz), 120.8, 120.5, 120.44 (q, J = 270 Hz), 120.40 (q, J = 270 Hz), 78.0, 77.8, 50.8, 50.5, 39.5, 37.3, 34.6, 34.5, 34.4, 34.3, 31.93, 31.92, 26.4, 26.3, 26.1, 26.0, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₃H₂₄F₆O₂Na⁺: 469.1573; found, 469.1570.

3-Cyclohexyl-1-(2-fluorophenyl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4bg) The resultant residue was purified by flash silica gel column chromatography to afford **4bg** as yellow oil (57.5 mg, 76%, dr = 1.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.54 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.25-7.20 (m, 4H), 7.19-7.15 (m, 2H), 7.07-7.02 (m, 3H), 6.91-6.89 (m, 1H), 5.12 (d, J = 7.2 Hz, 1H), 5.02 (d, J = 5.6 Hz, 1H), 3.22-3.20 (m, 1H), 3.14-3.11 (m, 1H), 2.04 (s, 1H), 1.83 (s, 1H),1.77-1.73 (m, 1H), 1.72-1.66 (m, 4H), 1.60-1.56 (m, 4H), 1.72-1.66 (m, 4H), 1.34-1.29 (m, 1H), 1.09-0.97 (m, 6H), 0.94-0.87 (m, 3H), 0.84-0.78 (m, 1H), 0.76-0.65 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 159.7 (d, J = 244 Hz), 159.5 (d, J = 244 Hz), 146.0, 145.6, 129.8 (d, J = 12.6 Hz), 129.64 (q, J = 12.6 Hz), 129.2, 127.09 (d, J = 8.2 Hz), 129.0, 128.93 (d, J = 8.4 Hz), 128.6 (q, J = 32 Hz), 128.17 (d, J = 4.2 Hz), 127.77 (d, J= 4.2 Hz), 125.1 (q, J = 3.6 Hz), 125.0 (q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 124.2 (d, J = 3.4 Hz), 123.9 (d, J = 3.4 Hz), 115.2 (d, J = 7.2 Hz), 115.1 (d, J = 7.2 Hz), 72.7, 71.7, 49.8, 49.2, 39.4, 36.9, 34.59, 34.56, 34.4, 34.2, 32.0, 31.9, 26.5, 26.4, 26.2, 26.1, 25.90, 25.88; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₂H₂₅F₄O⁺: 381.1836; found, 381.1833.

1-(2-Chlorophenyl)-3-cyclohexyl-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4bh) The resultant residue was purified by flash silica gel column chromatography to afford **4bh** as yellow oil (58.8 mg, 74%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.53 (d, J = 8.0 Hz, 2H), 7.50-7.48 (m, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.33 (dd, J = 0.8, 8.0 Hz, 1H), 7.28 (dd, J = 0.8, 8.0 Hz, 1H), 7.25 (td, J = 1.6, 8.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.16 (qd, J = 1.6, 8.0 Hz, 2H), 7.11 (td, J = 0.8, 8.0 Hz, 1H), 7.04 (dd, J = 1.6, 8.0 Hz, 1H), 5.30 (d, J = 5.6 Hz, 1H), 5.13 (d, J = 4.8 Hz, 1H), 3.31-3.28 (m, 1H), 3.20-3.18 (m, 1H), 2.00 (s, 1H), 1.88 (s, 1H), 185-1.80 (m, 2H), 1.61-1.57 (m, 6H), 1.53-1.49 (m, 4H), 145-1.42 (m, 1H), 1.10-0.94 (m, 7H), 0.90-0.83 (m, 3H), 0.77-0.72 (m, 1H), 0.63-0.58 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.8, 145.1, 140.2, 140.0, 132.1, 131.7, 129.5, 129.4, 129.2, 128.9, 128.8 (q, J = 31 Hz), 128.7 (q, J = 32 Hz), 128.6, 128.5, 128.4, 127.8, 126.8, 126.6, 125.1 (q, J = 3.6 Hz), 124.9 (q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 74.8, 73.8, 48.9, 47.39, 47.38, 39.6, 35.01, 34.99, 34.60, 34.57, 34.5, 34.2, 32.2, 31.7, 26.5, 26.2, 26.1, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]+ calcd for C₂₂H₂₄ClF₃ONa+: 419.1360; found, 419.1357.

3-Cyclohexyl-1-(o-tolyl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4bi) The resultant residue was purified by flash silica gel column chromatography to afford 4bi as yellow oil (51.9 mg, 69%, dr = 1.5 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.56 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 1.6 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.20-7.10 (m, 6H), 7.01 (d, J = 8.0 Hz, 1H), 5.03 (d, J = 7.2 Hz, 1H), 4.95 (d, J = 5.6 Hz, 1H), 3.15-3.11 (m, 2H), 2.39 (s, 3H), 2.11 (s, 3H), 1.85-1.81 (m, 1H), 1.79-1.75 (m, 2H), 1.71-1.66 (m, 2H), 1.64-1.61 (m, 2H), 1.60-1.57 (m, 3H), 1.56-1.51 (m, 4H), 1.46-1.43 (m, 1H), 1.29-1.25 (m, 1H), 1.08-1.00 (m, 4H), 0.99-

0.94 (m, 2H), 0.93-0.86 (m, 3H), 0.83-0.78 (m, 1H), 0.73-0.64 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.6, 145.0, 141.1, 140.7, 135.0, 134.4, 130.4, 130.3, 129.3, 128.9, 128.5 (q, J = 32 Hz), 127.5, 127.3, 126.3, 126.2, 126.1, 125.0, 125.1 (q, J = 3.6 Hz), 125.0 (q, J = 3.6 Hz), 124.30 (q, J = 270 Hz), 124.26 (q, J = 270 Hz), 74.6, 74.4, 49.9, 48.9, 39.4, 36.4, 34.7, 34.5, 34.4, 31.9, 31.8, 26.5, 26.4, 26.2, 26.1, 25.89, 25.86, 19.5, 19.1; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₃H₂₇F₃ONa⁺: 399.1906; found, 399.1905.

3-Cyclohexyl-1-(3-fluorophenyl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4bj) The resultant residue was purified by flash silica gel column chromatography to afford **4bf** as yellow oil (36.0 mg, 47%, dr = 1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H, 7.47 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.29-7.27 (m, 1H), 7.18-7.14 (m, 3H), 7.01 (d, J = 7.2 Hz, 1H), 6.99-6.96 (m, 2H), 6.89-6.86 (m, 2H), 6.82 (d, J = 8.0 Hz, 1H), 4.72 (t, J = 8.0 Hz, 2H), 3.12-3.09 (m, 1H), 3.05-3.02 (m, 1H), 2.01 (s, 1H), 1.82 (s, 1H), 1.75-1.71 (m, 1H), 1.71-1.66 (m, 3H), 1.63-1.49 (m, 9H), 1.46-1.44 (m, 1H), 1.25-1.22 (m, 1H), 1.08-1.05 (m, 2H), 1.05-0.96 (m, 4H), 0.94-0.89 (m, 2H), 0.83-0.79 (m, 1H), 0.78-0.72 (m, 1H), 0.69-0.62 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 162.8 (d, J = 244 Hz), 162.6 (d, J = 244 Hz), 145.7, 145.5, 145.2 (d, J = 6.4Hz), 129.8 (d, J = 8.2 Hz), 129.5 (d, J = 8.0 Hz), 129.2, 129.1, 129.0 (q, J = 32 Hz), 128.7 (q, J = 32 Hz), 125.3 (q, J = 3.6 Hz), 125.0 (q, J = 3.6 Hz), 124.24 (q, J = 270 Hz), 124.22 (q, J = 270 Hz), 122.4 (d, J = 2.8 Hz), 122.0 (d, J = 3.2 Hz), 114.7 (d, J =20.8 Hz), 114.3 (d, J = 21 Hz), 113.6 (d, J = 21.8 Hz), 113.2 (d, J = 22 Hz), 78.1, 77.9, 50.7, 50.4, 39.6, 37.1, 34.6, 34.5, 34.4, 34.3, 31.91, 31.90, 26.5, 26.4, 26.1, 26.0, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₄F₄ONa⁺: 403.1655; found, 403.1655.

1-(3-Chlorophenyl)-3-cyclohexyl-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4**b**k) The resultant residue was purified by flash silica gel column chromatography to afford **4bg** as yellow oil (47.7 mg, 60%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.26-7.23 (m, 3H), 7.17-7.12 (m, 5H), 7.10-7.08 (m, 1H), 6.91-6.90 (d, J = 8.0 Hz, 1H), 4.68 (t, J = 6.4 Hz, 2H), 3.10-3.08 (m, 1H), 3.04-3.02 (m, 1H), 2.03 (s, 1H), 1.82 (s, 1H), 1.72-1.66 (m, 4H), 1.61-1.50 (m, 9H), 1.46-1.44 (m, 1H), 1.24-1.22 (m, 1H), 1.08-1.03 (m, 4H), 1.00-0.97 (m, 2H), 0.94-0.90 (m, 2H), 0.83-0.80 (m, 1H), 0.77-0.73 (m, 1H), 0.86-0.63 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.6, 145.4, 144.64, 144.61, 134.3, 134.1, 129.6, 129.23, 129.17, 129.1, 128.7 (q, J = 32 Hz), 128.0, 127.6, 126.9, 126.4, 126.3, 125.3 (q, J = 3.6 Hz), 125.0 (q, J = 3.6 Hz), 124.9, 124.5, 124.2 (q, J = 270 Hz), 78.1, 77.9, 50.7, 50.4, 39.5, 37.1, 34.6, 34.5, 34.4, 34.3, 31.9, 26.5, 26.4, 26.1, 26.0, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₄ClF₃ONa⁺: 419.1360; found, 419.1358.

3-Cyclohexyl-1-(m-tolyl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4bl) The resultant residue was purified by flash silica gel column chromatography to afford 4bl as yellow oil (52.3 mg, 69%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.56 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.21 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.10-7.08 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 7.2 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.84 (s, 1H), 4.68-4.65 (m, 2H), 3.13-3.11 (m, 1H), 3.09-3.05 (m, 1H), 2.33 (s, 3H), 2.24 (s, 3H), 1.95 (s, 1H), 1.76-1.66 (m, 5H), 1.60-1.51 (m, 9H), 1.45-1.42 (m, 1H), 1.24-1.21 (m, 1H), 1.10-1.06 (m, 2H), 1.05-0.96 (m, 4H), 0.95-0.89 (m, 2H), 0.82-0.75 (m, 2H), 0.67-0.62 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.2, 146.1, 142.5, 142.41, 142.39, 138.0, 137.6, 129.2, 129.1, 128.8 (q, J = 3.6 Hz), 124.8 (q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 123.8, 123.4, 78.9, 78.6, 50.6, 50.4, 39.6, 37.4, 34.61, 34.58, 34.4, 34.3, 32.0, 31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 14.23, 20.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 20.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 20.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 20.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 20.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 20.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 20.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8, 26.5, 26.4, 26.2, 26.1, 25.93, 25.86, 21.4, 26.31.8

21.3; HRMS-ESI (m/z) $[M + Na]^+$ calcd for C₂₃H₂₇F₃ONa⁺: 399.1906; found, 399.1902.

3-Cyclohexyl-1-(2,4-dichlorophenyl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol

(**4bm**) The resultant residue was purified by flash silica gel column chromatography to afford **4bm** as yellow oil (51.0 mg, 59%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.55 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 2.4 Hz, 1H), 7.31 (d, J = 1.6 Hz, 1H), 7.25 (dd, J = 2.4, 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.09 (dd, J = 2.4, 8.0 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 5.26-5.25 (m, 1H), 5.11-5.10 (m, 1H), 3.25 (td, J = 12.0, 4.0 Hz, 1H), 3.15-3.12 (m, 1H), 1.95 (d, J = 4.0 Hz, 1H), 1.86 (d, J = 4.0 Hz, 1H), 1.85-1.81 (m, 2H), 1.71-1.69 (m, 1H), 1.62-1.54 (m, 7H), 1.52-1.49 (m, 2H), 1.45-1.41 (m, 2H), 1.11-1.01 (m, 5H), 1.01-1.97 (m, 2H), 0.89-0.85 (m, 3H), 0.75 (qd, J = 4.0, 12.0 Hz, 1H), 0.63-0.58 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.3, 144.6, 138.9, 138.7, 133.59, 133.56, 132.6, 132.3, 129.5, 129.4, 129.2, 129.0 (q, J = 32 Hz), 128.89, 128.87 (q, J = 32 Hz), 128.8, 127.1, 127.0, 125.2 (q, J = 3.6 Hz), 124.9 (q, J = 3.6 Hz), 124.2 (q, J = 270 Hz), 74.3, 73.3, 48.8, 47.3, 39.6, 34.9, 34.61, 34.56, 34.3, 34.2, 32.2, 31.8, 26.44, 26.43, 26.2, 26.1, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₃Cl₂F₃ONa⁺: 453.0970; found, 453.0965.

3-Cyclohexyl-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-(4-

(trifluoromethyl)phenyl)propan-1-ol (4bn) The resultant residue was purified by flash silica gel column chromatography to afford 4bn as yellow oil (61.1 mg, 73%, dr = 1.3 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.82-6.81 (m, 2H), 6.73 (dd, J = 8.0, 2.4 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.65 (d, J = 2.4 Hz, 1H), 6.51 (dd, J = 8.0,
1.6 Hz, 1H), 4.61 (d, J = 6.4 Hz, 1H), 4.56 (d, J = 8.0 Hz, 1H), 4.25 (s, 4H), 4.20-4.19 (m, 4H), 3.10-3.07 (m, 1H), 3.04-3.01 (m, 1H), 1.93 (s, 1H), 1.75-1.72 (m, 2H), 1.71-1.67 (m, 4H), 1.61-1.57 (m, 4H), 1.55-1.50 (m, 6H), 1.43-1.40 (m, 1H), 1.22-1.18 (m, 1H), 1.08-1.06 (m, 3H), 0.94-0.87 (m, 3H), 0.83-0.76 (m, 3H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.3, 146.1, 143.4, 143.2, 143.1, 142.7, 136.0, 129.1, 129.0, 128.7 (q, J = 32 Hz), 128.4 (q, J = 32 Hz), 125.2 (q, J = 3.6 Hz), 124.8 (q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 119.8, 119.4, 117.1, 116.7, 115.6, 115.2, 78.5, 78.0, 64.3, 64.25, 64.24, 50.6, 50.2, 39.7, 37.5, 34.6, 34.5, 34.4, 31.9, 31.8, 26.5, 26.4, 26.2, 26.1, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₄H₂₇F₃O₃Na⁺: 443.1805; found, 443.1797.

3-Cyclohexyl-1-(furan-2-yl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (**4bo**) The resultant residue was purified by flash silica gel column chromatography to afford **4bo** as yellow oil (41.9 mg, 59%, dr = 1.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 1.6 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 1.6 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 6.32 (dd, J = 1.6, 3.2 Hz, 1H), 6.18 (d, J = 3.2 Hz, 1H), 5.98 (d, J = 3.2 Hz, 1H), 4.76 (d, J = 8.0 Hz, 1H), 4.73 (d, J = 7.2 Hz, 1H), 3.32-3.29 (m, 2H), 2.06 (s, 1H), 1.80-1.69 (m, 5H), 1.64-1.51 (m, 9H), 1.49-1.46 (m, 1H), 1.30-1.27 (m, 1H), 1.10-1.02 (m, 6H), 0.98-0.92 (m, 2H), 0.86-0.80 (m, 2H), 0.77-0.72 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 154.8, 145.8, 145.7, 142.0, 141.6, 129.1 (q, J = 32 Hz), 129.0, 128.8, 128.6 (q, J = 32 Hz), 125.3 (q, J = 3.6 Hz), 125.0 (q, J = 3.6 Hz), 124.9, 124.26 (q, J = 270 Hz), 110.2, 110.1, 107.5, 106.9, 72.4, 72.0, 48.2, 48.1, 39.6, 37.9, 34.6, 34.5, 34.4, 34.3, 32.04, 32.01, 26.48, 26.47, 26.4, 26.14, 26.06, 25.92, 25.87; HRMS-ESI (m/z) [M + Na]+ calcd for C₂₀H₂₃F₃O₂Na⁺: 375.1542; found, 375.1539.

3-Cyclohexyl-1-(thiophen-2-yl)-2-(4-(trifluoromethyl)phenyl)propan-1-ol (4bp) The resultant residue was purified by flash silica gel column chromatography to afford **4bp** as yellow oil (51.8 mg, 70%, dr = 1.1 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.59 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 0.8, 4.8 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 5.6 Hz, 1H), 6.96-6.94 (m, 2H), 6.84-6.83 (m, 1H), 6.66 (d, J = 4.0 Hz, 1H), 5.00 (d, J = 8.0 Hz, 2H), 3.18-3.16 (m, 1H), 3.13-3.10 (m, 1H), 2.15 (s, 1H), 1.91 (s, 1H), 1.85-1.82 (m, 1H), 1.77-1.72 (m, 3H), 1.64-1.57 (m, 5H), 1.56-1.51 (m, 3H), 1.45-1.43 (m, 1H), 1.33-1.30 (m, 1H), 1.11-1.08 (m, 2H), 1.06-1.00 (m, 4H), 0.97-0.92 (m, 2H), 0.88-0.81 (m, 3H), 0.74-0.69 (m, 1H); ¹³C NMR (CDCl₃, 200 MHz) δ : 146.6, 146.3, 145.9, 145.8, 129.05, 129.03 (q, J = 32Hz), 129.02, 128.7 (q, J = 32 Hz), 126.46, 126.43, 125.4 (q, J = 3.6 Hz), 125.2, 125.1, 125.0 (q, J = 3.6 Hz), 124.4, 124.3 (q, J = 270 Hz), 124.2, 74.8, 74.5, 51.4, 50.9, 39.9, 37.9, 34.59, 34.57, 34.4, 32.0, 31.8, 26.5, 26.4, 26.2, 26.1, 25.9, 25.8; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₀H₂₃F₃OSNa⁺: 391.1314; found, 391.1312.

Ethyl-2-(3-(3-cyclohexyl-1-hydroxy-2-(4-(trifluoromethyl)phenyl)propyl)-4isobutoxyphenyl)-4-methylthiazole-5-carboxylate (4bq) The resultant residue was purified by flash silica gel column chromatography to afford 4bq as yellow oil (72.3 mg, 60%, dr = 3 : 1); ¹H NMR (CDCl₃, 400 MHz) δ : 7.86-7.80 (m, 2H), 7.58-7.45 (m, 6H), 7.24 (d, J = 8.0 Hz, 4H), 6.84 (d, J = 8.8 Hz, 2H), 5.17 (d, J = 6.4 Hz, 1H), 4.98 (d, J = 6.0 Hz, 1H), 4.37-4.29 (m, 4H), 3.86-3.82 (m, 2H), 3.79-3.67 (m, 3H), 3.35-3.30 (m, 1H), 3.20-3.15 (m, 1H), 2.74 (d, J = 2.0 Hz, 6H), 2.38 (s, 1H), 2.16-2.09 (m, 2H), 1.83-1.76 (m, 2H), 1.72-1.67 (m, 3H), 1.59-1.53 (m, 8H), 1.46-1.43 (m, 1H), 1.40-1.36 (m, 6H), 1.11-1.05 (m, 12H), 1.03-0.98 (m, 7H), 0.89-0.82 (m, 3H), 0.76-0.67 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 169.8, 162.4, 160.9, 158.0, 145.7, 131.6, 131.1, 129.3, 129.0, 128.8, 127.0, 126.9, 126.7, 125.3, 124.9 (q, *J* = 3.7 Hz), 120.8, 111.3, 74.7, 73.1, 61.1, 49.0, 48.4, 39.8, 34.6, 34.3, 32.2, 31.9, 29.7, 28.4, 26.5, 26.1, 25.9, 19.5, 19.45, 19.44, 17.51, 17.49, 14.34, 14.32; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₃₃H₄₀F₃NO₄SNa⁺: 626.2522; found, 626.2513.

1-Cyclohexyl-5-(4-isopropylphenyl)-4-methyl-2-(4-

(trifluoromethyl)phenyl)pentan-3-ol (4br) The resultant residue was purified by flash silica gel column chromatography to afford **4br** as yellow oil (29.0 mg, 32%, dr = 1: 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.59 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 4H), 6.92 (d, J =8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 3.53 (dd, J = 2.4, 9.6 Hz, 1H), 3.51 (t, J = 5.6 Hz, 1H), 3.04-3.01 (m, 1H), 2.97 (dd, *J* = 4.0, 15.6 Hz, 1H), 2.89-2.83 (m, 3H), 2.59-2.57 (m, 1H), 2.47-2.44 (m, 1H), 2.23-2.20 (m, 1H), 1.83-1.79 (m, 2H), 1.78-1.76 (m, 1H), 1.71-1.69 (m, 2H), 1.68-1.65 (m, 1H), 1.64-1.62 (m, 2H), 1.60-1.66 (m, 6H), 1.53-1.49 (m, 2H), 1.47-1.42 (m, 2H), 1.41-1.39 (m, 1H), 1.24 (d, *J* = 7.2 Hz, 7H), 1.22 (d, *J* = 6.4 Hz, 5H), 1.11-1.04 (m, 4H), 1.04-0.99 (m, 2H), 0.95-0.88 (m, 3H), 0.85-0.80 (m, 8H); ¹³C NMR (CDCl₃, 200 MHz) δ: 147.6, 147.4, 146.4, 146.3, 138.2, 137.7, 129.1, 128.9, 128.8, 128.7, 128.4, 126.3, 126.2, 125.4 (q, *J* = 3.6 Hz), 125.3 (q, *J* = 3.6 Hz), 124.3 (q, J = 270 Hz), 80.4, 46.7, 45.8, 40.4, 40.2, 37.8, 37.5, 36.8, 36.4, 34.8, 34.7, 34.6, 34.5, 33.6, 32.03, 31.97, 26.52, 26.51, 26.2, 26.18, 26.14, 25.9, 24.04, 24.03, 24.02, 17.0, 12.3; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₈H₃₇F₃ONa⁺: 469.2689; found, 469.2686.

1-Cyclohexyl-2-(4-(trifluoromethyl)phenyl)hexan-3-ol (4bs) The resultant residue was purified by flash silica gel column chromatography to afford 4bs as yellow solid

(27.0 mg, 41%, dr = 1.2 : 1); ¹H NMR (CDCl₃, 800 MHz) δ : 7.57-7.55 (m, 4H), 7.34 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 3.73-3.71 (m, 1H), 3.65-3.63 (m, 1H), 2.83-2.77 (m, 2H), 1.77-1.74 (m, 2H), 1.73-1.66 (m, 3H), 1.65-1.56 (m, 7H), 155-1.51 (m, 3H), 1.50-1.46 (m, 2H), 1.45-1.40 (m, 2H), 1.38-1.33 (m, 1H), 1.31-1.26 (m, 2H), 1.26-1.19 (m, 3H), 1.12-1.07 (m, 4H), 1.06-1.00 (m, 2H), 0.96-0.89 (m, 6H), 0.86-0.81 (m, 5H); ¹³C NMR (CDCl₃, 200 MHz) δ : 147.1, 146.1, 129.3, 128.9, 128.68 (q, J = 32 Hz), 128.57 (q, J = 32 Hz), 125.3 (q, J = 3.6 Hz), 125.1 (q, J = 3.6 Hz), 124.3 (q, J = 270 Hz), 75.6, 74.9, 49.0, 48.5, 39.9, 37.9, 37.5, 36.9, 34.68, 34.65, 34.63, 34.4, 32.4, 32.1, 26.5, 26.2, 26.1, 25.98, 25.96, 19.1, 19.0, 14.0, 13.9; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₁₉H₂₇F₃ONa⁺: 351.1906; found, 351.1910.

3-Cyclohexyl-1-phenyl-2-(4-(trifluoromethyl)phenyl)propan-1-one (5a) The resultant residue was purified by flash silica gel column chromatography to afford **5a** as colorless oil (56.9 mg, 79%); ¹H NMR (CDCl₃, 800 MHz) δ : 7.96 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 8.0 Hz, 1H), 7.44-7.41 (m, 4H), 4.80 (t, J = 7.2 Hz, 1H), 2.15-2.11 (m, 1H), 1.82 (d, J = 12.4 Hz, 1H), 1.73-1.61 (m, 5H), 1.19-1.11 (m, 4H), 0.97-0.91 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 198.9, 143.5, 136.2, 132.7, 128.8 (q, J = 32 Hz), 128.3, 128.2, 128.1, 125.4 (q, J = 3.8 Hz), 123.7 (q, J = 270 Hz), 49.8, 41.3, 34.9, 33.1, 32.7, 26.0, 25.7, 25.6; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₃F₃ONa⁺: 383.1593; found, 383,1590.

4,4-Dimethyl-1-phenyl-2-(4-(trifluoromethyl)phenyl)pentan-1-one (5b) The resultant residue was purified by flash silica gel column chromatography to afford **5b** as colorless solid (53.5 mg, 80%); ¹H NMR (CDCl₃, 800 MHz) δ : 7.99 (d, J = 8.0 Hz, 2H), 7.53-7.51 (m, 3H), 7.46-7.43 (m, 4H), 4.80 (dd, J = 3.2, 8.8 Hz, 1H), 2.64-2.61 (.,

1H), 1.58 (dd, J = 4.0, 13.6 Hz, 1H), 0.89 (s, 9H); ¹³C NMR (CDCl₃, 200 MHz) δ : 198.7, 144.4, 136.0, 132.5, 128.5 (q, J = 32 Hz), 128.1, 127.9, 127.8, 125.2 (q, J = 3.6 Hz), 123.5 (q, J = 270 Hz), 48.7, 47.0, 30.7, 29.2; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₀H₂₁F₃O⁺: 357.1437; found, 357.1434.

1-(4-Chlorophenyl)-3-cyclohexyl-2-(4-(trifluoromethyl)phenyl)propan-1-one (5c) The resultant residue was purified by flash silica gel column chromatography to afford **5c** as colorless oil (63.9 mg, 81%); ¹H NMR (CDCl₃, 800 MHz) δ : 7.89 (d, *J* = 8.8 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.8 Hz, 2H), 4.73 (t, *J* = 7.2 Hz, 1H), 2.13-2.10 (m, 1H), 1.82-1.79 (m, 1H), 1.72-1.67 (m, 2H), 1.66-1.59 (m, 3H), 1.19-1.11 (m, 4H), 0.97-0.90 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 197.6, 143.1, 139.1, 134.3, 129.4, 128.8 (q, *J* = 32 Hz), 128.5, 127.9, 125.3 (q, *J* = 3.6 Hz), 123.5 (q, *J* = 270 Hz), 49.7, 41.0, 34.7, 32.9, 32.5, 25.8, 25.5, 25.4; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₂₂H₂₂ClF₃ONa⁺: 417.1203; found, 417.1194.

3-Cyclohexyl-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-(4-

(trifluoromethyl)phenyl)propan-1-one (5d) The resultant residue was purified by flash silica gel column chromatography to afford 5d as colorless oil (69.5 mg, 83%); ¹H NMR (CDCl₃, 800 MHz) δ : 7.54-7.51 (m, 4H), 7.43 (dd, J = 8.0 Hz, 2H), 6.87 (d, J= 9.6 Hz, 1H), 4.72 (t, J = 7.2 Hz, 1H), 4.28-4.27 (m, 2H), 4.25-4.24 (m, 2H), 2.13-2.09 (m, 1H), 1.81-1.79 (m, 1H), 1.69-1.59 (m, 5H), 1.18-1.10 (m, 4H), 0.96-0.89 (m, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 197.7, 148.2, 144.3, 143.4, 130.3, 129.1 (q, J = 32 Hz), 128.5, 125.7 (q, J = 3.8 Hz), 124.2 (q, J = 270 Hz), 122.7, 118.1, 117.3, 64.7, 64.1, 49.8, 41.7, 35.3, 33.5, 33.2, 26.4, 26.1, 26.0; HRMS-ESI (m/z) [M + Na]⁺ calcd for C_{24H25F₃O₃Na⁺: 441.1648; found, 441.1641.}

1-(2-Cyclohexylethyl-1-d)-4-(trifluoromethyl)benzene (7) The resultant residue was purified by flash silica gel column chromatography to afford **7** as colorless oil (39.5 mg, 76%); ¹H NMR (CDCl₃, 800 MHz) δ : 7.51 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 2.67-2.63 (m, 1H), 1.76 (d, *J* = 9.6 Hz, 2H), 1.72-1.69 (m, 2H) 1.67-1.64 (m, 1H), 1.50 (t, *J* = 8.0 Hz, 2H), 1.28-1.24 (m, 1H), 1.23-1.19 (m, 2H), 1.18-1.13 (m, 1H), 0.93 (qd, *J* = 4.0, 12.0 Hz, 2H); ¹³C NMR (CDCl₃, 200 MHz) δ : 145.73, 145.70, 126.9, 126.3 (q, *J* = 32.2 Hz), 123.5 (q, *J* = 4.2 Hz), 122.8 (q, *J* = 270 Hz), 37.4, 37.3, 35.62, 35.60, 31.6, 31.2, 31.1, 31.0, 24.9, 24.6; HRMS-ESI (m/z) [M + Na]⁺ calcd for C₁₅H₁₈DF₃Na⁺: 280.1394; found, 280.1396.

9. Copies of NMR spectra

4a; ¹H NMR (800 Hz, CDCl₃)

4d; ¹H NMR (800 Hz, CDCl₃)

7,748 7,742 7,742 7,742 7,742 7,7337 7,7337 7,7337 7,7337 7,

4g; ¹H NMR (800 Hz, CDCl₃)

4h; ¹H NMR (800 Hz, CDCl₃)

17,17381 17,17381 17,17381 17,17381 17,17381 17,17381 17,17381 17,17381 17,17381 17,17381 17,17381 17,1738 17,

4k; ¹H NMR (800 Hz, CDCl₃)

4m; ¹H NMR (800 Hz, CDCl₃)

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 11 (ppm)

4r; ¹H NMR (800 Hz, CDCl₃)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

4s; ¹H NMR (800 Hz, CDCl₃)

4aa; ¹H NMR (800 Hz, CDCl₃)

4ab; ¹H NMR (800 Hz, CDCl₃)

4ac; ¹H NMR (800 Hz, CDCl₃)

4ad; 1H NMR (800 Hz, CDCl3)

4ae; ¹H NMR (800 Hz, CDCl₃)

4af; ¹H NMR (400 Hz, CDCl₃)

4ag; ¹H NMR (800 Hz, CDCl₃)

4ah; ¹H NMR (800 Hz, CDCl₃)

4ai; ¹H NMR (800 Hz, CDCl₃)

4bb; ¹H NMR (800 Hz, CDCl₃)

110 100 fl (ppm)

4be; ¹H NMR (800 Hz, CDCl₃)

7.15.75 7.15.65 7.15.65 7.15.65 7.15.65 7.15.65 7.15.65 7.15.65 7.15.75 7.1

4bf; ¹H NMR (800 Hz, CDCl₃)

4bh; ¹H NMR (800 Hz, CDCl₃)

7.7531 7.489 7.489 7.489 7.489 7.489 7.489 7.489 7.489 7.7381 7.7481 7.7481 7.7481 7.7481 7.7481 7.7481 7.7481 7.7481 7.7481 7.7481 7.7

4bi; ¹H NMR (800 Hz, CDCl₃)

4bl; ¹H NMR (800 Hz, CDCl₃)

7.7.5.7 7.7.5.7 7.7.456 7.7.456 7.7.1238 7.7.1238 7.7.1238 7.7.1219 7.

4bm; ¹H NMR (800 Hz, CDCl₃)

4bn; ¹H NMR (800 Hz, CDCl₃)

4bo; ¹H NMR (800 Hz, CDCl₃)

7,1577 7,15677 7,15677 7,15677 7,15677 7,12885

4bq; ¹H NMR (400 Hz, CDCl₃)

77,212,212 77,212,212 77,212 77,212 77,212 77,212 77,212 77,212 77,212 77,212 77,212 77,212 77,212 72,212

4br; ¹H NMR (800 Hz, CDCl₃)

7.7594 7.7510 7.7510 7.7510 7.7510 7.7510 7.7510 7.7510 7.7510 7.7510 7.7510 6.837 7.7105 6.8393 6.8393 6.8393 6.8393 7.7105 6.8393 7.7105 6.8393 7.7105 7.7

4bs; ¹H NMR (800 Hz, CDCl₃)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppa)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

