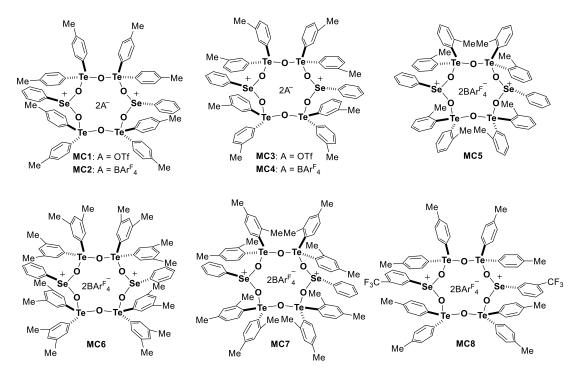
Supporting Information for

A Macrocyclic Chalcogen Bonding Catalysis System

Wei Wang,^{a,b} Baojie Yu,^a Yu-Cheng Gu*^c and Yao Wang*^a

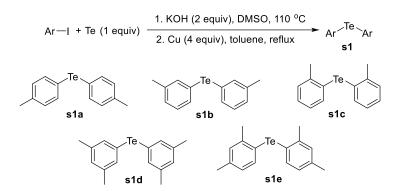
^aSchool of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry of Ministry of Education, Shandong University, Jinan 250100, China Corresponding author. *Email: yaowang@sdu.edu.cn
^bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, China
^cSyngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom. Corresponding author. Email: yucheng.gu@syngenta.com


Table of Contents:

General Information	2
Preparation of Catalysts and Glycoside Donors	2
Optimization of Reaction Condition	10
Optimized Procedure	12
Analytical Data	13
Mechanistic Study	19
X-ray Crystallographic Data	43
Copies of NMR Spectra	44
References	97
	Preparation of Catalysts and Glycoside Donors Optimization of Reaction Condition Optimized Procedure Analytical Data Mechanistic Study X-ray Crystallographic Data Copies of NMR Spectra

1. General Information

All the chemicals were either purchased from commercial suppliers or purified by standard procedures as specified in *Purification of Laboratory Chemicals*, 7th Ed (Armarego, W. L. F.; Chai, C. L. L. Butterworth Heinemann: 2013). All reactions were carried out under nitrogen atmosphere. Analytical thin-layer chromatography (TLC) was performed on silica gel plates and analyzed by UV light or by potassium permanganate stains followed by heating. Flash chromatography was carried out utilizing silica gel (200-300 mesh). ¹H NMR, ¹³C NMR spectra were recorded in CDCl₃ or CD₂Cl₂ at room temperature on a Bruker AM-400 spectrometer (400 MHz ¹H, 100 MHz ¹³C). The chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) (δ = 77.00 ppm for CDCl₃; δ = 53.84 ppm for CD₂Cl₂; δ = 29.84 ppm for (CD₃)₂CO), (¹H) (δ = 5.32 ppm for CD₂Cl₂, δ = 2.05 ppm for (CD₃)₂CO) or TMS (¹H) (δ = 0 ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet doublet), coupling constant (Hz), integration. Data for ¹³C NMR are reported as chemical shift. HRMS were performed on a Bruker Apex II mass instrument (ESI).


2. Preparation of Catalysts and Glycoside Donors

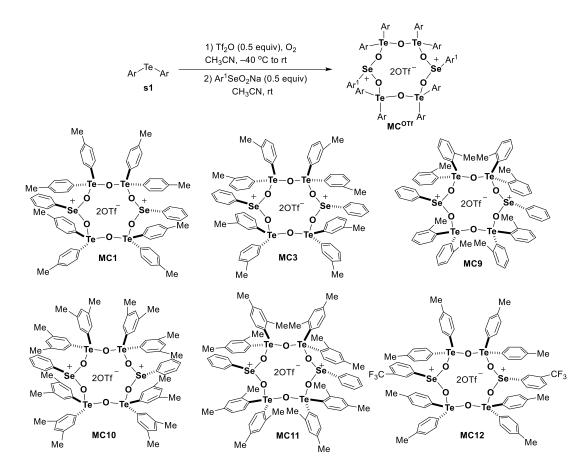
Catalysts MC1–MC8 as depicted below were evaluated in this work:

Fig. S1. Catalysts.

Catalysts MC1-MC8 were prepared using the following procedure:

To a reaction mixture of aryl iodide (120.0 mmol), Te (15.30 g, 120.0 mmol), and KOH (13.47 g, 240.0 mmol), in a 500 mL-Schlenk tube was added DMSO (240 mL) under argon atmosphere. The above reaction mixture was stirred at 110 °C for 10 h until the completion of the reaction as judged by TLC analysis. Then the reaction mixture was allowed to cool to room temperature and treated with ethyl acetate and H₂O. The organic layer was washed with sat. NH₄Cl solution, dried with Na₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel with petroleum ether to afford a mixture of diaryl tellurides and diaryl ditellurides. The copper powder (30.50 g, 480.0 mmol) was added to a solution of diaryl tellurides and diaryl ditellurides in dry toluene (200 mL) and stirred at 110 °C for 24 h until the completion of the reaction as judged by TLC analysis. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel to give the desired products **s1**.

s1a: Pale yellow solid (62% yield); (1a) ¹H NMR (400 MHz, CDCl₃): δ 7.65–7.57 (m, 4H), 7.08–7.01 (m, 4H), 2.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 138.04, 137.71, 130.33, 110.70, 21.17; HRMS (EI) exact mass calculated for C₁₄H₁₄Te [M]⁺: 312.0158, found: m/z 312.0153.


s1b: Pale yellow oil (67% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.54 (m, 2H), 7.47–7.45 (m, 2H), 7.06–7.02 (m, 4H), 2.24 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 138.99, 138.51, 134.92, 129.14, 128.55, 114.51, 21.12; HRMS (EI) exact mass calculated for C₁₄H₁₄Te [M]⁺: 312.0158, found: m/z 312.0159.

s1c: Colorless oil (71% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, J = 7.7, 1.3 Hz, 2H), 7.25–7.17 (m, 4H),
6.94 (td, J = 7.4, 1.7 Hz, 2H), 2.42 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 142.53, 138.19, 129.36, 128.34,
126.82, 118.46, 26.21; HRMS (EI) exact mass calculated for C₁₄H₁₄Te [M]⁺: 312.0158, found: m/z 312.0155.

s1d: Colorless oil (66% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.33 (s, 4H), 6.88 (s, 2H), 2.23 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 138.80, 135.63, 129.62, 114.35, 21.02; HRMS (EI) exact mass calculated for C₁₆H₁₈Te [M]⁺:

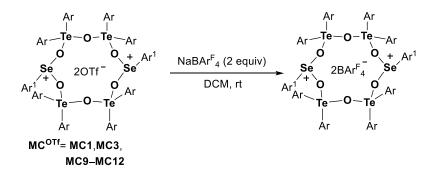
s1e: Colorless oil (63% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 7.7 Hz, 2H), 7.16 (d, J = 2.0 Hz, 2H), 6.88–6.86 (m, 2H), 2.48 (s, 6H), 2.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 142.56, 138.43, 138.30, 130.47, 127.85, 114.53, 26.27, 21.13; HRMS (EI) exact mass calculated for C₁₆H₁₈Te [M]⁺: 340.0471, found: m/z 340.0467.

The above data of product s1a-s1e is consistent with the reported references.^[1-3]

General procedure for preparation of **MC1**, **MC3** and **MC9–12**: To a suspension of diaryl tellurides **s1** (15.00 mmol) in dry CH₃CN (120.0 mL) at -40 °C under an O₂ atmosphere was added triflic anhydride (1.26 mL, 7.50 mmol). The resulting homogeneous deep red solution was stirred at room temperature for 2.5 h, during which time it became pale orange. Volatile reagents were removed under reduced pressure and then 100.0 mL dry CH₃CN and sodium selenites (7.50 mmol) was added under argon atmosphere. The above reaction was run for 64 h to generate white solid. The precipitate was filtered off and washed by anhydrous diethyl ether to afford pure catalyst.

MC1: White solid (66% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.58 (d, *J*=7.7 Hz, 26H), 7.11 (d, *J*=7.9 Hz, 16H), 2.36 (s, 24H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 141.92, 133.44,136.26, 131.99, 130.05, 129.56, 126.21,125.65,

122.46, 119.27, 116.08, 21.51; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -78.34; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₆₈H₆₆O₆Se₂Te₄) requires m/z 825.9691, found m/z 825.9693.


MC3: White solid (62% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.83–6.98 (m, 42H), 2.16 (s, 24H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 139.33, 134.32, 131.98, 130.60, 129.53, 129.05, 126.17, 122.45, 119.26, 21.44; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -78.66; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₆₈H₆₆O₆Se₂Te₄) requires m/z 825.9691, found m/z 825.9693.

MC9: White solid (53% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.71–6.87 (m, 42H), 2.24 (s, 24H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 146.23, 141.98, 137.35, 132.90, 132.90, 132.68, 132.63, 131.73, 129.74, 127.94, 125.44, 122.43, 119.24, 116.05, 23.20; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -78.79; ⁷⁷Se NMR (76 MHz, CD₂Cl₂): δ 1183.64; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₆₈H₆₆O₆Se₂Te₄) requires m/z 825.9691, found m/z 825.9690.

MC10: White solid (72% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.78–6.78 (m, 34H), 2.16 (s, 48H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 139.26, 133.14, 132.04, 130.86, 129.44, 126.09, 122.55, 119.36, 21.34; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -78.73; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₇₆H₈₂O₆Se₂Te₄) requires m/z 882.0317, found m/z 882.0322.

MC11: White solid (55% yield); ¹H NMR (400 MHz, CD₂Cl₂) δ 7.57–6.85 (m, 34H), 2.46–2.12 (m, 48H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 143.59, 141.90, 132.93, 132.42, 132.34, 129.59, 128.73, 125.54, 122.53, 119.34, 23.06, 21.45; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -78.83; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₇₆H₈₂O₆Se₂Te₄) requires m/z 882.0317, found m/z 882.0317.

MC12: White solid (57% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.72–7.38 (m, 24H), 7.10 (d, *J* = 7.9 Hz, 16H), 2.34 (s, 24H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 141.53, 133.10, 129.63, 127.83, 122.84, 21.11; ¹⁹F NMR (376 MHz, CD₂Cl₂): δ -63.09, -78.48; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₇₀H₆₄F₆O₆Se₂Te₄) requires m/z 893.9565, found m/z 893.9569.

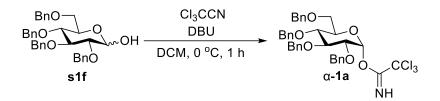
To a reaction mixture of MC^{OTF} (1.0 mmol) and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (1.77 g, 2.0 mmol) was added DCM (6.0 mL) and run for 5 min to generate white suspended solid. Then the reaction mixture was filtered and the filtrate was concentrated to give a saturated solution under reduced pressure and then 10.0 mL *n*-hexane was slowly added. The two-phase solution was then placed at -20 °C under argon and the desirable product precipitates out as a white solid. The precipitated white solid was collected by filtration and recrystallized from DCM and *n*-hexane to afford pure catalyst.

MC2: White solid (84% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.79–7.77 (m, 16H), 7.59 (s, 8H), 7.43–7.16 (m, 42H), 2.35 (s, 24H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 162.38 (q, J = 49.6 Hz), 143.95, 135.41, 132.71, 131.27, 130.05, 129.51 (qq, J = 31.4, 3.0 Hz), 126.54, 126.05, 123.83, 121.12, 118.14–117.98 (m), 21.52; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -62.64; ⁷⁷Se NMR (76 MHz, CD₂Cl₂): δ 1160.17; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₆₈H₆₆O₆Se₂Te₄) requires m/z 825.9691, found m/z 825.9691.

MC4: White solid (81% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.54–7.73 (m, 16H), 7.56 (s, 8H), 7.47–7.32 (m, 42H), 2.17 (s, 24H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 162.36 (q, *J* = 49.7 Hz), 141.05, 137.45, 135.40, 133.59, 133.15, 130.06, 129.49 (qq, *J* = 31.4, 3.0 Hz), 126.52, 126.00, 123.81, 121.10, 118.14–117.97 (m), 21.55; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -62.65; ⁷⁷Se NMR (76 MHz, CD₂Cl₂): δ 1157.55; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₆₈H₆₆O₆Se₂Te₄) requires m/z 825.9691, found m/z 825.9693.

MC5: White solid (85% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.83–7.82 (m, 16H), 7.62 (s, 8H), 7.46–7.10 (m, 42H), 2.20 (s, 24H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 162.37 (q, *J* = 49.6 Hz), 145.78, 141.94, 136.78, 135.40, 133.23, 132.77, 132.16, 130.07, 129.51 (qq, *J* = 31.5, 2.9 Hz), 128.42, 126.52, 125.53, 123.81, 121.10, 118.11–118.03 (m), 23.33; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -62.70; ⁷⁷Se NMR (76 MHz, CD₂Cl₂): δ 1172.06; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₆₈H₆₆O₆Se₂Te₄) requires m/z 825.9691, found m/z 825.9688.

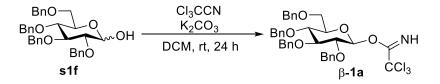
MC6: White solid (81% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.81–7.79 (m, 16H), 7.60–7.11 (m, 42H), 2.17 (s, 48H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 162.34 (q, *J* = 49.6 Hz), 140.96, 135.40, 134.74, 133.34, 133.34, 130.00, 129.49 (qq, *J* = 31.2, 3.0 Hz), 126.52, 126.00, 123.81, 121.11, 118.11–117.95 (m), 21.46; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -62.71; ⁷⁷Se NMR (76 MHz, CD₂Cl₂): δ 1163.03; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₇₆H₈₂O₆Se₂Te₄) requires m/z 882.0317, found m/z 882.0321.


MC7: White solid (86% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.83–7.82 (m, 16H), 7.62 (s, 8H), 7.47–7.42 (m, 2H), 7.29–7.07 (m, 32H), 2.35–2.20 (m, 48H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 162.37 (q, *J* = 49.5 Hz), 146.25,

144.36, 141.79, 135.42, 132.86, 132.79, 129.86, 129.52 (qq, J = 31.4, 3.0 Hz), 129.13, 126.54, 125.59, 123.83, 121.12, 118.13–117.97 (m), 23.17, 21.39; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -62.72; ⁷⁷Se NMR (76 MHz, CD₂Cl₂): δ 1179.81; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₇₆H₈₂O₆Se₂Te₄) requires 882.0317, found m/z 882.0312.

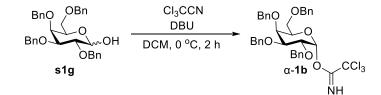
MC8: White solid (82% yield); ¹H NMR (400 MHz, CD₂Cl₂): δ 7.84–7.80 (m, 16H), 7.71–7.21(m, 48H), 2.36 (s, 24H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 162.40 (q, *J* = 49.6 Hz), 148.09, 144.15, 135.44, 132.78, 131.33, 130.63, 129.84, 129.54 (qq, *J* = 31.4, 3.0 Hz), 126.56, 125.13, 123.85, 123.02, 122.42, 121.15, 118.16–117.99 (m), 21.52; ¹⁹F NMR (377 MHz, CD₂Cl₂): δ -62.69, 62.71; ⁷⁷Se NMR (76 MHz, CD₂Cl₂): δ 1160.79; HRMS (ESI+) exact mass calculated for [M]²⁺ (C₇₀H₆₄F₆O₆Se₂Te₄) requires m/z 893.9565, found m/z 893.9562.

Glycoside donors were prepared using the following procedure:


(2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl 2,2,2-trichloroacetimidate (α-1a)

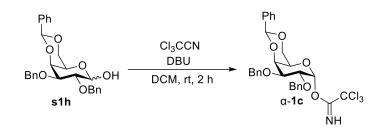
To a solution of **s1f** (5.57 g, 10.3 mmol) in CH₂Cl₂ (100.0 mL) was added CCl₃CN (10.0 mL, 99.7 mmol) and DBU (0.8 mL, 5.2 mmol) at 0 °C. The solution was stirred at room temperature for 1 h, and then the reaction mixture was concentrated. The residue was purified by silica gel column chromatography to give α -**1a** as a colorless solid in 78% yield.

¹H NMR (400 MHz, CDCl₃): δ 8.57 (s, 1H), 7.33–7.24 (m, 18H), 7.15 (dd, J = 7.2, 2.4 Hz, 2H), 6.53 (d, J = 3.5 Hz, 1H), 4.96 (d, J = 11.0 Hz, 1H), 4.84 (t, J = 10.9 Hz, 2H), 4.76–4.66 (m, 2H), 4.60 (d, J = 12.0 Hz, 1H), 4.54–4.45 (m, 2H), 4.04–3.97 (m, 2H), 3.81–3.75 (m, 3H), 3.66 (dd, J = 10.9, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.27, 138.58, 138.02, 137.92, 137.82, 128.37, 128.34, 128.32, 128.30, 128.03, 127.96, 127.90, 127.77, 127.68, 127.67, 127.59, 127.56, 94.35, 91.25, 81.34, 79.33, 76.76, 75.60, 75.29, 73.44, 73.09, 72.83, 67.99. The above data of α-**1a** is consistent with the reported references.^[4]


(2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl 2,2,2-trichloroacetimidate (β-1a)

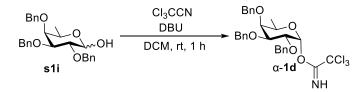
To a solution of **slf** (6.43 g, 11.9 mmol) in CH₂Cl₂ (100.0 mL) was added CCl₃CN (10.0 mL, 99.7 mmol) and K₂CO₃ (7.12 g, 51.6 mmol) at room temperature. The solution was stirred at room temperature for 24 h, and then the reaction mixture was concentrated. The residue was purified by silica gel column chromatography to give β -**1a** as a colorless solid in 71% yield.

¹H NMR (400 MHz, CDCl₃): 8.70 (s, 1H), 7.32–7.24 (m, 18H), 7.17 (dd, J = 7.2, 2.4 Hz, 2H), 5.82–5.80 (m, 1H), 4.92 (dd, J = 14.1, 10.9 Hz, 2H), 4.83–4.74 (m, 3H), 4.63–4.52 (m, 3H), 3.77–3.71 (m, 5H), 3.66–3.63 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.19, 138.41, 138.09, 137.99, 137.93, 128.37, 128.35, 128.32, 127.95, 127.92, 127.84, 127.74, 127.61, 127.59, 98.33, 90.96, 84.55, 80.92, 77.25, 75.86, 75.57, 74.94, 74.86, 73.35, 68.21. The above data of β-**1a** is consistent with the reported references.^[4]


(2R,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl 2,2,2trichloroacetimidate (a-1b)

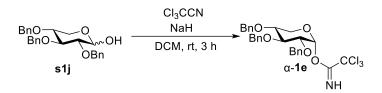
To a solution of s1g (5.41 g, 10.0 mmol) in CH₂Cl₂ (100.0 mL) was added CCl₃CN (10.0 mL, 99.7 mmol) and DBU (0.8 mL, 5.2 mmol) at 0 °C. The solution was stirred at room temperature for 2 h, and then the reaction mixture was concentrated. The residue was purified by silica gel column chromatography to give α -1b as a colorless solid in 83% yield.

¹H NMR (400 MHz, CDCl₃): δ 8.51 (s, 1H), 7.35–7.23 (m, 22H), 6.52 (d, J = 3.4 Hz, 1H), 4.97 (d, J = 11.3 Hz, 1H), 4.83–4.80 (m, 1H), 4.76–4.73 (m, 3H), 4.59 (d, J = 11.3 Hz, 1H), 4.43 (q, J = 11.7 Hz, 2H), 4.24 (dd, J = 9.9, 3.5 Hz, 1H), 4.16 (t, J = 6.7 Hz, 1H), 4.06–4.00 (m, 2H), 4.64–4.59 (m, 1H), 3.55 (dd, J = 9.3, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.22, 128.36, 128.27, 128.22, 128.18, 128.10, 127.81, 127.73, 127.58, 127.48, 127.39, 95.15, 91.40, 77.89, 75.85, 74.90, 74.61, 73.40, 72.95, 72.87, 72.14, 68.26. The above data of α-**1b** is consistent with the reported references.^[4]


trichloroacetimidate (α -1c)

To a solution of **s1h** (500 mg, 1.1 mmol) in CH₂Cl₂ (10.0 mL) was added CCl₃CN (1.1 mL, 11.2 mmol) and DBU (0.07 mL, 0.44 mmol) and stirred for 2 h at room temperature The reaction mixture was concentrated and purified by silica gel column chromatography to give α -**1c** as a colorless solid in 87% yield.

¹H NMR (400 MHz, CDCl₃): δ 8.56 (s, 1H), 7.53 (dd, J = 7.6, 2.1 Hz, 2H), 7.40–7.26 (m, 13H), 6.64 (d, J = 3.3 Hz, 1H), 5.51 (s, 1H), 4.84–4.74 (m, 4H), 4.30–4.26 (m, 3H), 4.10–4.07 (m, 1H), 4.01 (dd, J = 12.7, 1.8 Hz, 1H), 3.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.01, 138.37, 138.32, 137.64, 128.97, 128.27, 128.22, 128.15, 127.96, 127.63, 127.45, 127.38, 126.35, 101.08, 95.60, 91.36, 75.06, 74.69, 74.44, 73.11, 72.19, 69.05, 65.25. The above data of *a*-1*c* is consistent with the reported references.^[5]


 $(2R, 3R, 4S, 5S, 6R) - 3, 4, 5 - tris(benzy loxy) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 2, 3, 4, 5 - tris(benzy loxy) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 3, 4, 5 - tris(benzy loxy) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 3, 4, 5 - tris(benzy loxy) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 3, 4, 5 - tris(benzy loxy) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 4, 5 - tris(benzy loxy) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 4, 5 - tris(benzy loxy) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 5 - tris(benzy lox) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 5 - tris(benzy lox) - 6 - methyltetrahydro - 2H - pyran - 2 - yl 2, 2, 2 - trichloroacetimidate (\alpha - 1d) - 1, 5 - tris(benzy lox) - 1, 5 - tris(b$

To a solution of **sli** (1.0 g, 2.3 mmol) in CH₂Cl₂ (25.0 mL) was added CCl₃CN (2.3 mL, 23.0 mmol) and DBU (0.52 mL, 3.5 mmol) and stirred for 1 h at room temperature The reaction mixture was concentrated and purified by silica gel column chromatography to give α -1d as a colorless solid in 65% yield.

¹H NMR (400 MHz, CDCl₃): δ 8.51 (s, 1H), 7.38–7.28 (m, 15H), 6.53 (d, J = 3.5 Hz, 1H), 5.02 (d, J = 11.5 Hz, 1H), 4.87 (d, J = 12.0 Hz, 1H), 4.79–4.75 (m, 3H), 4.69 (d, J = 11.6 Hz, 1H), 4.25 (dd, J = 10.1, 3.5 Hz, 1H), 4.12–4.07 (m, 1H), 4.03 (dd, J = 10.1, 2.8 Hz, 1H), 3.72 (dd, J = 2.8, 1.3 Hz, 1H), 1.17 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.22, 138.58, 138.41, 138.34, 128.39, 128.29, 128.21, 128.17, 127.65, 127.62, 127.50, 127.39, 95.29, 91.51, 78.21, 75.78, 74.91, 73.16, 72.78, 69.50, 16.65. The above data of α-**1d** is consistent with the reported references.^[6]

(2R,3R,4S,5R)-3,4,5-tris(benzyloxy)tetrahydro-2H-pyran-2-yl 2,2,2-trichloroacetimidate (α-1e)

To a solution of **s1j** (2.0 g, 4.8 mmol) in CH₂Cl₂ (130.0 mL) was added CCl₃CN (2.4 mL, 23.8 mmol) and NaH (4.8 mmol) and stirred for 3 h at room temperature The reaction mixture was concentrated and purified by silica gel column chromatography to give α -**1e** as a colorless oil in 63% yield.

¹H NMR (400 MHz, CDCl₃): δ 8.57 (s, 1H), 7.35–7.28 (m, 15H), 6.36 (d, J = 3.5 Hz, 1H), 4.94–4.86 (m, 2H), 4.78 (d, J = 11.6 Hz, 1H), 4.72 (d, J = 1.4 Hz, 2H), 4.65 (d, J = 11.6 Hz, 1H), 3.98 (t, J = 9.1 Hz, 1H), 3.82–3.71 (m, 2H), 3.69–3.62 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.45, 138.65, 138.04, 137.97, 128.47, 128.35, 128.31, 128.02, 127.91, 127.87, 127.70, 127.59, 127.56, 94.34, 91.24, 80.85, 79.07, 77.16, 75.70, 73.74, 73.01, 62.46. The above data of α-**1e** is consistent with the reported references.^[7]

3. Optimization of Reaction Condition

BnO BnO BnO BnO BnO CO α-1a NH	+ MeOł Cl ₃	H solvent,	5 mol %) rt, 24 h	$ \xrightarrow{BnO} BnO \xrightarrow{BnO} E$	DO BnO 3a
	Entry	solvent	yield (%)	β -3a /α- 3a	
-	1	DCM	74	6:1	
	2	CHCl ₃	57	6:1	
	3	DCE	69	5:1	
	4	CCI ₄	76	8:1	
	5	DMF	<5	N.A.	
	6	DMSO	<5	N.A.	

 Table S1. Evaluation of solvent.

General procedure for optimization: To a reaction mixture of α -1a (0.15 mmol), MC2 (0.015 mmol, 15 mol %) and MeOH (4.1 µL, 0.10 mmol) in a 10 mL-Schlenk tube was added corresponding solvent (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 24 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.

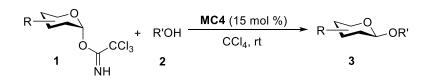
Table S2. Evaluation of MC catalysts.^a

BnO BnO BnO βnO α- 1a	CCI ₃ +	MeOH -	cat. (15 mol %) CCl ₄ , rt, 24 h	BnO− → BnO BnO	BnO 3a
	Entry	cat.	yield (%)	β- 3a /α- 3a	
	1	-	<5%	-	
	2	MC1	42	6:1	
	3	MC2	76	8:1	
	4	MC3	54	8:1	
	5	MC4	78	12:1	
	6	MC5	69	6:1	
	7	MC6	81	11:1	
	8	MC7	70	5:1	
	9	MC8	65	9:1	
	10 ^b	MC4	77	14:1	
	11 <i>^b</i>	TfOH	78	1:3	
	12 ^b	TMSOT	77	1:1	
	13 ^b	FeCl_3	77	2:1	
	14 ^b	BF ₃ ·Et ₂ C) 83	3:1	
	15 ^b	Sc(OTf)	68	3:1	

^{*a*}Unless otherwise indicated, reactions were carried out with α -**1a** (0.15 mmol), MeOH (0.10 mmol), cat. (15 mol %, 0.015 mmol) in CCl₄ (0.5 mL) at room temperature. ^{*b*}Reactions were carried out with α -**1a** (0.10 mmol), MeOH (0.10 mmol), cat. (15 mol %, 0.015 mmol) in CCl₄ (0.5 mL) at room temperature.

General procedure for optimization: To a reaction mixture of α -1a (0.15 mmol or 0.10 mmol), catalyst (0.015 mmol, 15 mol %) and MeOH (4.1 µL, 0.10 mmol) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 24 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products 3a.

Table S3. Evaluation of concentration of α -**1a** and MeOH


BnO BnO BnO BnO BnO C α-1a NH	+ M Cl ₃	_∩H ———	15 mol %) , rt, 12 h	BnO → BnO BnO-	BnO 3a
	Entry	[α- 1a]/[MeOH]	yield (%)	β- 3a /α- 3a	
	1	8:1	80	2:1	
	2	6:1	83	4:1	
	3	3:1	81	7:1	
	4	1.5:1	78	12:1	
	5	1:1	77	14:1	
	6	1:1.5	74	16:1	
	7	1:3	73	21:1	
	8	1:6	75	28:1	

General procedure for optimization:

For entry 1–4: To a reaction mixture of α -**1a** (0.15–0.80 mmol, 1.5–8.0 equiv), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (4.1 µL, 0.1 mmol) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.

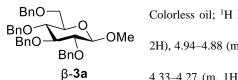
For entry 5-8: To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (0.1–0.6 mmol, 1.0–6.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.


4. Optimized Procedure

To a reaction mixture of **1** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and **2** (0.3–0.8 mmol, 3.0–8.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature until the completion of the reaction as judged by TLC analysis. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3**.

5. Analytical Data

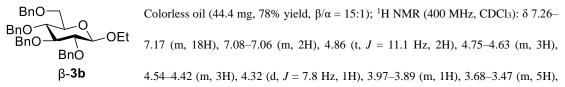
(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-methoxytetrahydro-2H-pyran (α-3a)



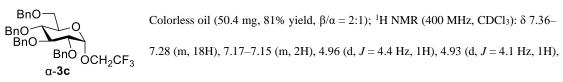
Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.16 (m, 18H), 7.06–7.04 (m, 2H), 4.90 (d, *J* = 10.9 Hz, 1H), 4.76–4.70 (m, 3H), 4.60–4.51 (m, 3H), 4.41–4.38 (m, 2H), 3.91 (t, *J* = 9.3 Hz, 1H), 3.69–3.62 (m, 2H), 3.58–3.53 (m, 2H), 3.48 (dd, *J* = 9.7, 3.6 Hz,

1H), 3.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.76, 138.22, 138.13, 137.88,

128.41, 128.35, 128.32, 128.10, 127.94, 127.86, 127.81, 127.65, 127.62, 127.55, 98.17, 82.09, 79.79, 77.62, 75.72, 74.99, 73.44, 73.35, 70.01, 68.43, 55.13; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₃₅H₃₈O₆) requires m/z 555.2742, found m/z 555.2714.


$(2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-methoxytetrahydro-2H-pyran\ (\beta-3a)-2H-pyran\ (\beta-3a)-2H-pyran$

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.24 (m, 18H), 7.17–7.12 (m, 2H), 4.94–4.88 (m, 2H), 4.83–4.75 (m, 2H), 4.72–4.68 (m, 1H), 4.64–4.49 (m, 3H), 4.33–4.27 (m, 1H), 3.77–3.55 (m, 7H), 3.48–3.39 (m, 2H); ¹³C NMR (100 MHz, 2H); ¹³C NMR (100 MHz, 2H); ¹³C NMR (100 MHz), 3.77–3.55 (m, 7H), 3.48–3.39 (m, 2H); ¹³C NMR (100 MHz), 3.78–3.55 (m, 7H), 3.48–3.58 (m, 7H), 3.58


CDCl₃): δ 138.54, 138.47, 138.10, 138.04, 128.33, 128.29, 128.04, 127.91, 127.81, 127.72, 127.69, 127.57, 127.54, 104.64, 84.58, 82.26, 77.80, 75.62, 74.95, 74.78, 74.69, 73.43, 68.85, 57.05; HRMS (ESI+) exact mass calculated for [M+Na]⁺ (C₃₅H₃₈NaO₆) requires m/z 577.2561, found m/z 577.2764.

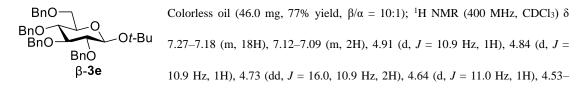
$(2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-ethoxytetrahydro-2H-pyran\ (\beta-3b)$

3.37 (t, *J* = 8.4 Hz, 2H), 1.21 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.60, 138.51, 138.16, 138.08, 128.34, 128.32, 128.30, 128.14, 127.93, 127.85, 127.73, 127.70, 127.61, 127.54, 103.44, 84.67, 82.26, 77.89, 75.64, 74.96, 74.80, 74.76, 73.43, 69.00, 65.54, 15.32; HRMS (ESI+) exact mass calculated for [M+Na]⁺ (C₃₆H₄₀NaO₆) requires m/z 591.2714, found m/z 591.2706.

(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(2,2,2-trifluoroethoxy)tetrahydro-2H-pyran (α-3c)

4.82 (t, *J* = 11.1 Hz, 2H), 4.70 (d, *J* = 10.7 Hz, 1H), 4.64–4.61 (m, 1H), 4.57–4.55 (m, 1H), 4.53–4.51 (m, 2H), 4.28–4.19 (m, 1H), 4.02–3.95 (m, 1H), 3.75–3.62 (m, 4H), 3.54–3.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 138.43, 137.95, 137.91, 128.45, 128.39, 127.96, 127.82, 127.82, 127.77, 127.71, 127.64, 103.61, 84.31, 81.69, 77.36, 75.72, 75.04, 74.98, 74.92, 73.48, 68.55, 66.51, 66.16, 65.82, 65.47; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₃₆H₃₈F₃O₆) requires m/z 623.2615, found m/z 623.2616.

$(2R, 3R, 4S, 5R, 6R) - 3, 4, 5 - tris(benzyloxy) - 2 - ((benzyloxy)methyl) - 6 - (2, 2, 2 - trifluoroethoxy) tetrahydro - 2H - pyran (\beta - 3c)$

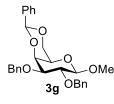

BnO
BnO
BnO
BnO
β-3c
1
H NMR (400 MHz, CDCl₃): δ 7.38–7.27 (m, 18H), 7.18–7.12 (m, 2H), 5.00
(d, J = 10.8 Hz, 1H), 4.86–4.79 (m, 4H), 4.63 (dd, J = 15.6, 12.0 Hz, 2H),
4.48 (dd, J = 11.4, 3.6 Hz, 2H), 4.00 (t, J = 9.3 Hz, 1H), 3.90 (q, J = 8.7 Hz, 1H), 3.90 (q, J = 8.7 Hz, 1H), 3.90 (q, J = 8.7 Hz, 1H), 4.86 Hz, 2H), 4.00 (t, J = 9.3 Hz, 1H), 3.90 (q, J = 8.7 Hz, 1H), 4.86 Hz, 2H), 4.00 (t, J = 9.3 Hz, 1H), 4.90 (t, J = 8.7 Hz, 1H), 4.90 (t, J = 9.3 Hz, 1H), 4.90 (t, J = 9.

2H), 3.80–3.59 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 138.68, 138.02, 137.71, 128.47, 128.38, 128.05, 127.96, 127.91, 127.89, 127.81, 127.75, 127.61, 97.78, 81.54, 79.63, 77.18, 75.76, 75.14, 73.48, 73.31, 70.88, 68.09, 65.14, 64.80, 64.45, 64.10; HRMS (ESI+) exact mass calculated for [M+Na]⁺ (C₃₆H₃₇F₃NaO₆) requires m/z 645.2435, found m/z 645.2421.

$(2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-isopropoxytetrahydro-2H-pyran\ (\beta-3d)-2H-pyran\ (\beta-3d)-2H-py$

BnO
BnO
BnO
β-3dColorless oil (43.1 mg, 74% yield,
$$\beta/\alpha = 9:1$$
); ¹H NMR (400 MHz, CDCl₃): δ7.27-7.16 (m, 18H), 7.09-7.07 (m, 2H), 4.89 (d, $J = 10.8$ Hz, 1H), 4.83 (d, $J = 10.9$ Hz, 1H), 4.71 (dd, $J = 15.3$, 10.9 Hz, 2H), 4.62 (d, $J = 10.9$ Hz, 1H), 4.54-4.43 (m, 3H), 4.38 (d, $J = 7.8$ Hz, 1H), 3.94 (p, $J = 6.1$ Hz, 1H), 3.65 (dd, $J = 10.8$, 2.0 Hz, 1H), 3.59-3.53 (m, 2H).3.46 (t, $J = 9.2$ Hz, 1H), 3.39-3.32 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 138.64, 138.50, 138.26, 138.10,128.36, 128.34, 128.31, 128.20, 127.98, 127.87, 127.72, 127.68, 127.63, 127.56, 127.52, 102.16, 84.82, 82.28,77.96, 75.68, 74.97, 74.82, 74.79, 73.40, 72.35, 69.14, 23.72, 22.22; HRMS (ESI+) exact mass calculated for[M+Na]+ (C₃₇H₄₂NaO₆) requires m/z 605.2874, found m/z 605.2879.

$(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(tert-butoxy)tetrahydro-2H-pyran\ (\beta-3e)-2H-pyran\ (\beta-3e)-2H$


4.45 (m, 4H), 3.65–3.60 (m, 1H), 3.57–3.53 (m, 2H), 3.46 (t, *J* = 9.2 Hz, 1H), 3.40–3.33 (m, 2H), 1.25 (s, 9H); ¹³C

NMR (100 MHz, CDCl₃): δ 138.64, 138.48, 138.32, 138.15, 128.33, 128.26, 128.14, 127.92, 127.86, 127.68, 127.59, 127.54, 127.44, 97.82, 85.09, 82.35, 78.11, 76.03, 75.70, 74.90, 74.89, 74.60, 73.33, 69.33, 28.88; HRMS (ESI+) exact mass calculated for [M+Na]⁺ (C₃₈H₄₄NaO₆) requires m/z 619.3030, found m/z 619.3037.

$(2R,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-methoxytetrahydro-2H-pyran\ (3f)$

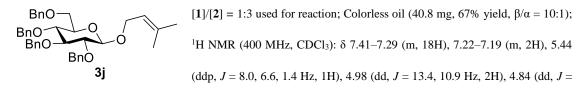
 $[1]/[2] = 1:5 \text{ used for reaction; Colourless oil (36.1 mg, 65\% yield, <math>\beta/\alpha = 23:1$); ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.26 (m, 20H), 4.96 (d, J = 11.7 Hz, 1H), 4.92 (d, J = 11.0 Hz, 1H), 4.79–4.74 (m, 3H), 4.64 (d, J = 11.6 Hz, 1H), 4.49–4.41 (m, 2H), 4.30 (d, J = 7.6 Hz, 1H), 3.92–3.91 (m, 1H), 3.83 (dd, J = 9.8, 7.7 Hz, 1H), 3.62 (dd, J = 6.3, 1.8 Hz, 2H), 3.59–3.52 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 138.80, 138.62, 138.48, 137.89, 128.39, 128.32, 128.24, 128.23, 128.12, 128.08, 127.85, 127.75, 127.52, 127.50, 127.47, 104.97, 82.12, 79.61, 75.11, 74.43, 73.52, 73.42, 73.35, 72.97, 68.83, 56.98; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₃₅H₃₉O₆) requires m/z 555.2741, found m/z 555.2732.

(2S,4aR,6R,7R,8S,8aS)-7,8-bis(benzyloxy)-6-methoxy-2-phenylhexahydropyrano [3,2-d] [1,3] dioxine (3g) and (3g

[1]/[2] = 1:5 used for reaction; Colorless oil (33.3 mg, 72% yield, $\beta/\alpha = 20:1$); ¹H NMR (400 MHz, CDCl₃): δ 7.58–7.56 (m, 2H), 7.42–7.29 (m, 13H), 5.51 (s, 1H), 4.92 (d, *J* = 10.9 Hz, 1H), 4.81–4.77 (m, 3H), 4.34–4.31 (m, 2H), 4.13 (dd, *J* = 3.7, 1.1 Hz, 1H), 4.03 (dd, *J* = 12.4, 1.8 Hz, 1H), 3.85 (dd, *J* = 9.7, 7.7 Hz, 1H), 3.60–3.56 (m, 4H), 3.33 (d, *J* =

1.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.83, 138.34, 137.76, 128.90, 128.29, 128.22, 128.09, 127.98, 127.72, 127.63, 127.48, 126.46, 104.66, 101.29, 79.09, 78.41, 75.18, 73.88, 71.96, 69.16, 66.33, 57.03; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₂₈H₃₁O₆) requires m/z 463.2115, found m/z 463.2113.

(2R,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-2-methoxy-6-methyltetrahydro-2H-pyran (3h)

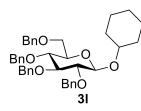

[1]/[2] = 1:5 used for reaction; Colorless oil (34.5 mg, 77% yield, β/α = 19:1); ¹H NMR
(400 MHz, CDCl₃): δ 7.41–7.28 (m, 15H), 5.01 (d, J = 11.8 Hz, 1H), 4.94 (d, J = 11.0 Hz, 1H), 4.83–4.70 (m, 4H), 4.26 (d, J = 7.7 Hz, 1H), 3.82 (dd, J = 9.7, 7.6 Hz, 1H),

3.59–3.50 (m, 5H), 3.48 (qd, *J* = 6.4, 1.0 Hz, 1H), 1.22 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.90, 138.60, 138.57, 128.38, 128.31, 128.20, 128.06, 128.04, 127.50, 127.45, 127.41, 104.83, 82.45, 79.48, 76.23, 75.01, 74.47, 73.09, 70.23, 56.82, 16.80; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₂₈H₃₃O₅) requires m/z 449.2323, found m/z 449.2329.

(2R,3R,4S,5R)-3,4,5-tris(benzyloxy)-2-methoxytetrahydro-2H-pyran(3i)

 $\begin{array}{l} \text{BnO}_{\textbf{Si} \mbox{OBn}} & [1]/[2] = 1:5 \text{ used for reaction; Colorless oil (32.6 mg, 75\% yield, } \beta/\alpha = 21:1); \ ^1\text{H} \\ \text{NMR (400 MHz, CDCl_3): } \delta 7.38-7.29 (m, 15\text{H}), 4.91-4.87 (m, 3\text{H}), 4.76-4.71 (m, 2\text{H}), 4.64 (d, J = 11.6 \text{ Hz}, 1\text{H}), 4.27 (d, J = 7.5 \text{ Hz}, 1\text{H}), 3.96 (dd, J = 11.5, 4.9 \text{ Hz}, 1\text{H}), 3.66-3.59 (m, 2\text{H}), 3.55 (s, 3\text{H}), 3.37 (t, J = 1.3 \text{ Hz}, 1\text{H}), 3.23 (dd, J = 11.6, 9.6 \text{ Hz}, 1\text{H}); \ ^{13}\text{C} \text{ NMR (100 MHz, CDCl_3): } \delta 138.66, 138.55, 138.15, 128.44, 128.31, 127.99, 127.94, 127.82, 127.59, 127.57, 105.26, 83.66, 81.95, 77.88, 75.57, 74.82, 73.35, 63.86, 56.99; \text{HRMS (ESI+) exact mass calculated for [M+Na]^+ (C_{27}\text{H}_{30}\text{NaO}_5) requires m/z 457.1985, found m/z 457.1986. \end{array}$

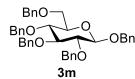
(2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((3-methylbut-2-en-1-yl)oxy)tetrahydro-2H-pyran (3j)


16.7, 10.8 Hz, 2H), 4.74 (d, J = 10.9 Hz, 1H), 4.68–4.65 (m, 1H), 4.61–4.56 (m, 2H), 4.49–4.40 (m, 2H), 4.26 (dd, J = 11.8, 7.6 Hz, 1H), 3.79 (dd, J = 10.8, 2.0 Hz, 1H), 3.75–3.71 (m, 1H), 3.69–3.60 (m, 2H), 3.53–3.47 (m, 2H), 1.80 (d, J = 1.3 Hz, 3H), 1.72 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.60, 138.53, 138.19, 138.10, 137.73, 128.34, 128.32, 128.30, 128.28, 128.18, 127.91, 127.86, 127.67, 127.59, 127.55, 127.51, 120.33, 102.16, 84.73, 82.26, 77.91, 75.66, 74.95, 74.83, 74.74, 73.40, 69.00, 65.66, 25.78, 17.97; HRMS (ESI+) exact mass calculated for [M+Na]⁺ (C₃₉H₄₄NaO₆) requires m/z 631.3030, found m/z 631.3031.

(2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(but-3-yn-1-yloxy)tetrahydro-2H-pyran (3k)

[1]/[2] = 1:3 used for reaction; Colorless oil (49.2 mg, 83% yield, β/α = 8:1);
¹H NMR (400 MHz, CDCl₃): δ 7.30–7.18 (m, 18H), 7.09–7.06 (m, 2H), 4.92 (d, J = 11.0 Hz, 1H), 4.86 (d, J = 10.9 Hz, 1H), 4.72 (dd, J = 12.5, 10.9 Hz, 1H),

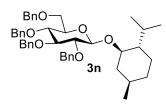
2H), 4.64 (d, *J* = 11.0 Hz, 1H), 4.52–4.43 (m, 3H), 4.36 (d, *J* = 7.8 Hz, 1H), 4.00–3.94 (m, 1H), 3.67–3.52 (m, 5H), 3.41–3.36 (m, 2H), 2.50–2.46 (m, 2H), 1.88 (t, *J* = 2.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.55, 138.46, 138.07, 138.03, 128.36, 128.34, 128.30, 128.19, 127.95, 127.85, 127.77, 127.74, 127.62, 127.60, 127.58, 103.63, 84.56, 82.05, 81.15, 77.70, 75.68, 74.99, 74.80, 74.77, 73.46, 69.49, 68.80, 67.90, 20.00; HRMS (ESI+) exact mass calculated for [M+Na]⁺ (C₃₈H₄₀NaO₆) requires m/z 615.2717, found m/z 615.2721.


(2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(cyclohexyloxy)tetrahydro-2H-pyran (3l)

[1]/[2] = 1:3 used for reaction; Colorless oil (43.6 mg, 70% yield, $\beta/\alpha = 12:1$); ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.25 (m, 18H), 7.18–7.16 (m, 2H), 5.00 (d, J = 10.9 Hz, 1H), 4.92 (d, J = 10.9 Hz, 1H), 4.82 (d, J = 10.8 Hz, 1H), 4.78 (d, J = 10.9 Hz, 1H), 4.71 (d, J = 10.9 Hz, 1H), 4.62–4.59 (m, 1H), 4.57–4.50 (m, 3H), 3.76–

3.69 (m, 2H), 3.67–3.61 (m, 2H), 3.55 (t, *J* = 9.2 Hz, 1H), 3.48–3.43 (m, 2H), 2.04–1.91 (m, 2H), 1.80–1.73 (m, 2H), 1.55–1.41 (m, 3H), 1.34–1.22 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.62, 138.48, 138.26, 138.07, 128.33, 128.30, 128.27, 128.15, 127.95, 127.82, 127.69, 127.62, 127.58, 127.50, 127.47, 101.90, 84.79, 82.23, 77.96, 77.71, 75.63, 74.94, 74.78, 74.75, 73.34, 69.11, 33.75, 31.97, 25.59, 24.05, 23.91; HRMS (ESI+) exact mass calculated for [M+Na]⁺ (C₄₀H₄₆NaO₆) requires m/z 645.3187, found m/z 645.3186.

(2R,3R,4S,5R,6R)-2,3,4,5-tetrakis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran (3m)

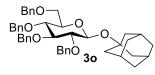


[1]/[2] = 1:5 used for reaction; Colorless oil (41.0 mg, 65% yield, β/α =10:1); ¹H NMR (400 MHz, CDCl₃): δ 7.39–7.25 (m, 23H), 7.17–7.12 (m, 2H), 5.00–4.91 (m, 3H), 4.80 (dd, *J* = 15.8, 10.9 Hz, 2H), 4.72 (d, *J* = 10.9 Hz, 1H), 4.69–4.62 (m, 2H),

4.58–4.51 (m, 3H), 3.78–3.75 (m, 1H), 3.72–3.69 (m, 1H), 3.67–3.59 (m, 2H), 3.55–3.51 (m, 1H), 3.49–3.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.56, 138.36, 138.16, 138.07, 137.45, 128.36, 128.34, 128.31, 128.16, 127.93, 127.91, 127.85, 127.73, 127.72, 127.62, 127.58, 102.58, 84.71, 82.27, 77.85, 75.69, 74.97, 74.87, 73.46, 71.12, 68.90; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₄₁H₄₃O₆) requires m/z 631.3054, found m/z 631.3061.

(2R, 3R, 4S, 5R, 6R) - 3, 4, 5 - tris(benzyloxy) - 2 - ((benzyloxy)methyl) - 6 - (((1R, 2S, 5R) - 2 - isopropyl - 5 - isopro

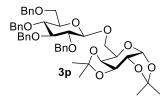
methylcyclohexyl)oxy)tetrahydro-2H-pyran (3n)


[1]/[2] = 1:5 used for reaction; Colorless oil (44.8 mg, 66% yield, β/α = 9:1); ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.21 (m, 18H), 7.18–7.14 (m, 2H), 4.90 (t, *J* = 10.7 Hz, 2H), 4.77 (t, *J* = 10.8 Hz, 2H), 4.65 (d, *J* = 10.9 Hz, 1H), 4.59– 4.49 (m, 3H), 4.44 (d, *J* = 7.8 Hz, 1H), 3.66 (d, *J* = 3.2 Hz, 2H), 3.58 (p, *J* = 9.0

Hz, 2H), 3.46 (td, *J* = 10.7, 4.2 Hz, 1H), 3.40–3.36 (m, 2H), 2.32 (pd, *J* = 7.0, 2.5 Hz, 1H), 2.10 (dt, *J* = 11.9, 4.2 Hz, 1H), 1.62 (dt, *J* = 12.8, 2.5 Hz, 2H), 1.27–1.20 (m, 2H), 1.02–0.78 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 138.77, 138.50, 138.32, 138.16, 128.35, 128.29, 128.26, 128.06, 127.75, 127.70, 127.61, 127.58, 127.47, 127.46, 100.76, 84.92, 82.16, 77.90, 77.74, 75.57, 74.96, 74.81, 74.74, 73.63, 69.26, 48.07, 40.94, 34.41, 31.42, 25.22,

23.14, 22.22, 21.07, 15.91; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₄₄H₅₅O₆) requires m/z 679.3993, found m/z 679.3995.

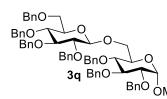
(2S, 3R, 4S, 5R, 6R) - 2 - (((3R, 5R, 7R) - adamantan - 1 - yl) oxy) - 3, 4, 5 - tris(benzyloxy) - 6 - ((benzyloxy) methyl) tetra-interval (benzyloxy) - 6 - ((benzyloxy) - 6 - (benzyloxy) - (benzyloxy)


hydro-2H-pyran (3o)

[1]/[2] = 1:5 used for reaction; Colorless oil (47.9 mg, 71% yield, β/α = 10:1); ¹H
NMR (400 MHz, CDCl₃): δ 7.29–7.15 (m, 20H), 7.11 (dd, J = 7.4, 2.1 Hz, 2H),
4.93 (d, J = 11.0 Hz, 1H), 4.84 (d, J = 10.9 Hz, 1H), 4.74 (d, J = 10.9 Hz, 1H),

4.69 (d, *J* = 10.9 Hz, 1H), 4.64 (d, *J* = 7.7 Hz, 1H), 4.62 (d, *J* = 4.6 Hz, 1H), 4.53–4.45 (m, 3H), 3.66 (dd, *J* = 10.7, 1.8 Hz, 1H), 3.59–3.52 (m, 2H), 3.46–3.33 (m, 3H), 2.09–2.05 (m, 3H), 1.89–1.84 (m, 3H), 1.78–1.74 (m, 3H), 1.59–1.50 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 138.61, 138.49, 138.32, 138.11, 128.28, 128.26, 128.19, 128.15, 127.87, 127.81, 127.63, 127.51, 127.49, 127.47, 127.38, 96.16, 85.03, 82.24, 78.12, 75.63, 75.21, 74.83, 74.47, 73.26, 69.41, 42.70, 36.20, 30.61; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₄₄H₅₁O₆) requires m/z 675.3680, found m/z 675.3676.

(3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyl-5-((((2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)-methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (3p)

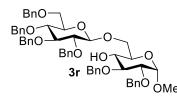


[1]/[2] = 1:3 used for reaction; Colorless oil (45.4 mg, 58% yield, β/α = 6:1); ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.43 (m, 2H), 7.35–7.26 (m, 16H), 7.15 (dd, *J* = 7.2, 2.4 Hz, 2H), 5.59 (d, *J* = 5.0 Hz, 1H), 5.07 (d, *J* = 11.1 Hz, 1H), 4.98 (d, *J* = 10.9 Hz, 1H), 4.81 (dd, *J* = 13.5, 10.9 Hz, 2H), 4.74 (d, *J* = 11.2 Hz, 1H),

4.65–4.59 (m, 2H), 4.56–4.46 (m, 3H), 4.33 (dd, J = 5.0, 2.4 Hz, 1H), 4.26 (dd, J = 7.9, 1.9 Hz, 1H), 4.18 (dd, J = 10.7, 3.6 Hz, 1H), 4.13–4.09 (m, 1H), 3.77–3.71 (m, 3H), 3.66–3.62 (m, 2H), 3.50–3.44 (m, 2H), 1.52 (s, 3H), 1.47 (s, 3H), 1.34–1.33 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 138.65, 138.10, 138.09, 128.61, 128.33, 128.31, 128.17, 127.91, 127.85, 127.83, 127.67, 127.57, 127.50, 127.44, 109.33, 108.53, 104.35, 96.34, 84.50, 81.56, 77.66, 75.63, 74.95, 74.69, 74.30, 73.45, 71.40, 70.73, 70.43, 69.67, 68.70, 67.30, 26.00, 25.96, 24.99, 24.40; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₄₆H₅₅O₁₁) requires m/z 783.3739, found m/z 783.3742.

(2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(((2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran (3q)

[1]/[2] = 1:3 used for reaction; Colorless oil (55.3 mg, 56% yield, $\beta/\alpha = 6:1$); ¹H NMR (400 MHz, CDCl₃): δ 7.26–



7.16 (m, 30H), 7.10 (dd, J = 6.9, 3.2 Hz, 6H), 4.90 (d, J = 4.7 Hz, 1H), 4.88 (d, J = 4.4 Hz, 1H), 4.83 (d, J = 10.9 Hz, 1H), 4.74–4.42 (m, 13H), 4.27 (d, J = 7.8 Hz, 1H), 4.10 (dd, J = 10.8, 2.0 Hz, 1H), 3.92 (t, J = 9.2 Hz, 1H), 3.77–3.73 (m, 1H), 3.63–3.41 (m, 10H), 3.24 (s, 3H); ¹³C NMR (100 MHz, 100 MHz).

CDCl₃): δ 138.77, 138.46, 138.31, 138.28, 138.17, 138.07, 138.04, 128.39, 128.33, 128.30, 128.28, 128.27, 128.08, 127.90, 127.88, 127.85, 127.81, 127.79, 127.69, 127.65, 127.59, 127.55, 127.52, 127.48, 127.45, 103.75, 97.99, 84.73, 82.01, 81.92, 81.61, 79.70, 77.93, 77.84, 77.20, 75.65, 75.62, 74.99, 74.93, 74.82, 73.36, 73.29, 72.29, 69.78, 68.94, 68.50, 55.14; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₆₂H₆₇O₁₁) requires m/z 987.4678, found m/z 987.4678.

((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-3-ol (3r)

[1]/[2] = 1:3 used for reaction; Colorless oil (47.5 mg, 53% yield, $\beta/\alpha = 9:1$); ¹H NMR (400 MHz, CDCl₃): δ 7.28–7.17 (m, 30H), 7.07 (dd, J = 6.1, 2.5 Hz, 2H), 4.94–4.81 (m, 3H), 4.74–4.60 (m, 5H), 4.57–4.50 (m, 3H), 4.45–4.37 (m, 3H), 4.04 (dt, J = 10.6, 1.8 Hz, 1H), 3.74–3.47 (m, 9H), 3.43–3.36

(m, 3H), 3.26 (d, J = 1.2 Hz, 3H), 2.34 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.85, 138.52, 138.41, 138.08, 138.03, 128.52, 128.44, 128.35, 128.35, 128.33, 128.11, 127.99, 127.93, 127.90, 127.84, 127.77, 127.73, 127.61, 127.57, 103.72, 98.14, 84.64, 81.99, 81.39, 79.58, 77.72, 75.66, 75.34, 74.97, 74.84, 74.73, 73.38, 73.14, 70.36, 70.08, 68.81, 68.65, 55.22; HRMS (ESI+) exact mass calculated for [M+H]⁺ (C₅₅H₆₁NO₁₁) requires m/z 897.4208, found m/z 897.4207.

6. Mechanistic Study

(1) Evaluation of concentration of α -la and MeOH

Table S4. Evaluation of concentration of α -1a and MeOH by MC4

Ві	BnO nO BnO BnO α-1a NH	CCl ₃	1_0H	4 (15 mol %) Cl₄, rt, 12 h	BnO BnO BnO Br	-0
	[MeOH]/[α- 1a]	yield (%	ώ) β- 3a /α- 3a	[α- 1a]/[MeOH]	yield (%)	β- 3a /α- 3a
	1:1	77	14:1	1:1	77	14:1
	1:1.5	78	12:1	1:1.5	74	16:1
	1:3	81	7:1	1:3	73	21:1
	1:6	83	4:1	1:6	74	28:1

For **Table S4.** (left): to a reaction mixture of α -**1a** (0.1–0.6 mmol, 1.0–6.0 equiv), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (4.1 µL, 0.1 mmol) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.

For **Table S4**. (right): to a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (0.1–0.6 mmol, 1.0–6.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.

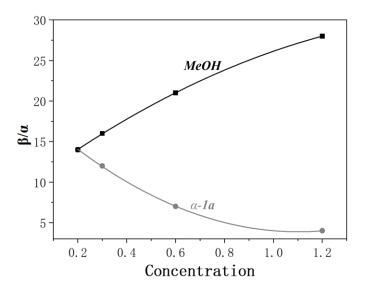


Fig. S2. Evaluation of concentration of $\alpha\text{-}1a$ and MeOH by MC4

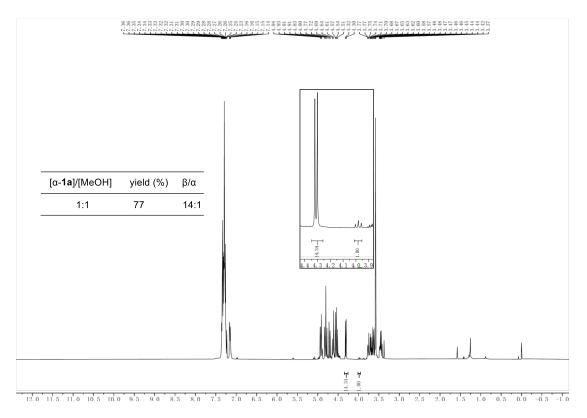


Fig. S3. β/α selectivity of reaction with $[\alpha$ -1a]/[MeOH] = 1:1 by MC4

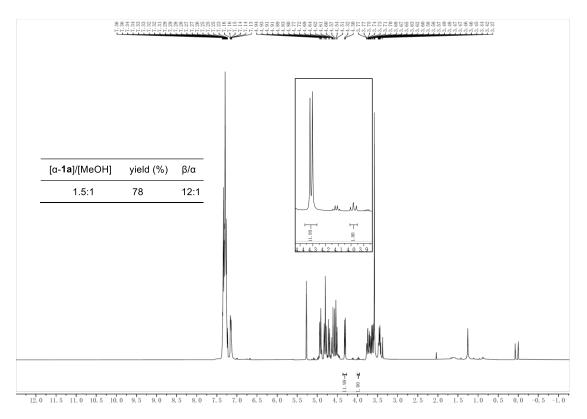


Fig. S4. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 1.5:1$ by MC4

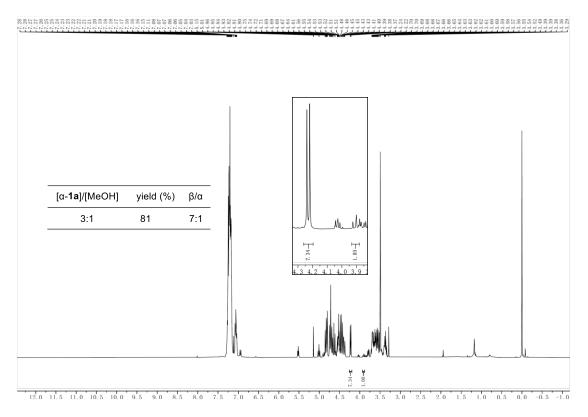


Fig. S5. β/α selectivity of reaction with $[\alpha$ -1a]/[MeOH] = 3:1 by MC4

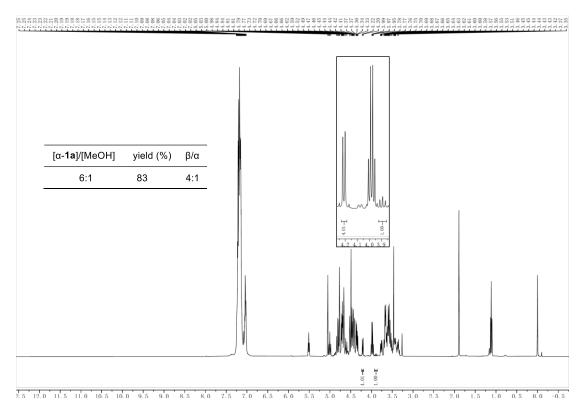


Fig. S6. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 6:1$ by MC4

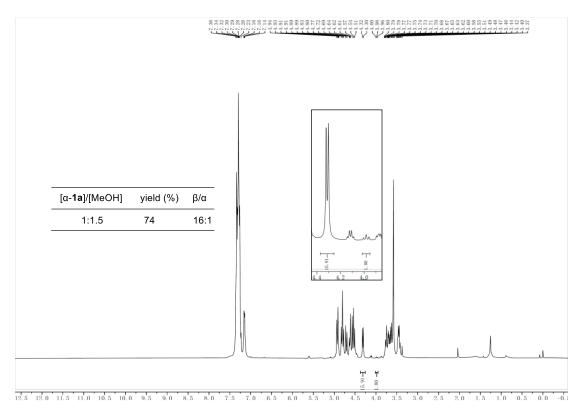


Fig. S7. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 1:1.5$ by MC4

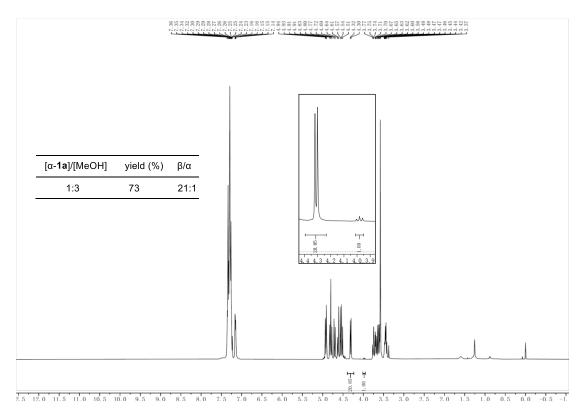


Fig. S8. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 1:3$ by MC4

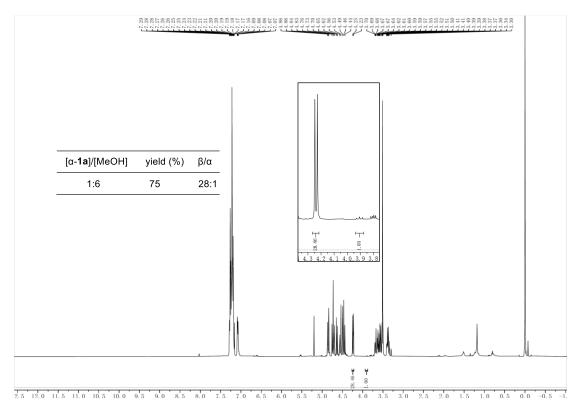


Fig. S9. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 1:6$ by MC4

Table S5. Evaluation of concentration of α-1a and MeOH by MC2

BnO BnO BnO BnO BnO BnO BnO O C A-1a NH	CCI ₃	1eOH	15 mol %) , rt, 12 h	BnO BnO BnO BnO BnO BnO BnO 3a	
	Entry	[α- 1a]/[MeOH]	yield (%)	β -3a /α- 3a	
	1	6:1	77	3:1	
	2	3:1	74	7:1	
	3	1:3	74	14:1	
	4	1:6	75	23:1	
	5	1:8	76	31:1	

For entries 1–2: To a reaction mixture of α -**1a** (0.3–0.6 mmol, 3.0–6.0 equiv), catalyst **MC2** (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (4.1 µL, 0.1 mmol) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.

For entries 3–5: To a reaction mixture of α -1a (68.5 mg, 0.1 mmol), catalyst MC2 (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (0.3–0.8 mmol, 3.0–8.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon

atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.

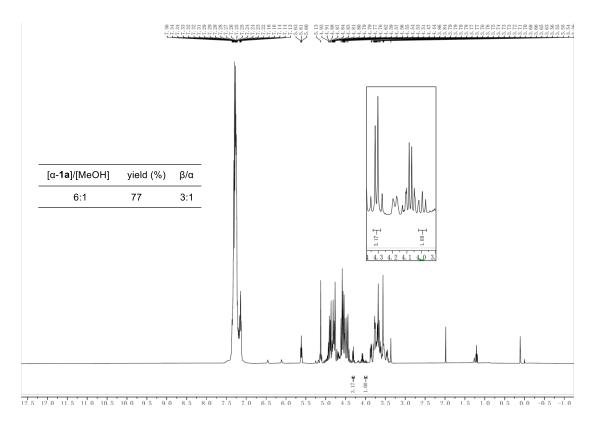
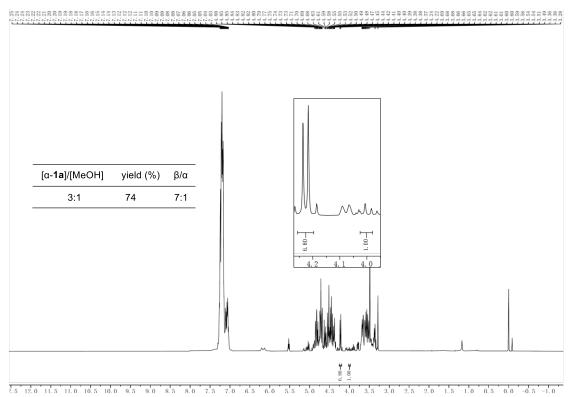



Fig. S10. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 6:1$ by MC2

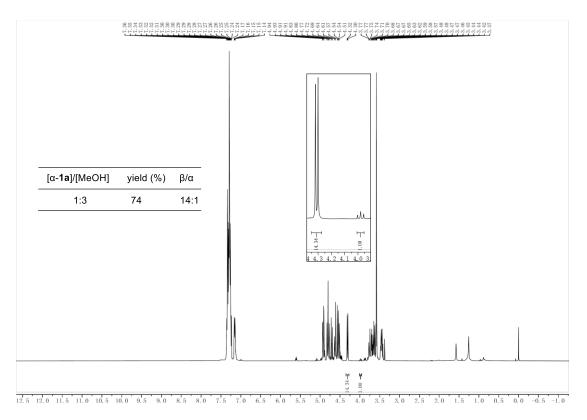


Fig. S11. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 3:1$ by MC2

Fig. S12. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 1:3$ by MC2

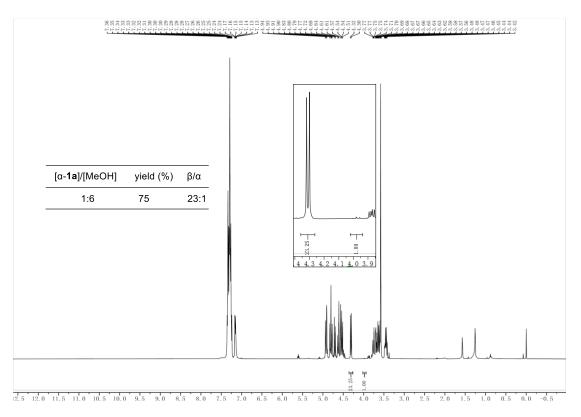


Fig. S13. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 1:6$ by MC2

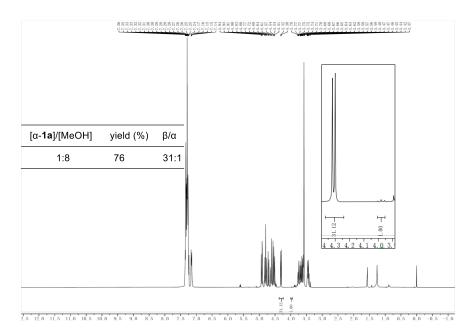
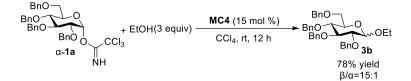
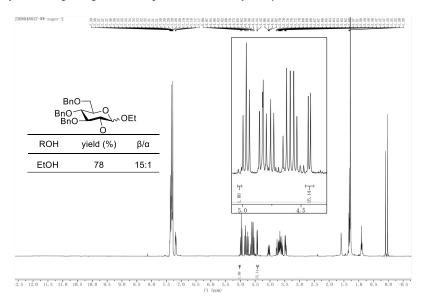
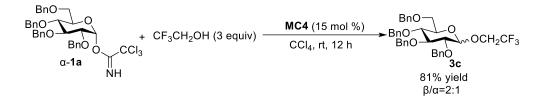




Fig. S14. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 1:8$ by MC2


(2) Evaluation of electronic effect of alcohols

To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and EtOH (17.5 µL, 0.3 mmol, 3.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3b** (78% yield, $\beta/\alpha = 15:1$).

Fig. S15. β/α selectivity of reaction with $[\alpha-1a]/[EtOH] = 1:3$

To a reaction mixture of α -1a (68.5 mg, 0.1 mmol), catalyst MC4 (50.6 mg, 0.015 mmol, 15 mol %) and 2,2,2trifluoroethan-1-ol (21.3 µL, 0.3 mmol, 3.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3c** (81% yield, $\beta/\alpha = 2$:1).

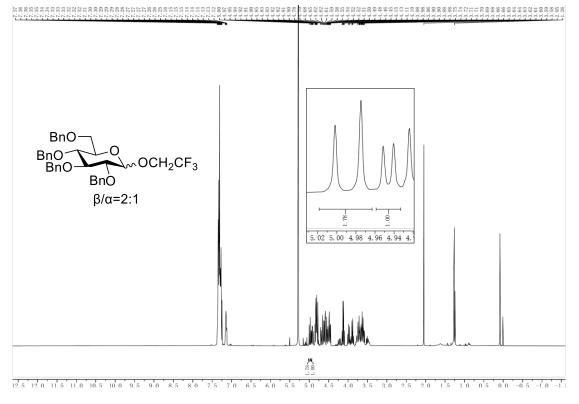
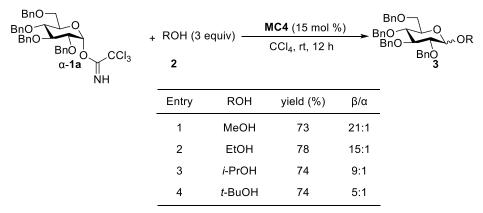



Fig. S16. β/α selectivity of reaction with $[\alpha-1a]/[CF_3CH_2OH] = 1:3$

(3) Evaluation of steric effect of alcohols

Table S6. Evaluation steric effect of alcohols by MC4

To a reaction mixture of α -1a (68.5 mg, 0.1 mmol), catalyst MC4 (50.6 mg, 0.015 mmol, 15 mol %) and 2 (0.3 mmol, 3.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3**.

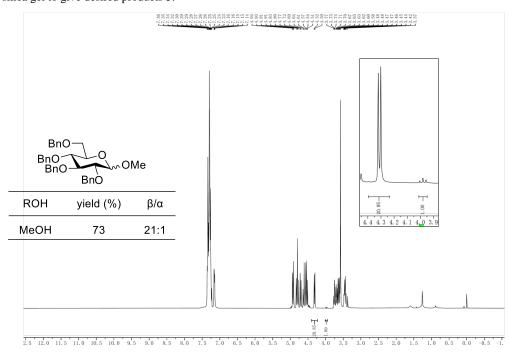
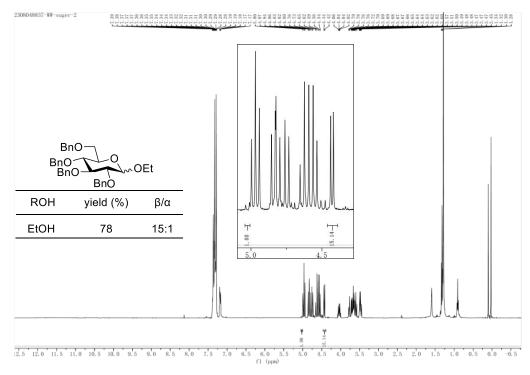
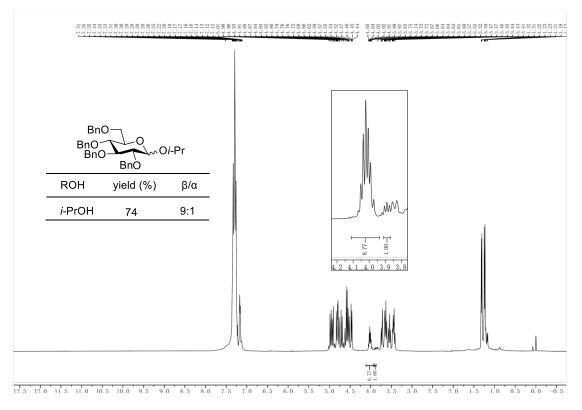
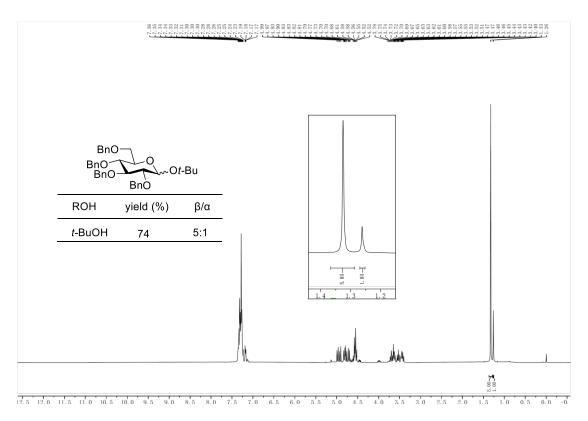
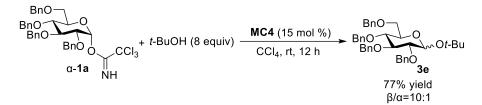


Fig. S17. β/α selectivity of reaction with $[\alpha-1a]/[MeOH] = 1:3$


Fig. S18. β/α selectivity of reaction with $[\alpha-1a]/[EtOH] = 1:3$

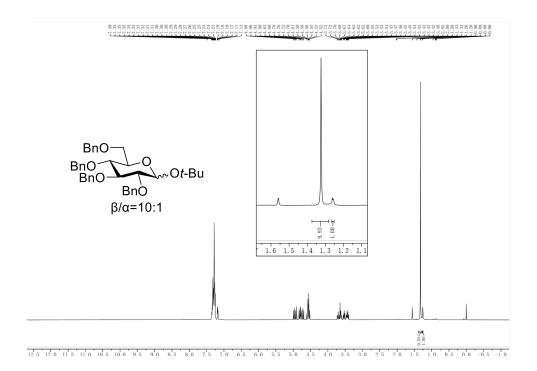

Fig. S19. β/α selectivity of reaction with $[\alpha$ -1a]/[*i*-PrOH] = 1:3

Fig. S20. β/α selectivity of reaction with $[\alpha$ -1a]/[*t*-BuOH] = 1:3

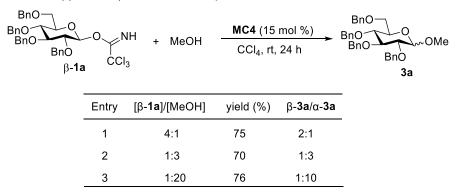
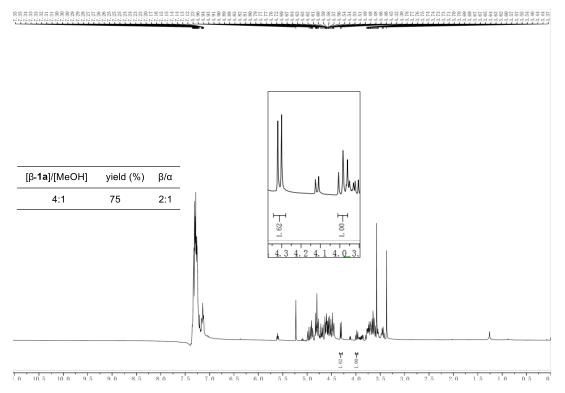
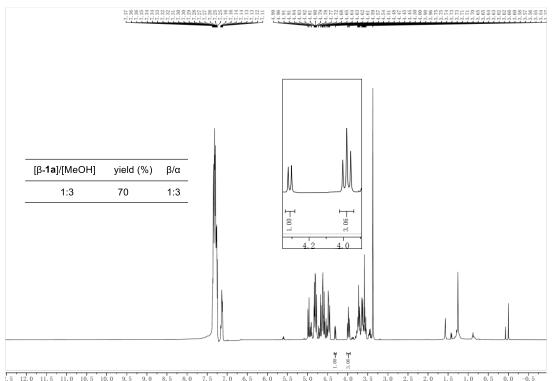

To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and *t*-butyl alcohol (76.5 µL, 0.8 mmol, 8.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3e** (77% yield, $\beta/\alpha = 10$:1).

Fig. S21. β/α selectivity of reaction with $[\alpha$ -1a]/[*t*-BuOH] = 1:8

(4) Evaluation of β -anomer β -**1a** as a reactant


Table S7. Evaluation of β -anomer β -1a as a reactant by MC4


For entry 1: To a reaction mixture of β -1a (0.4 mmol, 4.0 equiv), catalyst MC4 (50.6 mg, 0.015 mmol, 15 mol %)

and MeOH (4.1 μ L, 0.1 mmol) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 24 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.

For entries 2–3: To a reaction mixture of β -1a (68.5 mg, 0.1 mmol), catalyst MC4 (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (0.3–2.0 mmol, 3.0–20.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 24 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a**.

Fig. S22. β/α selectivity of reaction with $[\beta-1a]/[MeOH] = 4:1$

5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3, 5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Fig. S23. β/α selectivity of reaction with [β -1a]/[MeOH] = 1:3

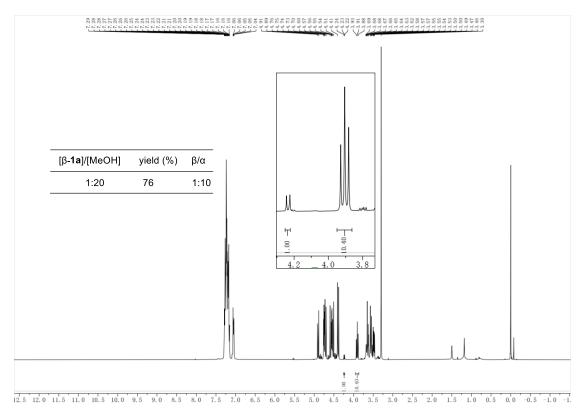



Fig. S24. β/α selectivity of reaction with $[\beta-1a]/[MeOH] = 1:20$

 β -1a (6.85 mg/1 h×10, 0.1 mmol) was added in portions to a solution of catalyst MC4 (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (12.2 µL, 0.3 mmol, 3 equiv) in CCl₄ (0.5 mL) under argon atmosphere and the reaction mixture was stirred at room temperature for 48 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a** (69% yield, $\beta/\alpha = 1$:6).

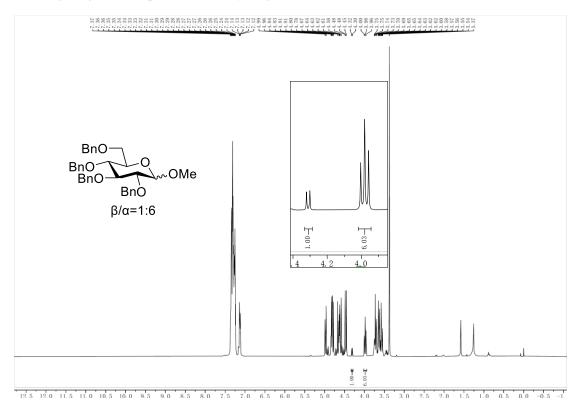
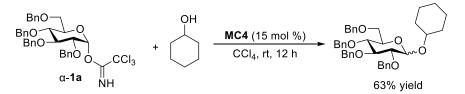
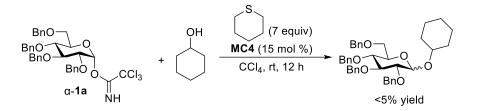



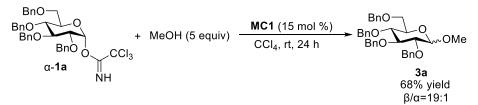
Fig. S25. β/α selectivity of reaction with β -1a added in ten portions every hour

(5) Evaluation of inhibitors

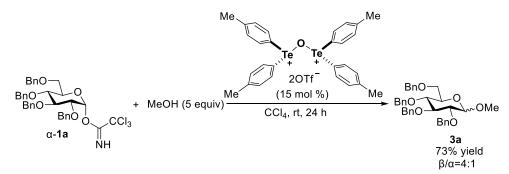

Standard condition

To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and cyclohexanol (10.0 mg, 0.1 mmol, 1 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was

purified by flash chromatography on silica gel to give desired products in 63% yield.


Addition of tetrahydro-2H-thiopyran to the standard condition

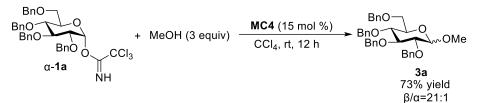
To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %), tetrahydro-2H-thiopyran (71.5 mg, 0.7 mmol, 7 equiv) and cyclohexanol (10.0 mg, 0.1 mmol, 1 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel to give desired products in less than 5% yield.


(6) Evaluation of chain-type catalyst

Standard condition

To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC1** (29.2 mg, 0.015 mmol, 15 mol %) and MeOH (20.5 µL, 0.5 mmol, 5.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 24 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a** (68% yield, $\beta/\alpha = 19$:1).

Catalysis with chain-type catalyst



To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), chain-type catalyst (14.0 mg, 0.015 mmol, 15 mol %) and MeOH (20.5 µL, 0.5 mmol, 5.0 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 24 h. Then the reaction mixture was purified by

flash chromatography on silica gel to give desired products **3a** (73% yield, $\beta/\alpha = 4:1$).

(6) Evaluation of base

Standard condition

Two parallel experiments were performed (one for isolated yields and the other one for determination of the anomeric ratio of the glycosylation products by ¹H NMR): To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %) and MeOH (12.2 µL, 0.3 mmol, 3 equiv) in a 10 mL-Schlenk tube was added CCl4 (0.5 mL) under argon atmosphere. The above reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a** (73% yield, $\beta/\alpha = 21$:1).

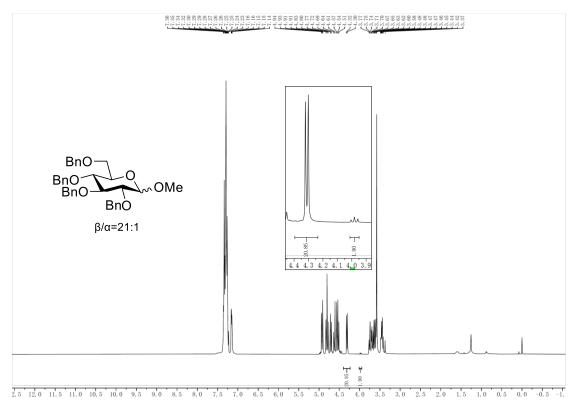
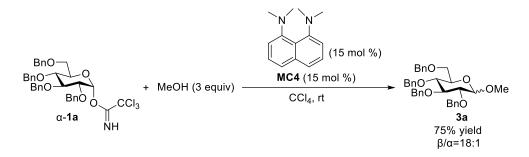



Fig. S26. β/α selectivity of reaction under standard condition

Addition of N1,N1,N8,N8-tetramethylnaphthalene-1,8-diamine to the standard condition

To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %), N¹,N¹,N⁸,N⁸tetramethylnaphthalene-1,8-diamine (3.2 mg, 0.015 mmol, 15 mol %) and MeOH (12.2 µL, 0.3 mmol, 3 equiv) in a 10 mL-Schlenk tube was added CCl₄ (0.5 mL) under argon atmosphere and the reaction mixture was stirred at room temperature until the completion of the reaction as judged by TLC analysis. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a** (75% yield, $\beta/\alpha = 18:1$).

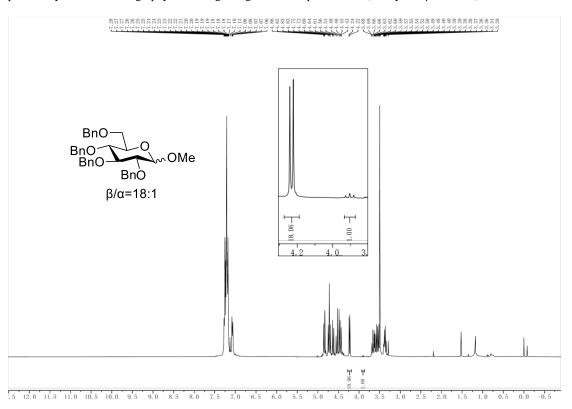
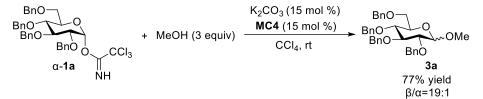



Fig. S27. β/α selectivity of reaction with N¹,N¹,N⁸,N⁸-tetramethylnaphthalene-1,8-diamine

Addition of K2CO3 to the standard condition

To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (50.6 mg, 0.015 mmol, 15 mol %), K₂CO₃ (2.1 mg, 0.015 mmol, 15 mol %) and MeOH (12.2 μ L, 0.3 mmol, 3 equiv) in a 10 mL-Schlenk tube was added CCl₄

(0.5 mL) under argon atmosphere and the reaction mixture was stirred at room temperature until the completion of the reaction as judged by TLC analysis. Then the reaction mixture was purified by flash chromatography on silica gel to give desired products **3a** (77% yield, $\beta/\alpha = 19$:1).

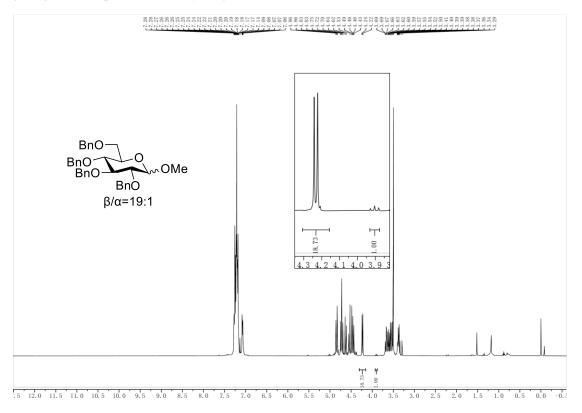


Fig. S28. β/α selectivity of reaction with K₂CO₃

(7) The interaction between catalyst MC4 and MeOH

Catalyst MC4 (337.4 mg, 0.1 mmol) in an NMR tube was added CD₂Cl₂ (0.6 mL) and then analysis of the solution

by ⁷⁷Se NMR experiment.

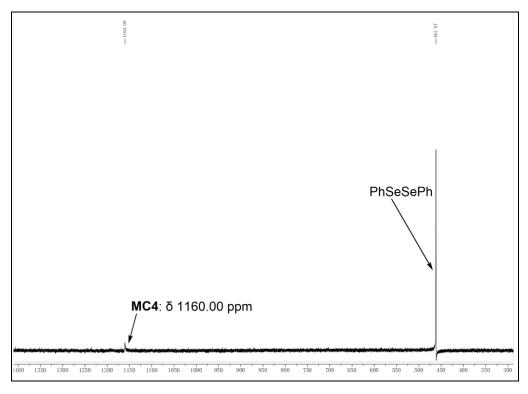


Fig. S29. The ⁷⁷Se NMR spectrum of catalyst MC4

A mixture of catalyst MC4 (337.4 mg, 0.1 mmol) and MeOH (16.0 mg, 0.5 mmol) in an NMR tube was added CD_2Cl_2 (0.6 mL) and then analysis of the reaction mixture by ⁷⁷Se NMR experiment.



Fig. S30. The ⁷⁷Se NMR spectrum of catalyst MC4 upon addition of MeOH

A mixture of catalyst MC4 (283.3 mg, 0.084 mmol) and MeOH (9.0 mg, 0.28 mmol) in an NMR tube was added

CDCl₃ (0.6 mL) and then analysis of the reaction mixture by ¹³C NMR experiment.

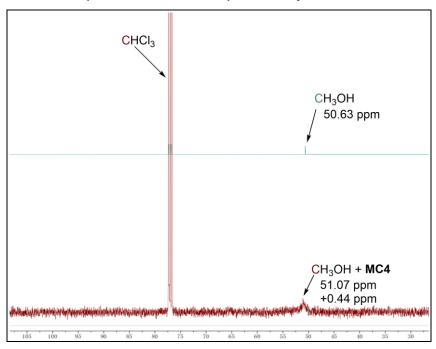


Fig. S31. The ¹³C NMR spectrum of MeOH upon addition of catalyst MC4

(3) NMR Titration Experiments and determination of the binding constants

All experiments were conducted by mixing different ratios of the **MC4** and MeOH at ambient temperature (298.5 K) in NMR tubes. MeOH (1.0 equiv, 0.3 mmol) and the different equivalent of **MC4** (0 equiv, 0.033 equiv, 0.066 equiv, 0.132 equiv, 0.198 equiv, 0.264 equiv, 0.50 equiv) were dissolved in 0.5 mL CDCl₃. Then the mixtures were analyzed by ¹³C NMR experiments.

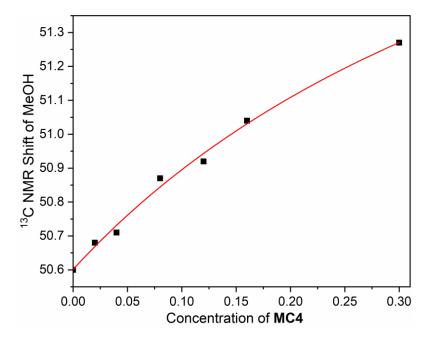


Fig. S32. NMR titration experiments between MC4 with MeOH

For the determination of the binding constants (K) of **MC4** for MeOH, the shift of the methyl group was observed relative to the signal of the solvent. The measured shifts were plotted against the guest-concentrations and the resulting curve was fitted via http://supramolecular.org^[8,9]. For the calculations of the binding constants (K) a 1:1 binding was assumed. $K_{MeOH} = 2.66 \text{ M}^{-1}$.

(9) Tracing the reaction process using ⁷⁷Se NMR

$$\begin{array}{c} BnO \\ BnO \\ BnO \\ \alpha-1a \\ NH \end{array} + MeOH (3 equiv) \xrightarrow{MC4 (25 mol \%)}{CD_2Cl_2, rt, 48 h} \xrightarrow{BnO \\ BnO \\ CD_2Cl_2, rt, 48 h \\ BnO \\$$

To a reaction mixture of α -**1a** (68.5 mg, 0.1 mmol), catalyst **MC4** (84.4 mg, 0.025 mmol, 25 mol %) and MeOH (12.2 µL, 0.3 mmol, 3 equiv) in a 10 mL-Schlenk tube was added CD₂Cl₂ (0.5 mL) under argon atmosphere and stirred at room temperature. Then the reaction process was traced by ⁷⁷Se NMR when the reaction was run for 48 h (70% yield, $\beta/\alpha = 15$:1). ⁷⁷Se NMR experiments only one ⁷⁷Se signal assigned to catalyst **MC4** was observed.

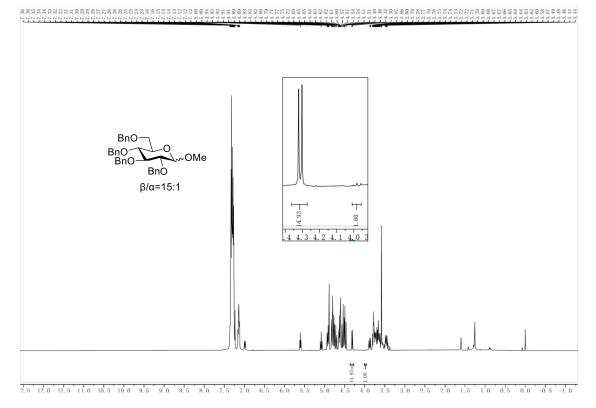


Fig. S33. β/α selectivity of reaction in CD₂Cl₂

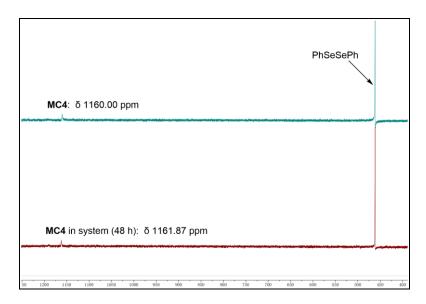
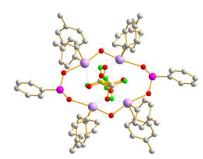
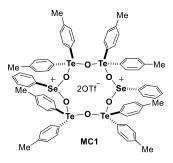
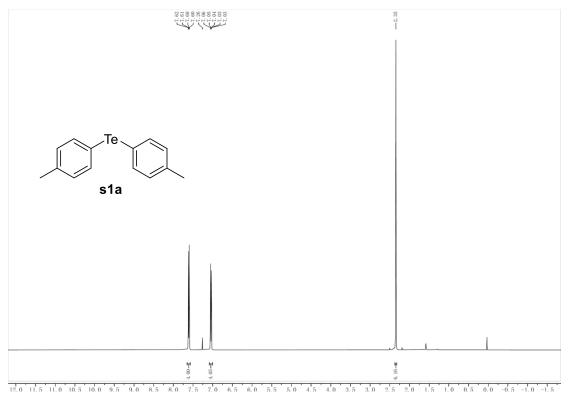
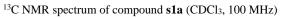



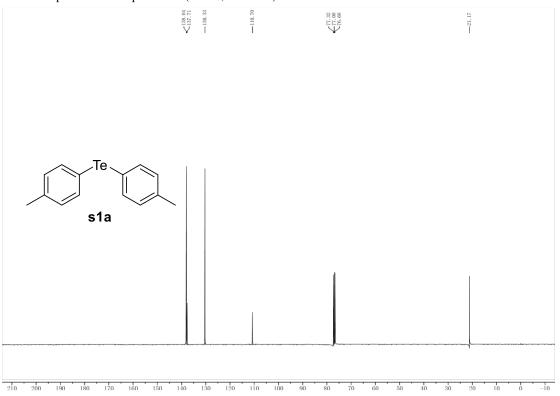
Fig. S34. Tracing the reaction process using ⁷⁷Se NMR

7. X-ray Crystallographic Data

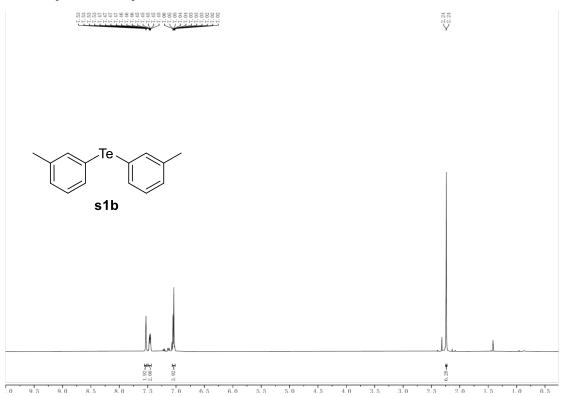


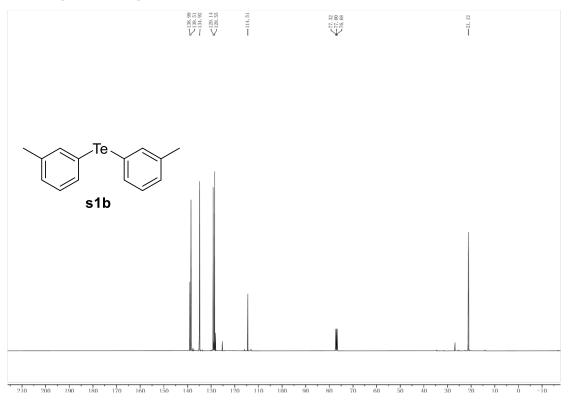

Fig. S35. X-ray crystallographic structure of MC1 (CCDC: 2290511).

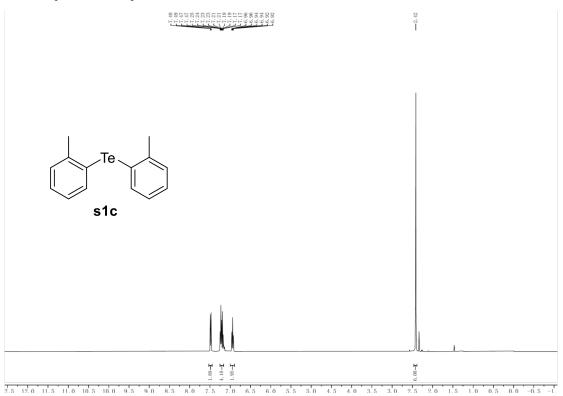

 Table S8. Crystal data and structure refinement for MC1

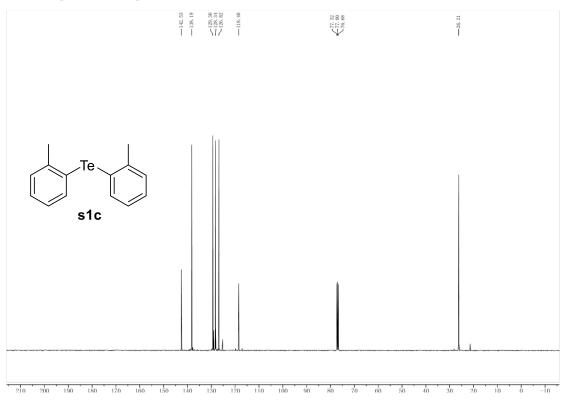

Identification code	cu_220730A_0m
Empirical formula	$C_{70}H_{66}F_6O_{12}S_2Se_2Te_4$
Formula weight	1945.74
Temperature/K	173.0
Crystal system	triclinic
Space group	P-1
a/Å	12.2642(11)
b/Å	13.1320(12)
c/Å	14.3067(13)
α/°	79.991(3)
β/°	66.928(3)
γ/°	88.801(3)
Volume/Å ³	2084.7(3)
Z	1
$\rho_{calc}g/cm^3$	1.668
µ/mm ⁻¹	13.011
F(000)	1028.0
Crystal size/mm ³	0.12 imes 0.11 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2⊖ range for data collection/°	8.756 to 133.214
Index ranges	$-14 \le h \le 14, -15 \le k \le 14, -17 \le l \le 17$
Reflections collected	25837
Independent reflections	7311 [$R_{int} = 0.0416$, $R_{sigma} = 0.0351$]
Data/restraints/parameters	7311/0/484
Goodness-of-fit on F ²	1.046
Final R indexes [I>=2σ (I)]	$R_1 = 0.0294, wR_2 = 0.0808$
Final R indexes [all data]	$R_1 = 0.0307, wR_2 = 0.0818$
Largest diff. peak/hole / e Å ⁻³	1.16/-0.84

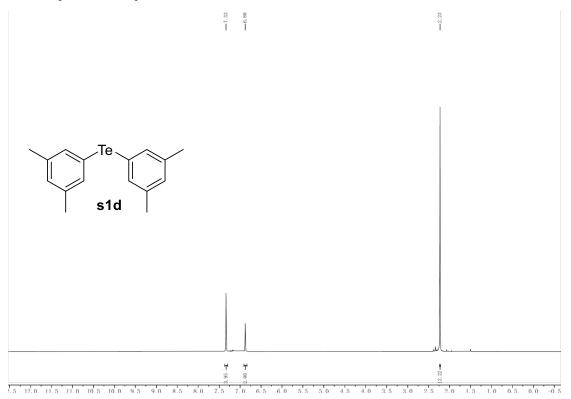
8. Copies of NMR Spectra


¹H NMR spectrum of compound s1a (CDCl₃, 400 MHz)

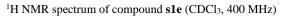



¹H NMR spectrum of compound **s1b** (CDCl₃, 400 MHz)

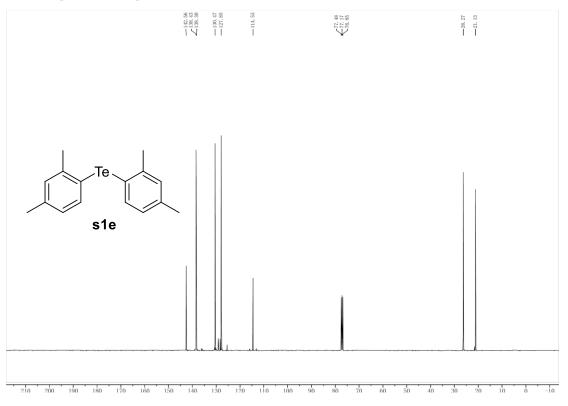

¹³C NMR spectrum of compound **s1b** (CDCl₃, 100 MHz)

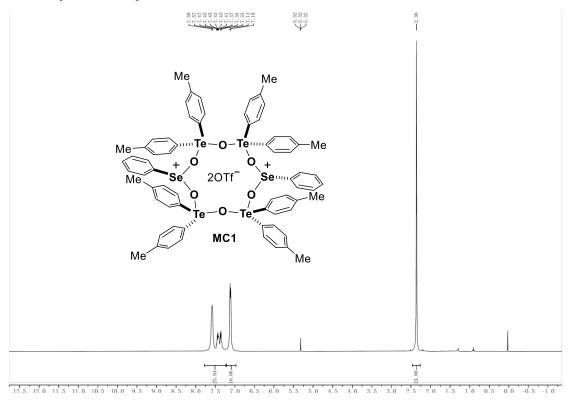

¹H NMR spectrum of compound **s1c** (CDCl₃, 400 MHz)

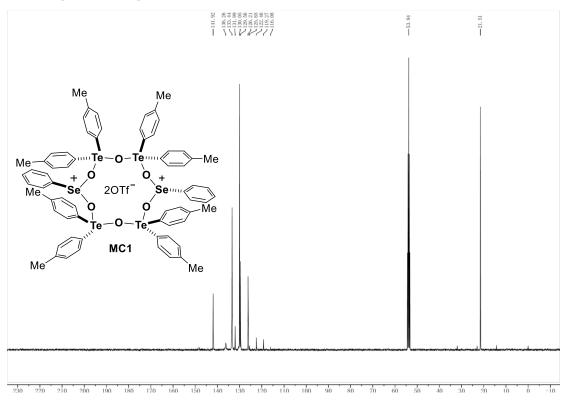
¹³C NMR spectrum of compound **s1c** (CDCl₃, 100 MHz)



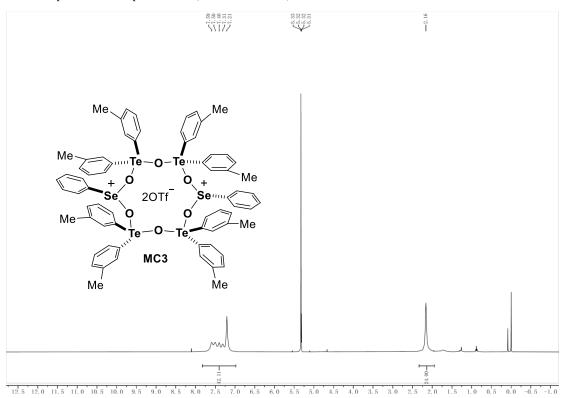
¹H NMR spectrum of compound **s1d** (CDCl₃, 400 MHz)

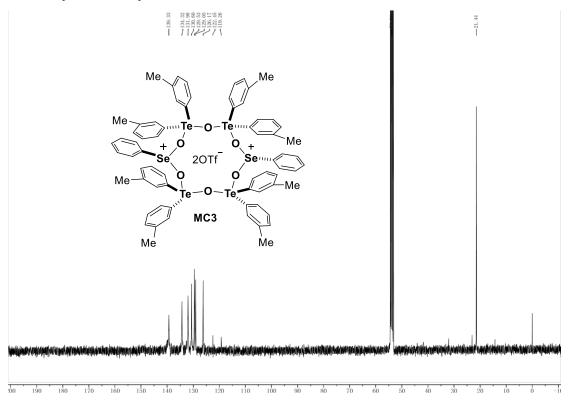

¹³C NMR spectrum of compound **s1d** (CDCl₃, 100 MHz)

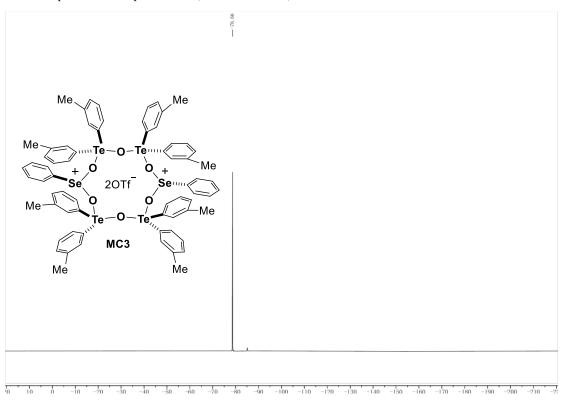



¹³C NMR spectrum of compound **s1e** (CDCl₃, 100 MHz)

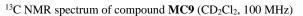
¹H NMR spectrum of compound MC1 (CD₂Cl₂, 400 MHz)


¹³C NMR spectrum of compound **MC1** (CD₂Cl₂, 100 MHz)

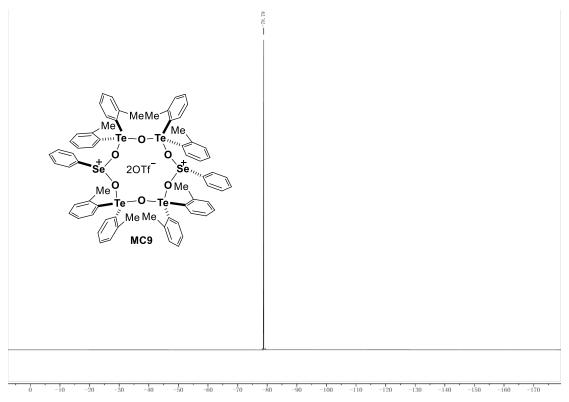

¹⁹F NMR spectrum of compound MC1 (CD₂Cl₂, 377 MHz)

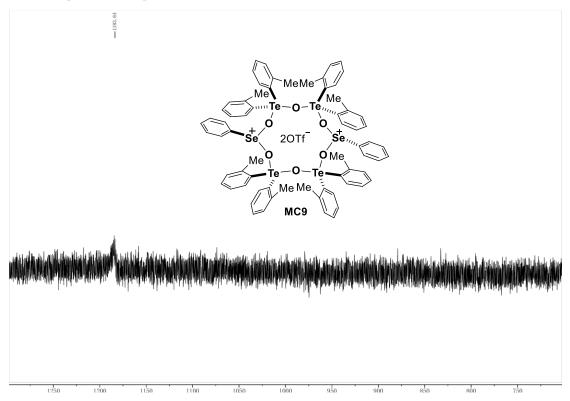

¹H NMR spectrum of compound MC3 (CD₂Cl₂, 400 MHz)

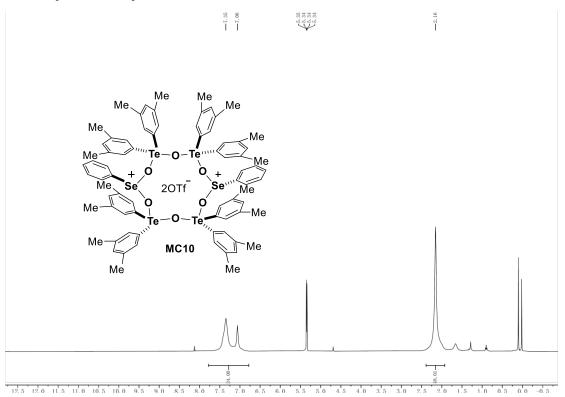
 ^{13}C NMR spectrum of compound MC3 (CD₂Cl₂, 100 MHz)

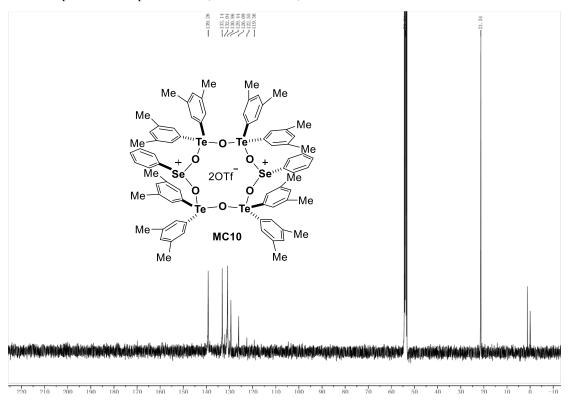


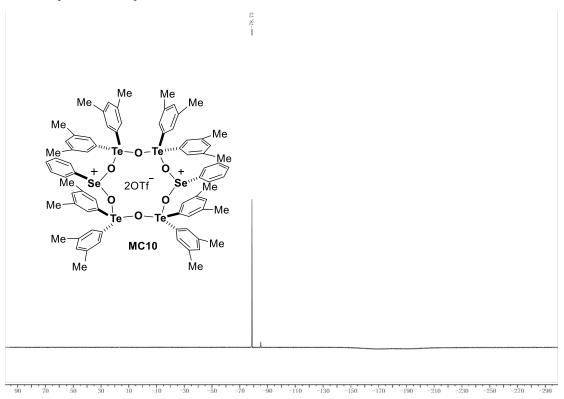

¹⁹F NMR spectrum of compound MC3 (CD₂Cl₂, 377 MHz)

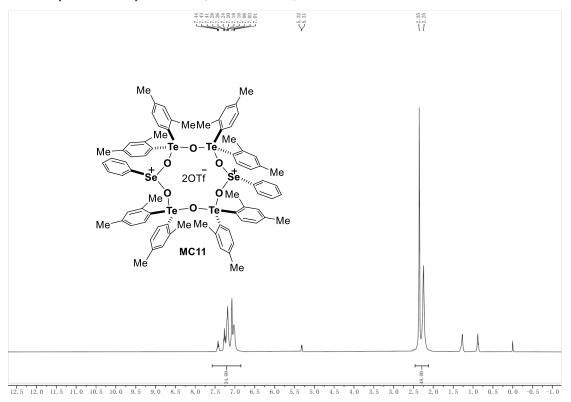

^1H NMR spectrum of compound MC9 (CD₂Cl₂, 400 MHz)

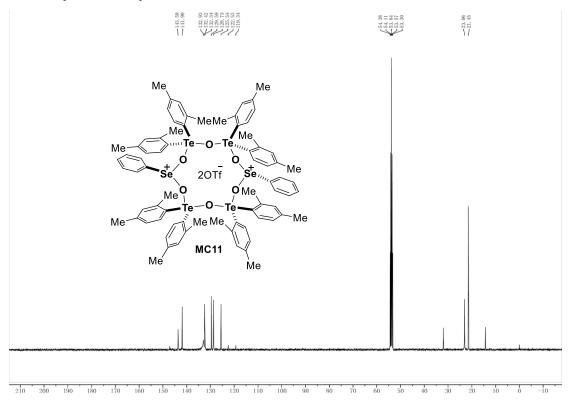


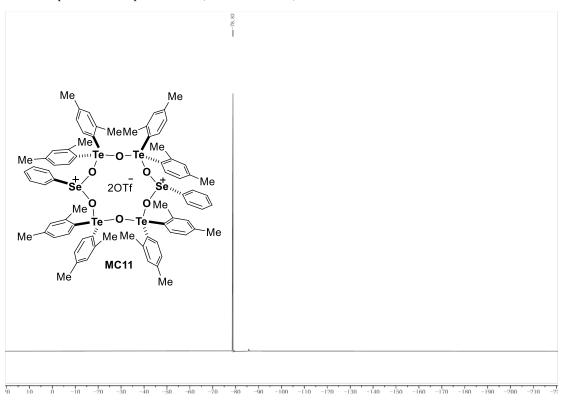

¹⁹F NMR spectrum of compound MC9 (CD₂Cl₂, 377 MHz)

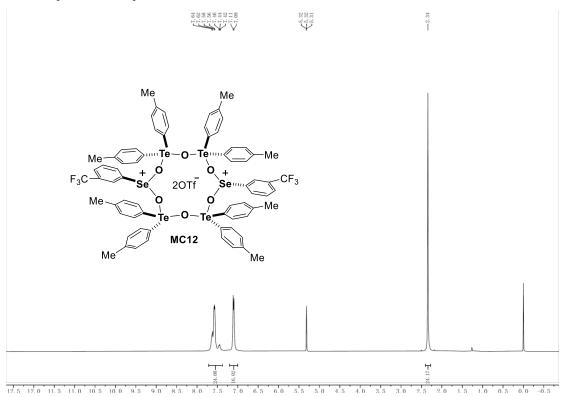

 ^{77}Se NMR spectrum of compound MC9 (CD₂Cl₂, 76 MHz)

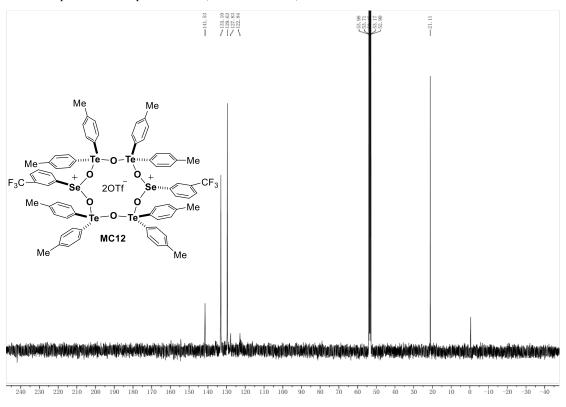

¹H NMR spectrum of compound MC10 (CD₂Cl₂, 400 MHz)

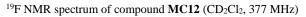

¹³C NMR spectrum of compound MC10 (CD₂Cl₂, 100 MHz)

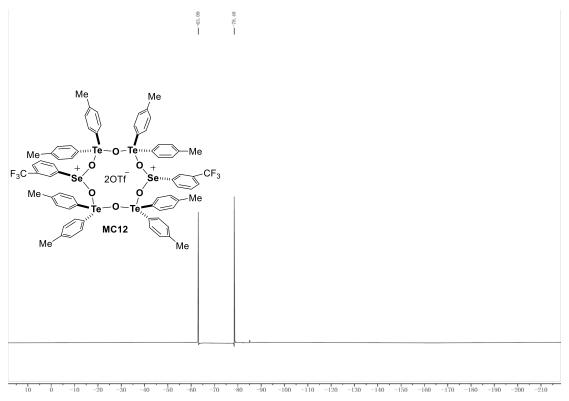

¹⁹F NMR spectrum of compound MC10 (CD₂Cl₂, 377 MHz)

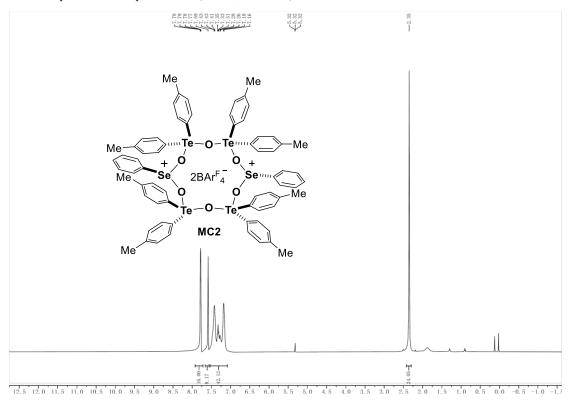

¹H NMR spectrum of compound MC11 (CD₂Cl₂, 400 MHz)

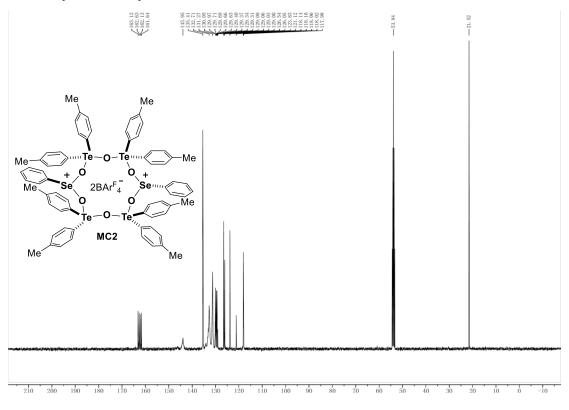

¹³C NMR spectrum of compound MC11 (CD₂Cl₂, 100 MHz)

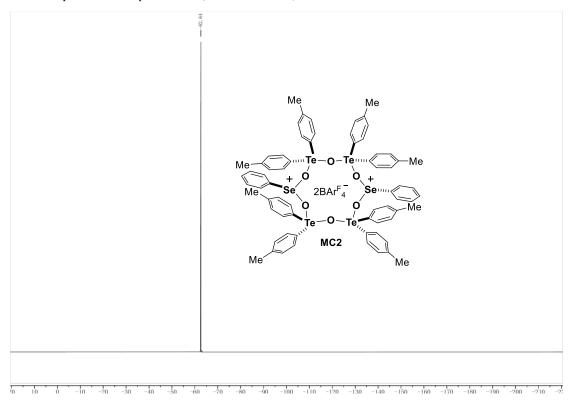

¹⁹F NMR spectrum of compound **MC11** (CD₂Cl₂, 377 MHz)

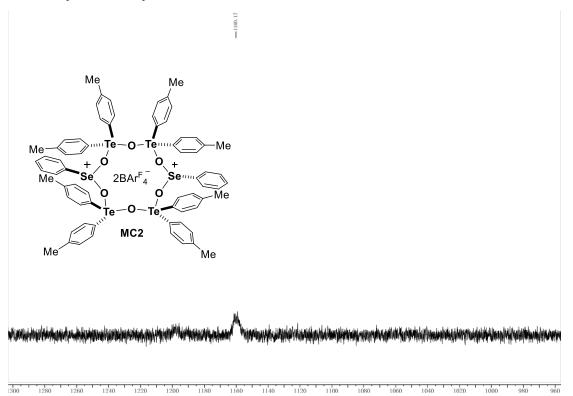


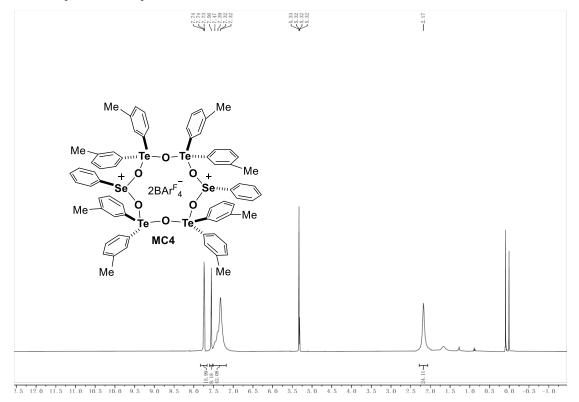

¹H NMR spectrum of compound MC12 (CD₂Cl₂, 400 MHz)


¹³C NMR spectrum of compound MC12 (CD₂Cl₂, 100 MHz)

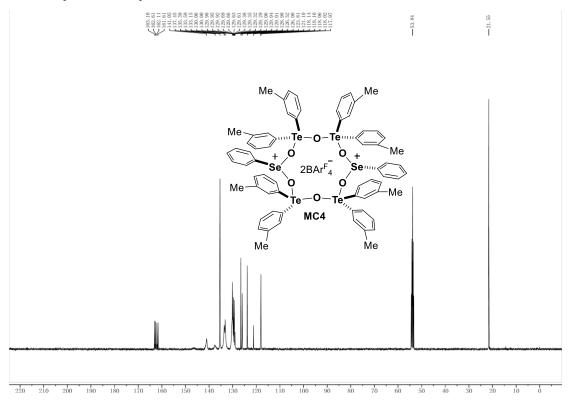


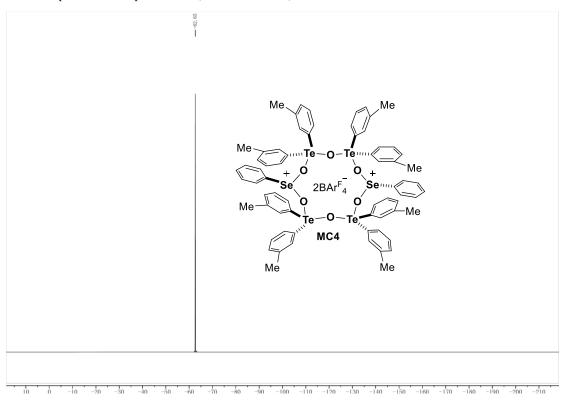

¹H NMR spectrum of compound MC2 (CD₂Cl₂, 400 MHz)


 ^{13}C NMR spectrum of compound MC2 (CD₂Cl₂, 100 MHz)

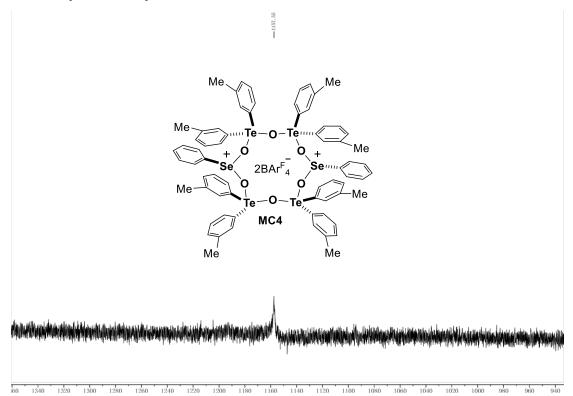


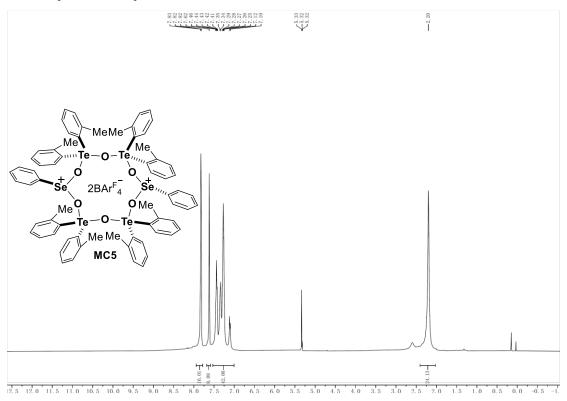
¹⁹F NMR spectrum of compound MC2 (CD₂Cl₂, 377 MHz)

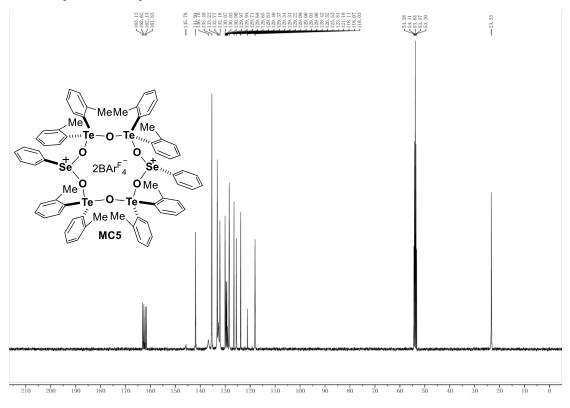

⁷⁷Se NMR spectrum of compound MC2 (CD₂Cl₂, 76 MHz)

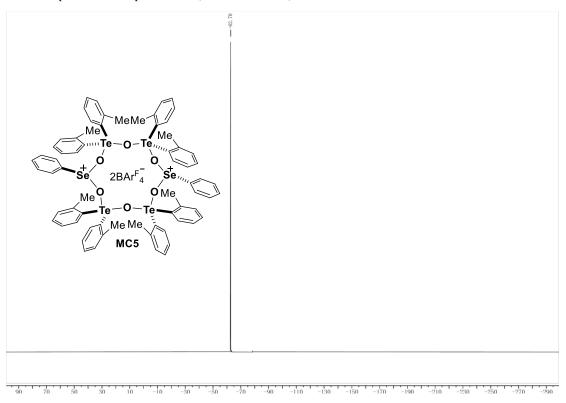


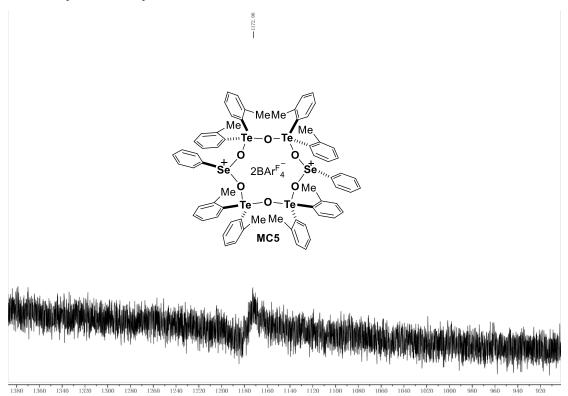
¹H NMR spectrum of compound MC4 (CD₂Cl₂, 400 MHz)

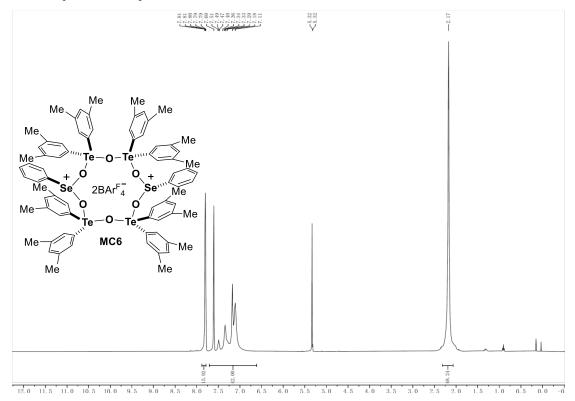

¹³C NMR spectrum of compound MC4 (CD₂Cl₂, 100 MHz)


¹⁹F NMR spectrum of compound MC4 (CD₂Cl₂, 377 MHz)

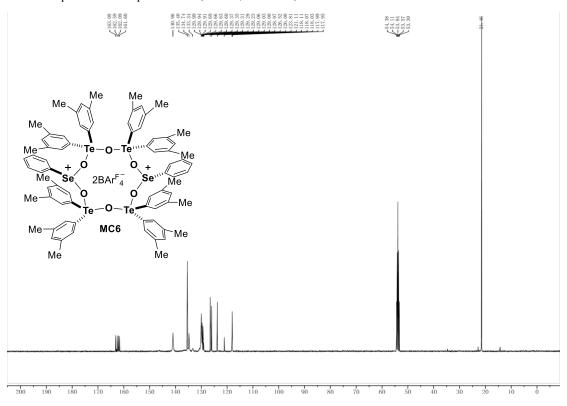

⁷⁷Se NMR spectrum of compound MC4 (CD₂Cl₂, 76 MHz)

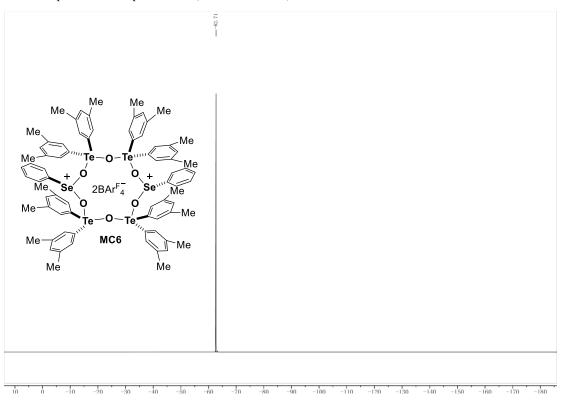

¹H NMR spectrum of compound MC5 (CD₂Cl₂, 400 MHz)


 ^{13}C NMR spectrum of compound MC5 (CD₂Cl₂, 100 MHz)

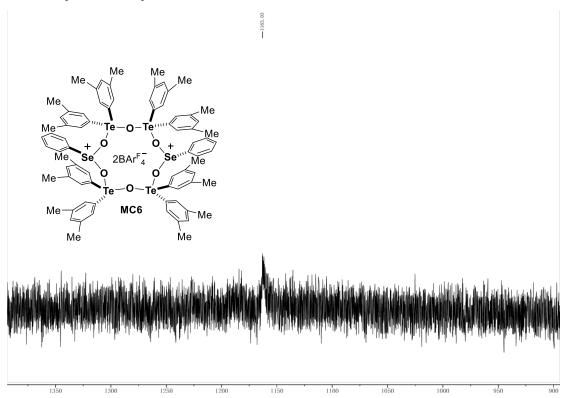


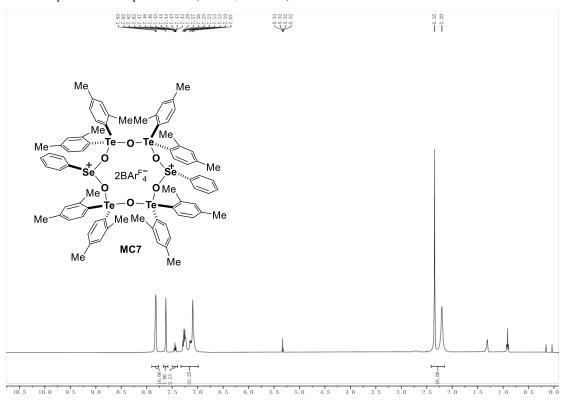
¹⁹F NMR spectrum of compound MC5 (CD₂Cl₂, 377 MHz)

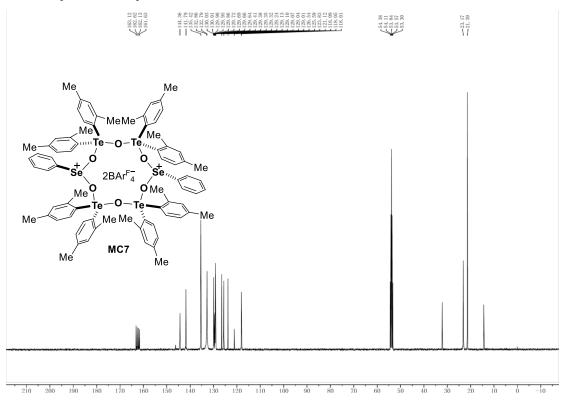

⁷⁷Se NMR spectrum of compound MC5 (CD₂Cl₂, 76 MHz)

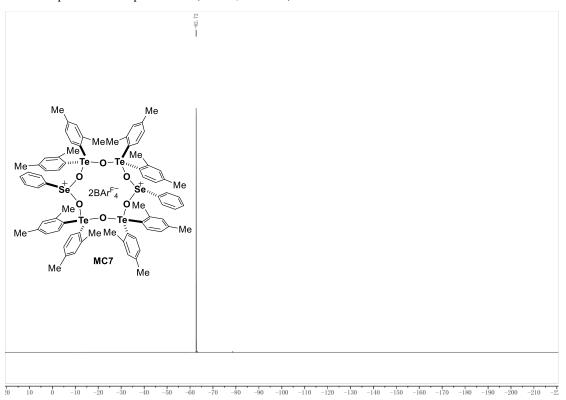


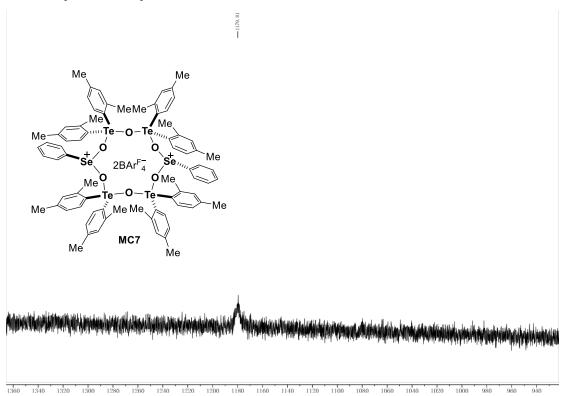
^1H NMR spectrum of compound MC6 (CD₂Cl₂, 400 MHz)

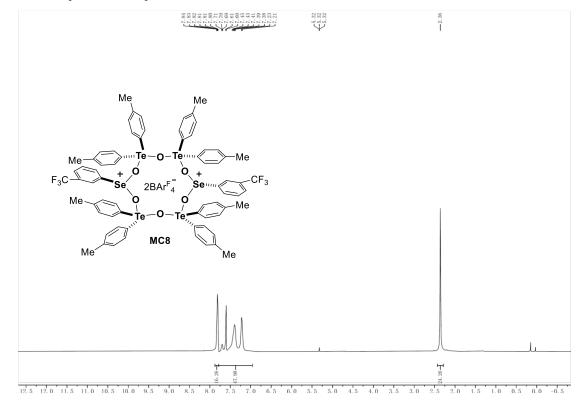

¹³C NMR spectrum of compound MC6 (CD₂Cl₂, 100 MHz)


¹⁹F NMR spectrum of compound MC6 (CD₂Cl₂, 377 MHz)

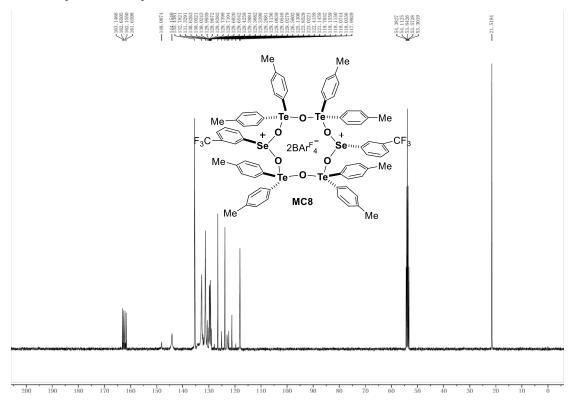

 $^{77}Se\ NMR$ spectrum of compound $MC6\ (CD_2Cl_2,\,76\ MHz)$

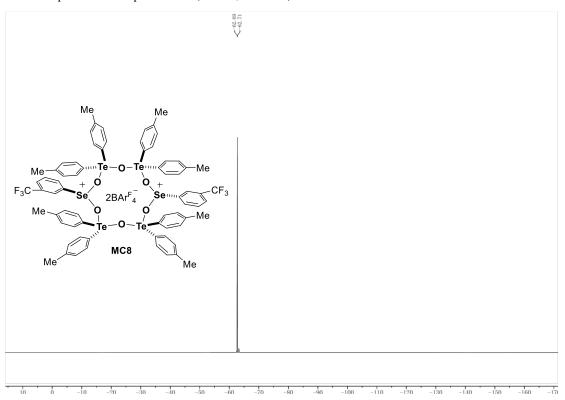

¹H NMR spectrum of compound MC7 (CD₂Cl₂, 400 MHz)


 ^{13}C NMR spectrum of compound MC7 (CD₂Cl₂, 100 MHz)

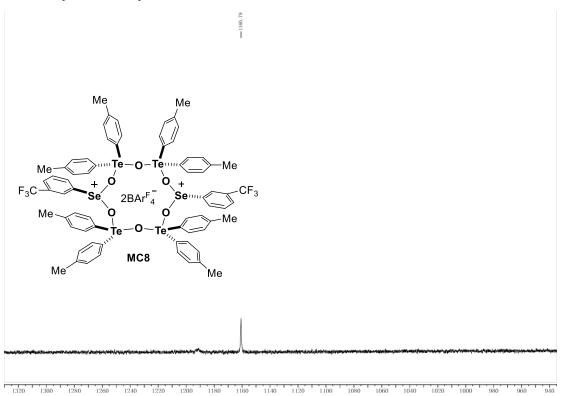


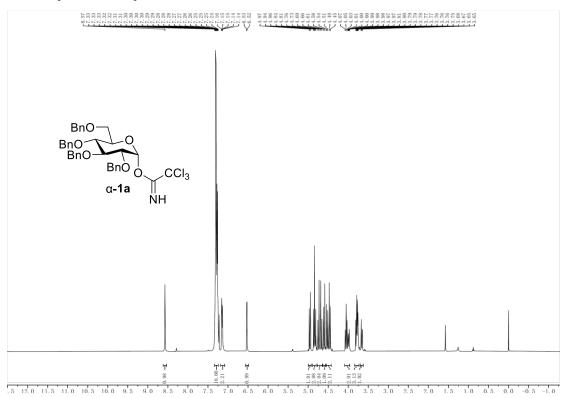
¹⁹F NMR spectrum of compound MC7 (CD₂Cl₂, 377 MHz)


⁷⁷Se NMR spectrum of compound MC7 (CD₂Cl₂, 76 MHz)

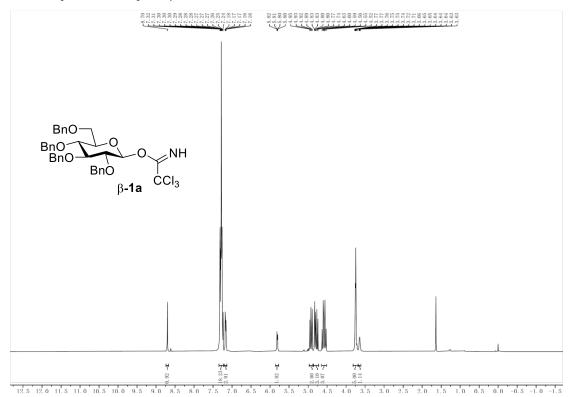


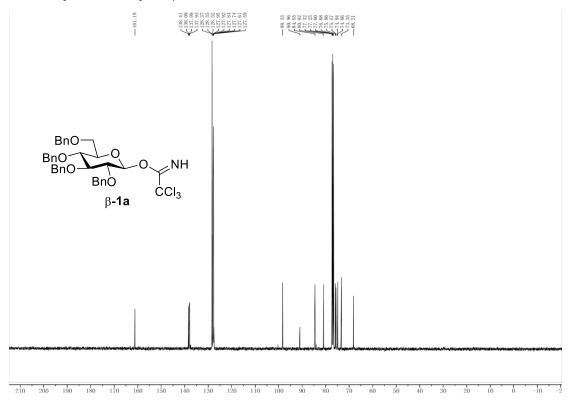
¹H NMR spectrum of compound MC8 (CD₂Cl₂, 400 MHz)

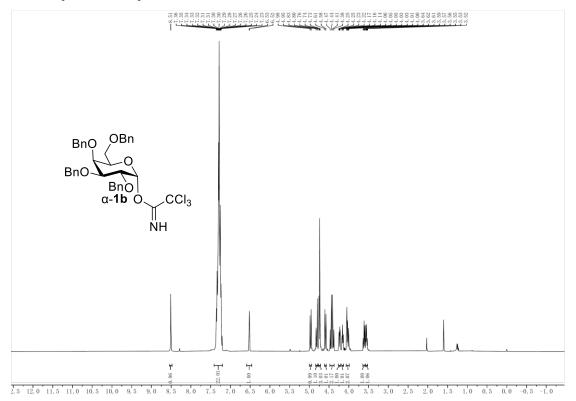

 ^{13}C NMR spectrum of compound MC8 (CD₂Cl₂, 100 MHz)

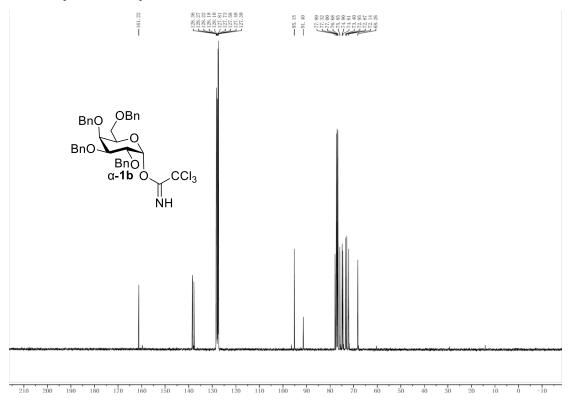

¹⁹F NMR spectrum of compound MC8 (CD₂Cl₂, 377 MHz)

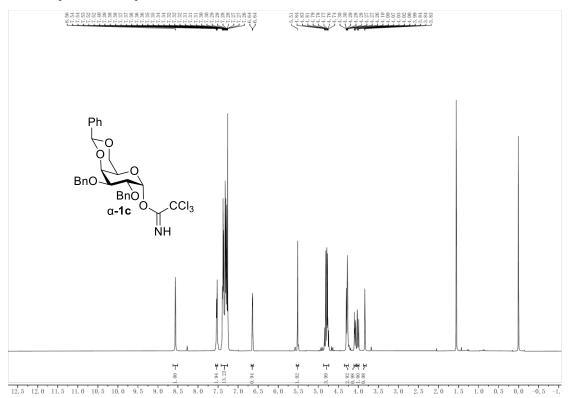
⁷⁷Se NMR spectrum of compound MC8 (CD₂Cl₂, 76 MHz)

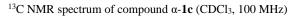

¹H NMR spectrum of compound α-**1a** (CDCl₃, 400 MHz)

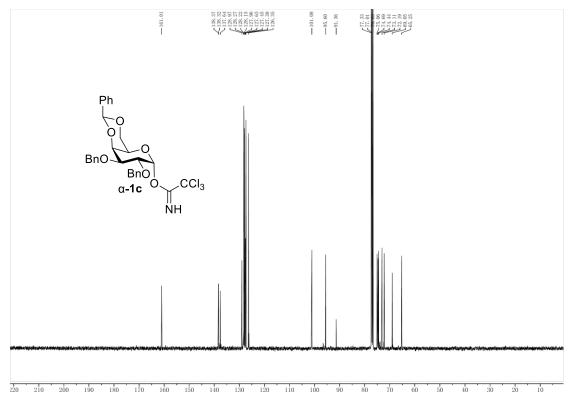

 ^{13}C NMR spectrum of compound $\alpha\text{-}1a$ (CDCl₃, 100 MHz)

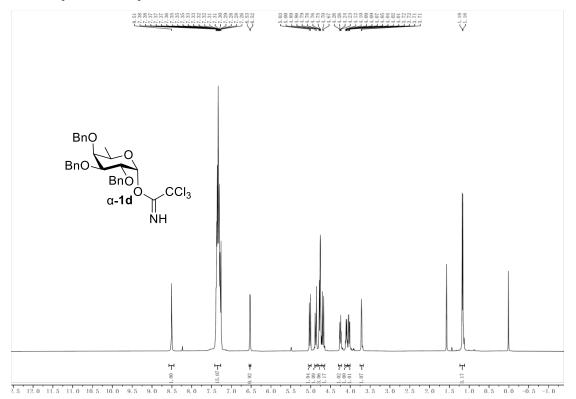

 ^1H NMR spectrum of compound $\beta\text{-}1a$ (CDCl_3, 400 MHz)

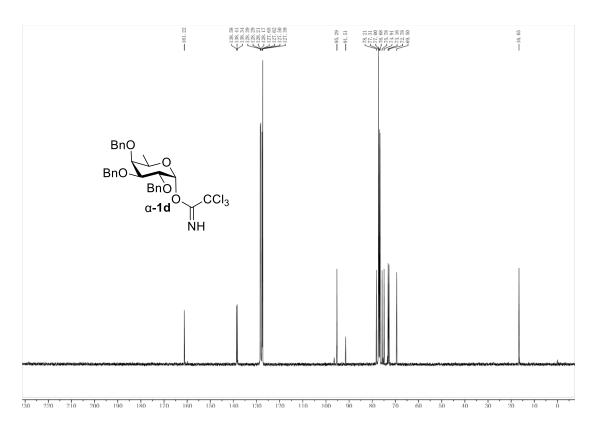

 13 C NMR spectrum of compound β -1a (CDCl₃, 100 MHz)

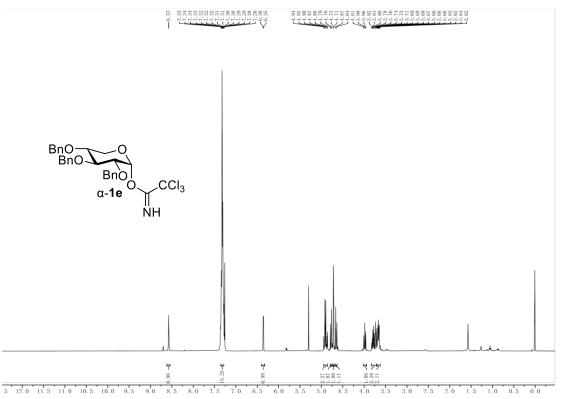

¹H NMR spectrum of compound α-**1b** (CDCl₃, 400 MHz)

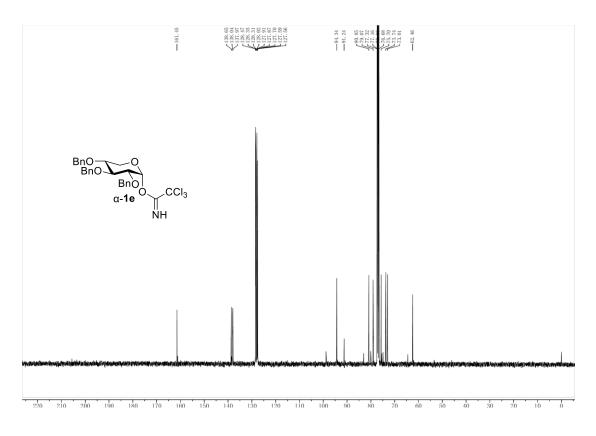


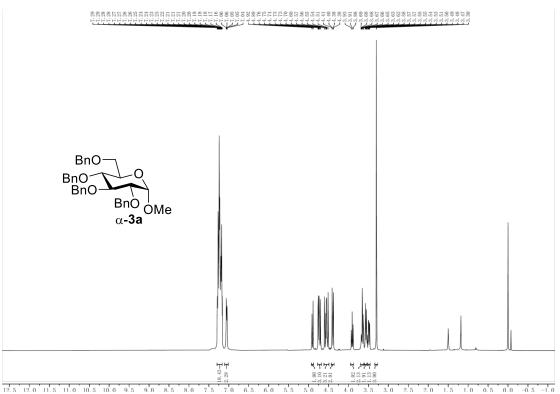

 ^{13}C NMR spectrum of compound $\alpha\text{-}1b$ (CDCl_3, 100 MHz)

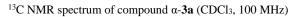

 ^1H NMR spectrum of compound $\alpha\text{-}1c$ (CDCl₃, 400 MHz)

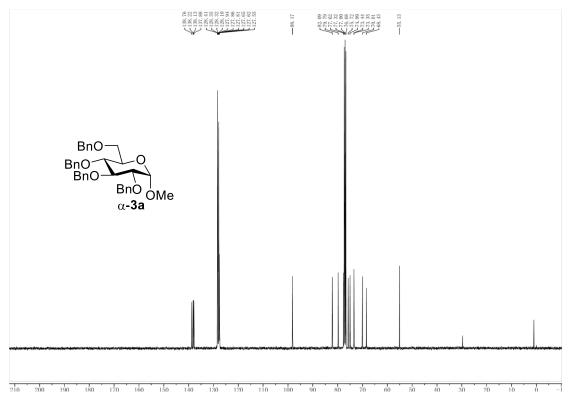


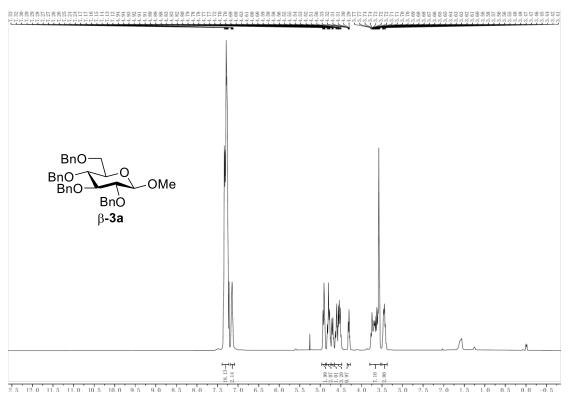

¹H NMR spectrum of compound α-1d (CDCl₃, 400 MHz)

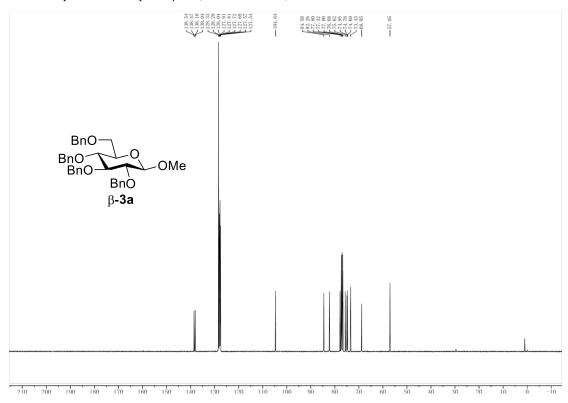

 ^{13}C NMR spectrum of compound $\alpha\text{-}1d$ (CDCl₃, 100 MHz)


 ^1H NMR spectrum of compound $\alpha\text{-}1e$ (CDCl_3, 400 MHz)

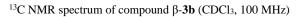


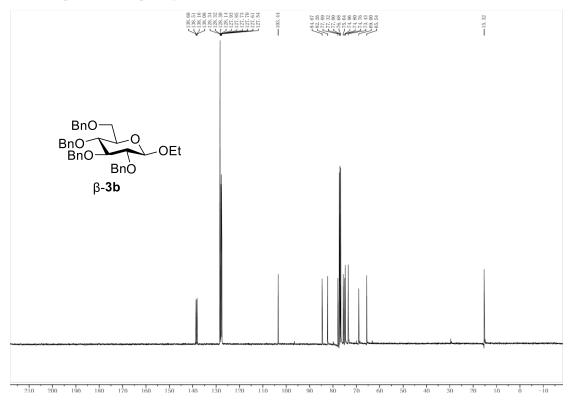

 ^{13}C NMR spectrum of compound $\alpha\text{-}1e$ (CDCl₃, 100 MHz)


 ^1H NMR spectrum of compound $\alpha\text{-}\textbf{3a}$ (CDCl₃, 400 MHz)

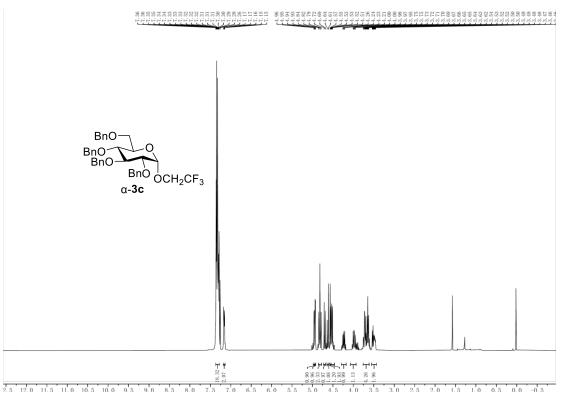


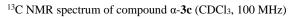

^1H NMR spectrum of compound $\beta\text{-}\textbf{3a}$ (CDCl₃, 400 MHz)

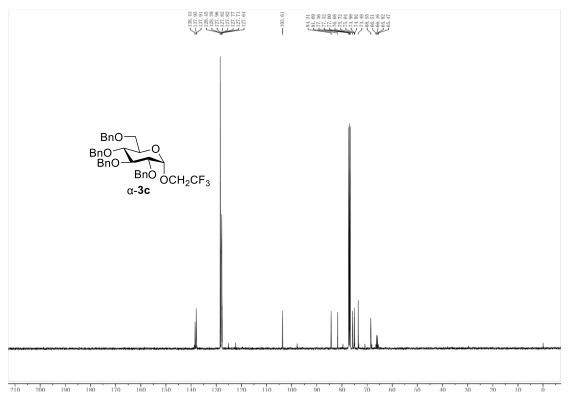


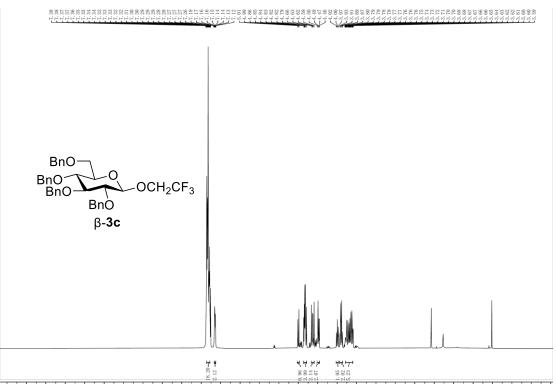


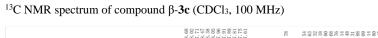
 ^{13}C NMR spectrum of compound $\beta\text{-}\textbf{3a}$ (CDCl₃, 100 MHz)

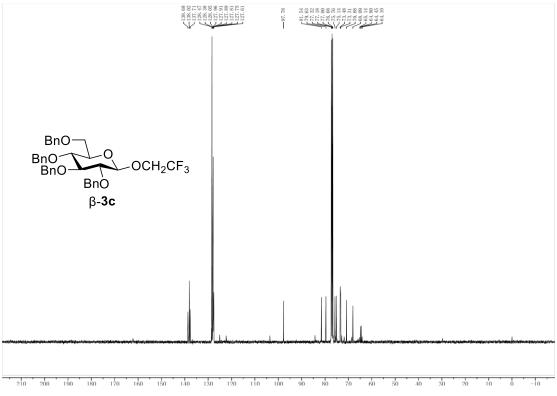

 ^1H NMR spectrum of compound $\beta\text{-}3b$ (CDCl_3, 400 MHz)



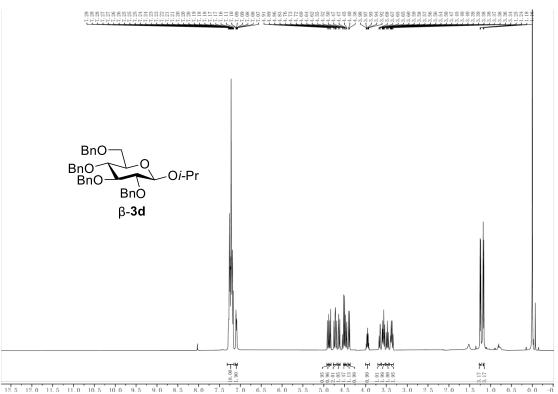


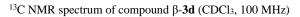

¹H NMR spectrum of compound α -3c (CDCl₃, 400 MHz)

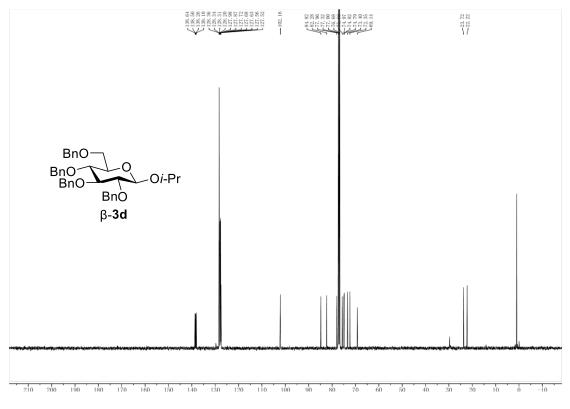


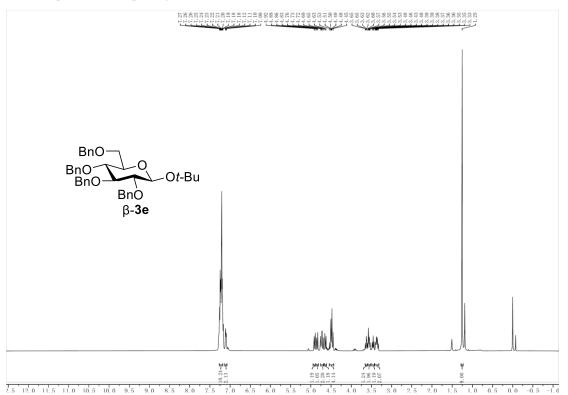


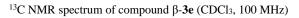
 ^1H NMR spectrum of compound $\beta\text{-}3c$ (CDCl_3, 400 MHz)

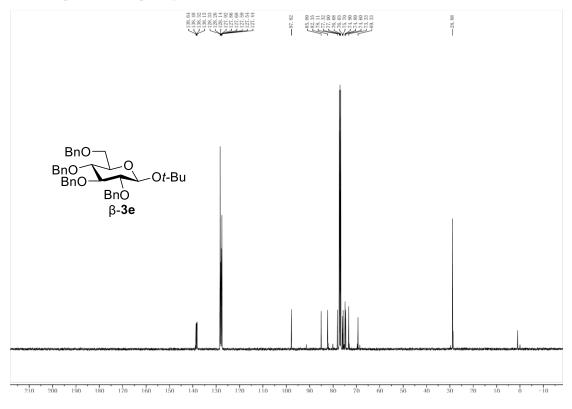


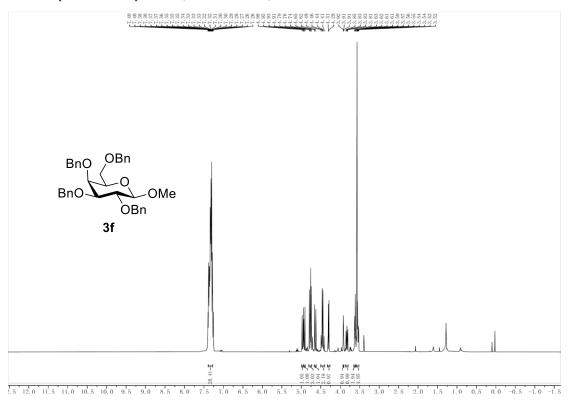

4.5 12.5 12.0 11.5 11.0 10.5 10.0 9.5 5.0 4.0 3.5 0.5 0.0 -0.5 -1.0 -1. 9.0 8.0 3.0 2.5 1.5 1.0 8.5 7.5 6.0 5.5 2.0 6.5

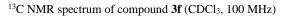


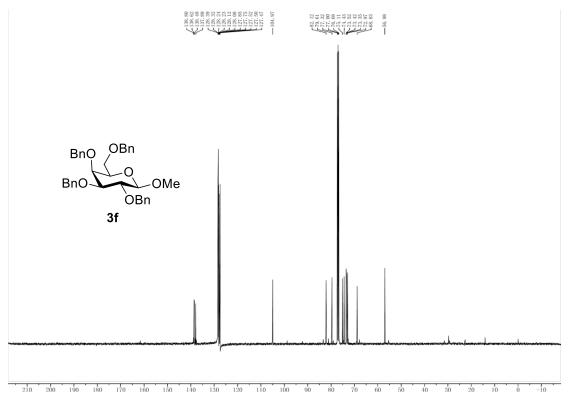

 ^1H NMR spectrum of compound $\beta\text{-}\textbf{3d}$ (CDCl₃, 400 MHz)

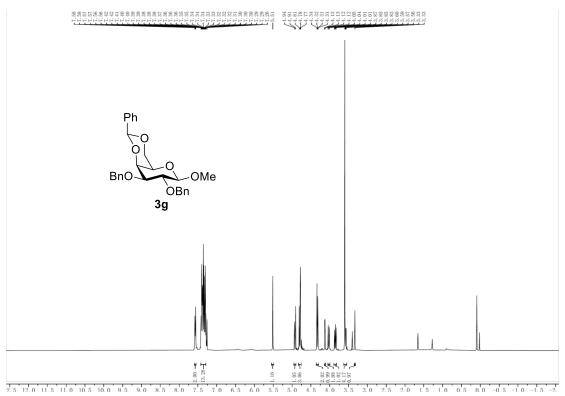


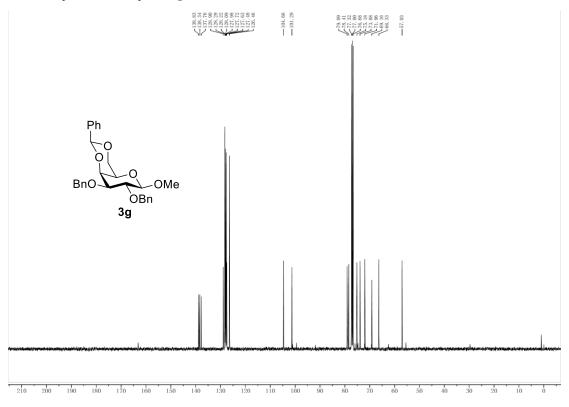


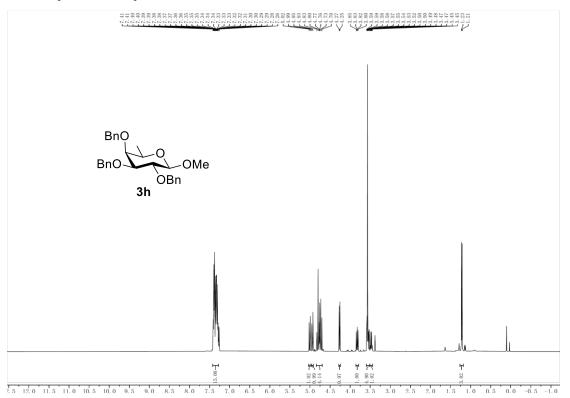

 ^1H NMR spectrum of compound $\beta\text{-}3e$ (CDCl_3, 400 MHz)

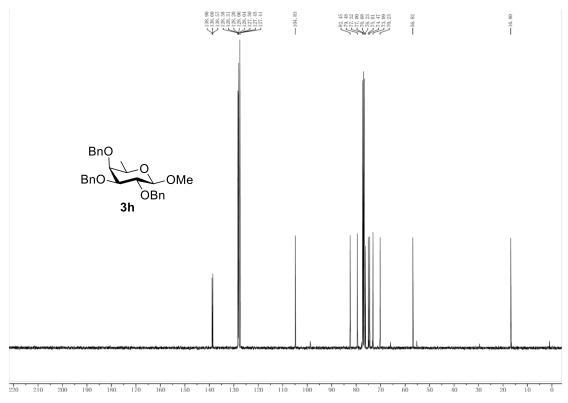


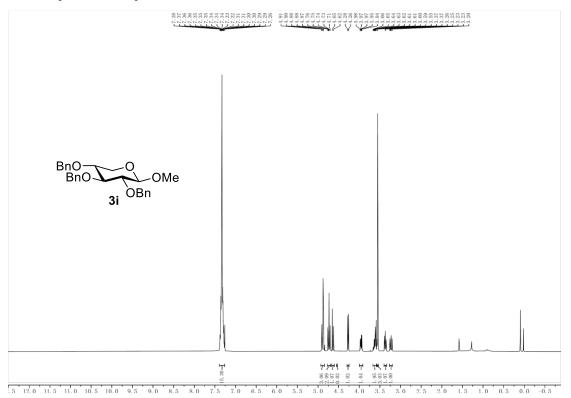


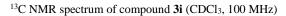

¹H NMR spectrum of compound **3f** (CDCl₃, 400 MHz)

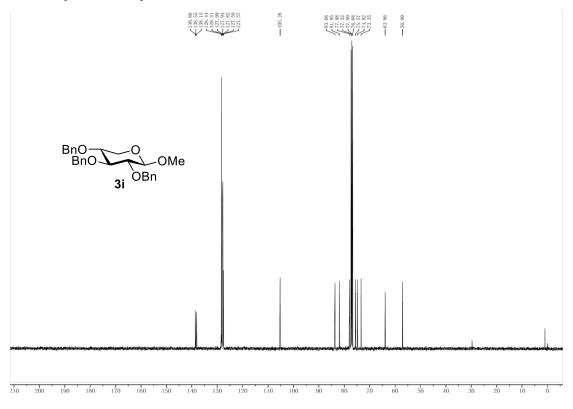


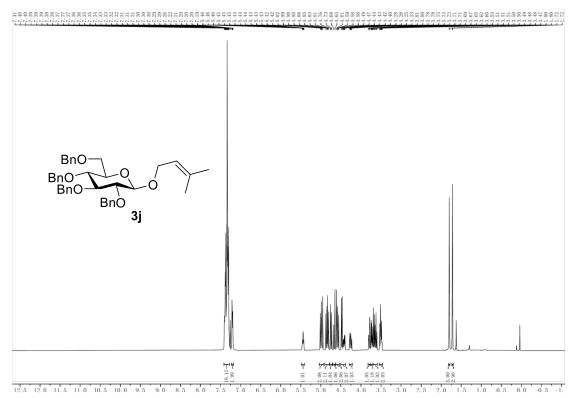

¹H NMR spectrum of compound **3g** (CDCl₃, 400 MHz)

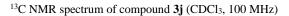

¹³C NMR spectrum of compound **3g** (CDCl₃, 100 MHz)

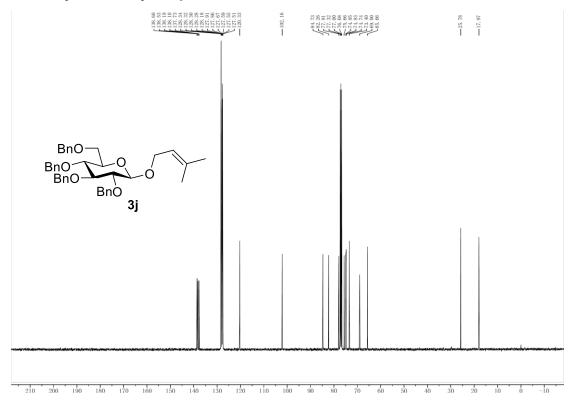

¹H NMR spectrum of compound **3h** (CDCl₃, 400 MHz)

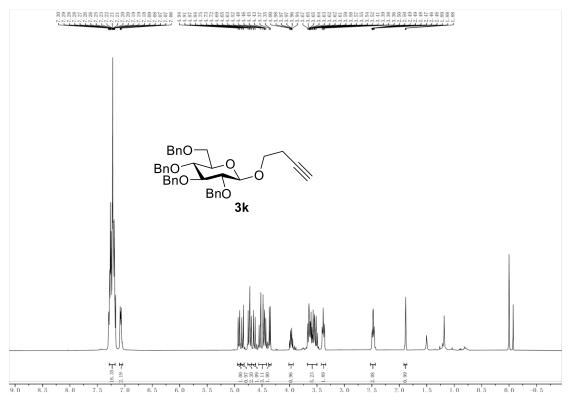


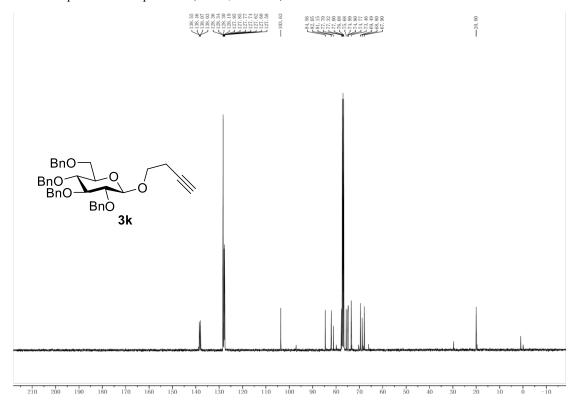

¹³C NMR spectrum of compound **3h** (CDCl₃, 100 MHz)

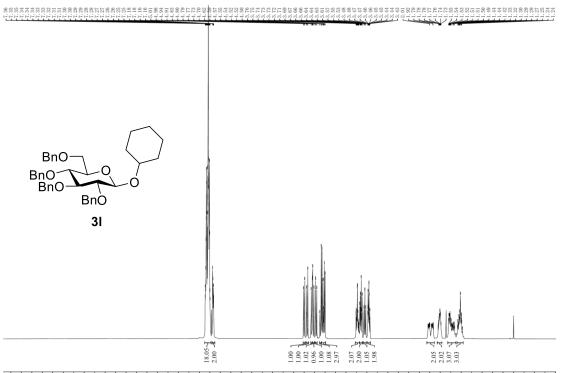

¹H NMR spectrum of compound **3i** (CDCl₃, 400 MHz)

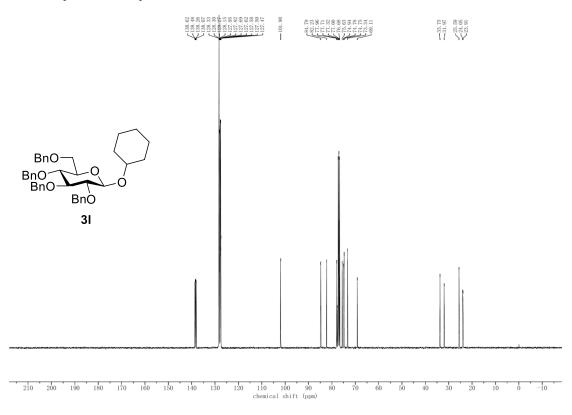




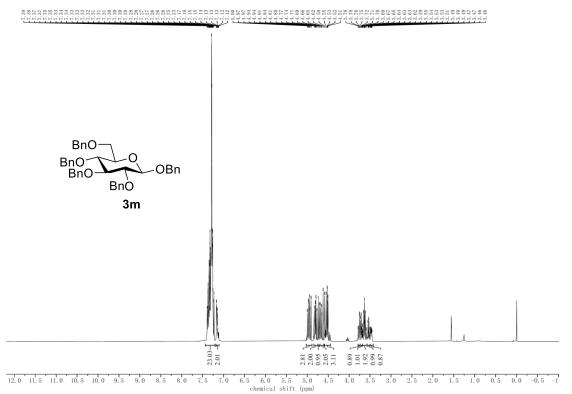

¹H NMR spectrum of compound **3j** (CDCl₃, 400 MHz)

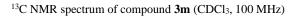


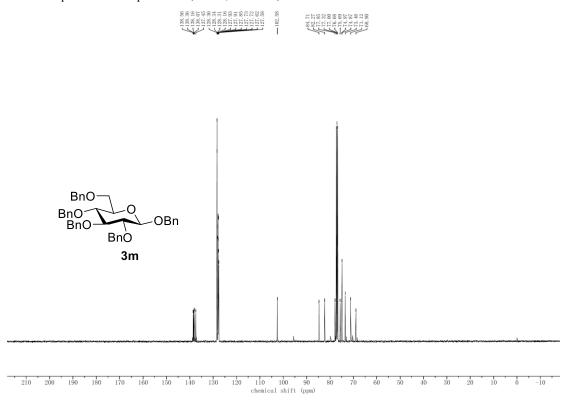

¹H NMR spectrum of compound **3k** (CDCl₃, 400 MHz)

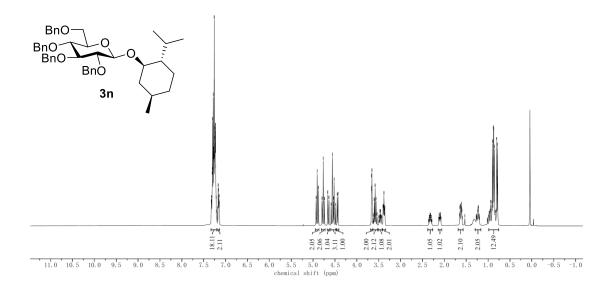

¹³C NMR spectrum of compound 3k (CDCl₃, 100 MHz)

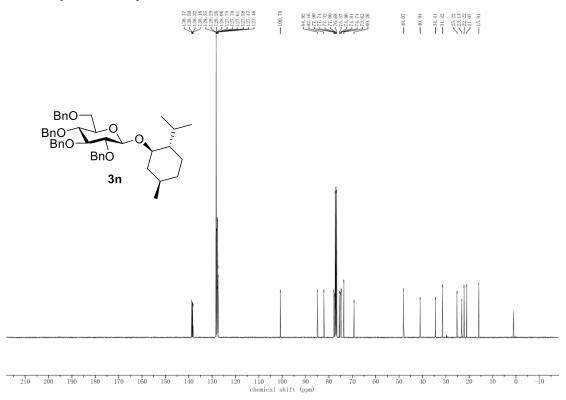
¹H NMR spectrum of compound **3l** (CDCl₃, 400 MHz)

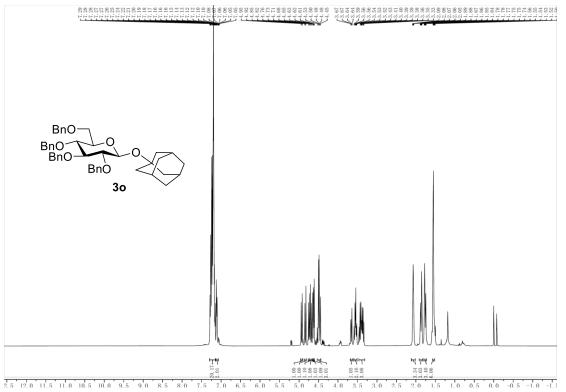


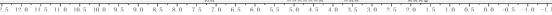

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 chemical shift (pps)

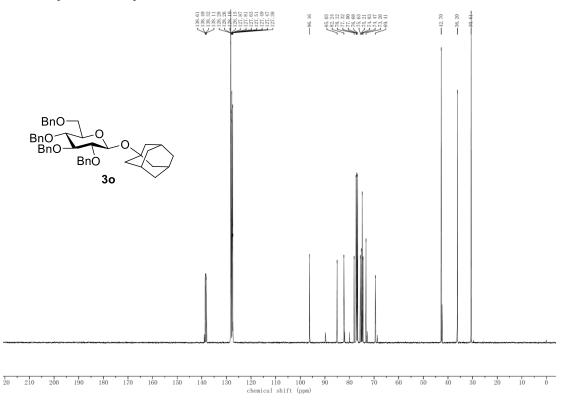

¹³C NMR spectrum of compound **3l** (CDCl₃, 100 MHz)


¹H NMR spectrum of compound **3m** (CDCl₃, 400 MHz)

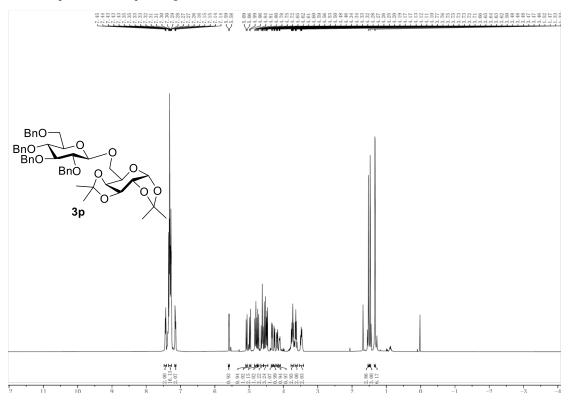



¹H NMR spectrum of compound **3n** (CDCl₃, 400 MHz)

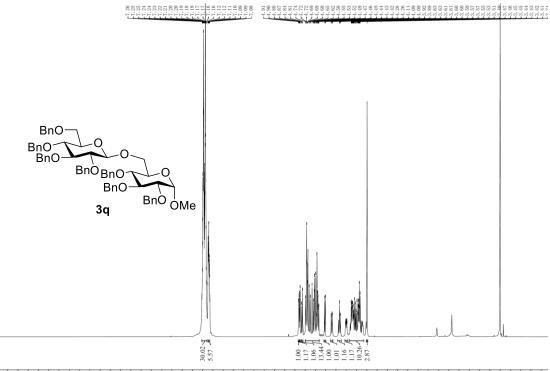




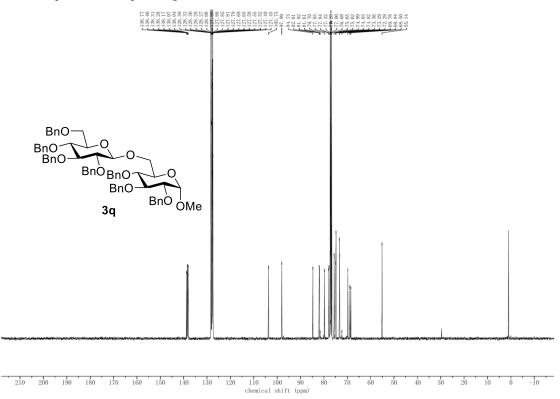
¹H NMR spectrum of compound **30** (CDCl₃, 400 MHz)



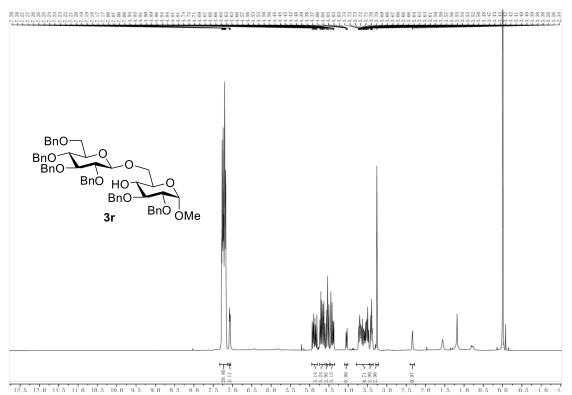
¹³C NMR spectrum of compound **30** (CDCl₃, 100 MHz)


¹H NMR spectrum of compound **3p** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **3p** (CDCl₃, 100 MHz)



¹H NMR spectrum of compound **3q** (CDCl₃, 400 MHz)



12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 chemical shift (ppm)

¹³C NMR spectrum of compound **3q** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **3r** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **3r** (CDCl₃, 100 MHz)

9. References

1. S. Zhang, K. Karra, A. Koe, J. Jin, Catalyst free one-pot synthesis of symmetrical diaryl tellurides with Te⁰/KOH. *Tetrahedron Lett.* **2013**, *54*, 2452–2454.

2. D. Tanini, L. Ricci, A. Capperucci, Rongalite-Promoted on Water Synthesis of Functionalised Tellurides and Ditellurides. *Adv. Synth. Catal.* **2020**, *362*, 1323–1332.

3. S. Zhang, L. Kolluru, S. K. Vedula, D. Whippie, J. Jin, Carbon-carbon bond forming reactions via Pd-catalyzed detellurative homocoupling of diorganyl tellurides. *Tetrahedron Lett.* **2017**, *58*, 3594–3597.

4. S. Chatterjee, S. Moon, F. Hentschel, K. Gilmore, P. H. Seeberger, An Empirical Understanding of the Glycosylation Reaction. J. Am. Chem. Soc. 2018, 140, 11942–11953.

5. N. Hartrampf, T. Seki, A. Baumann, P. Watson, N. A. Vepřek, B. E. Hetzler, A. Hoffmann-Röder, M. Tsuji, D. Trauner, Optical Control of Cytokine Production Using Photoswitchable Galactosylceramides. *Chem. Eur. J.* **2020**, 26, 4476–4479.

6. J. M. H. Cheng, E. M. Dangerfield, M. S. M. Timmer, B. L. Stocker, A divergent approach to the synthesis of iGb3 sugar and lipid analogues via a lactosyl 2-azido-sphingosine intermediate. *Org. Biomol. Chem.*, **2014**, *12*, 2729–2736.

7. K. Deng, M. M. Adams, P. Damani, P. O. Livingston, G. Ragupathi, D.Y. Gin, Synthesis of the Xylose-Isomer of the Clinical Adjuvant QS-21. Establishing Immuno-Potentiating Activity of Synthetic QS-21 (sQS-21) with GD3-KLH Conjugate Melanoma Vaccine. *Angew. Chem. Int. Ed.* **2008**, *47*, 6395–6398.

8. P. Thordarson, Determining association constants from titration experiments in supramolecular chemistry. Chem.

Soc. Rev. 2011, 40, 1305–1323.

9. D. Brynn Hibbert, P. Thordarson. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. *Chem. Commun.* **2016**, *52*, 12792–12805.