Supporting Information

Metal-free sigmatropic rearrangement/cyclization/aromatization cascade reaction of hydroxy/aminophenyl propargyl alcohols with fluoroalkanesulfinyl chlorides: Synthesis of 3-fluoroalkanesulfonyl

benzofurans and indoles

Si-Jing Jiang,^a‡ Zhao-Zhao Li,^a‡ Li-Na Yang,^a Ming Bian,^a Xiao-Han Qiu,^a Yu-Ning Gao,^a Hui-Yu Chen*^a and Zhen-Jiang Liu*^a

^aSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China Fax: (+86)-21- 60877231; Tel: (+86)-21- 60877227; E-mail: zjliu@sit.edu.cn; chenhuiyu@sit.edu.cn

Table of Contents

General information	2
Screening of reaction conditions	2
General procedure for the synthesis of o-hydroxyphenyl propargylic alcohols	3
General procedure for the synthesis of o-aminophenyl propargylalcohols	4
General procedure for the synthesis of 2-propynolphenol/2-propynolaniline	5
General procedure for the synthesis of 2-alkyl-3-fluoroalkanesulfonyl benzofurans	5
General procedure for the synthesis of 2-alkyl-3-fluoroalkanesulfonyl indoles	6
Gram-scale experiment	7
Product derivatization	8
Spectra data of compounds 3a-3z, 3aa, 3ab, 5a-5v, 7, 9 and 10	9
Crystallography of 2-alkyl-3-fluoroalkanesulfonyl benzofuran 3a	
References	23
Copies of NMR spectra	24

General information

All moisture or oxygen-sensitive reactions were carried out in a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. The solvents used were purified by distillation over the drying agents indicated and were transferred under nitrogen: THF (Na), CH₂Cl₂ (CaH₂), toluene (Na), ClCH₂CH₂Cl (CaH₂), CH₃CN (CaH₂). Reagents were purchased at commercial quality and used without further purification. All reactions were monitored by thin-layer chromatography carried out on 0.25 mm Rushan silica gel plates (GF254) and visualized by exposure to UV light (254 nm) or KMnO₄. The products were purified by column chromatography on silica gel (300-400 meshes) from Qing Dao Hai Yang Chemical Industry Company in China. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were measured in CDCl₃ on a China Qone AS400 MHz instrument (resonance frequencies 400 MHz for ¹H and 100 MHz for ¹³C) or Bruker Advance III 400 MHz instrument (resonance frequencies 400 MHz for ¹H and 100 MHz for ¹³C), with TMS as internal standard. All chemical shifts are reported in ppm scale. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, td = triple doublet, dt = double triplet, m = multiplet. Mass spectrometric data were obtained using a Bruker Solaril X70 high resolution mass spectrometer (samples were dissolved in CH₃OH and the ion source was ESI). The IR spectra were recorded on a PerkinElmer Spectrum TWO. The melting point were recorded on a WRS-1B digital melting-point apparatus.

Screening of reaction conditions

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-hydroxyphenyl propargylic alcohol **1a** (45 mg, 0.2 mmol) or *o*-aminophenyl propargylic alcohol **4a** (75 mg, 0.2 mmol), base, and solvent (3 mL) followed by trifluoromethanesulfinyl chloride **2a**. The reaction mixture was heated in an oil bath at indicated temperature under a nitrogen atmosphere and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (10 mL × 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to give the final product.

	Tuble Sit Selecting of Feaction conditions							
entry	Х	base	solvent	m	n	temp (°C)	time (h)	yield $(\%)^b$
1	0	2-Me-py	THF	1.5	1.5	40	24	50
2	0	2-Me-py	DCM	1.5	1.5	40	10	60
3	0	2-Me-py	ACN	1.5	1.5	40	10	65
4	0	2-Me-py	toluene	1.5	1.5	40	3	83
5	0	2-Me-py	toluene	1.0	1.5	40	20	70
6	0	2-Me-py	toluene	1.2	1.5	40	9	79

Table S1. Screening of reaction conditions^a

7	0	2-Me-py	toluene	2.0	1.5	40	3	55
8	Ο	2-Me-py	toluene	1.5	1.0	40	3	61
9	Ο	2-Me-py	toluene	1.5	1.2	40	3	75
10	Ο	2-Me-py	toluene	1.5	2.0	40	3	79
11	Ο	2-Me-py	toluene	1.2	1.2	40	9	65
12	Ο	2-Me-py	toluene	2.0	2.0	40	9	49
13	Ο	2-Me-py	toluene	3.0	3.0	40	9	46
14	Ο	pyridine	toluene	1.5	1.5	40	10	35
15	Ο	2,6-lutidine	toluene	1.5	1.5	40	10	80
16	Ο	morpholine	toluene	1.5	1.5	40	3	41
17	Ο	piperidine	toluene	1.5	1.5	40	3	30
18	Ο	imidazole	toluene	1.5	1.5	40	3	7
19	Ο	DMAP	toluene	1.5	1.5	40	3	65
20	Ο	DABCO	toluene	1.5	1.5	40	3	85
21	Ο	DABCO	toluene	1.5	1.5	rt	3	70
22	Ο	DABCO	toluene	1.5	1.5	50	1	96
23	Ο	DABCO	toluene	1.5	1.5	60	1	91
24	Ο	/	toluene	1.5	1.5	40	3	0
25	NTs	DABCO	toluene	1.5	1.5	50	0.5	79
26	NTs	DABCO	toluene	1.5	2.0	50	0.5	88
27	NTs	DABCO	toluene	1.5	2.0	70	0.5	80

^{*a*}Reaction conditions: compounds **1a** or **4a** (0.2 mmol), **2a** and base were stirred in solvent (3 mL) at indicated temperature; ^{*b*}Yield of the isolated product.

General procedure for the synthesis of o-hydroxyphenyl propargylic alcohols

o-Hydroxyphenyl propargylic alcohols **1** were prepared according to the reported literature.^[1] General synthetic route of propargylic alcohols **1** is shown below.

To the solution of S₂ (22 mmol, 2.2 equiv.) in dry THF (30 mL) was slowly added *n*-BuLi (22 mmol, 2.5 M in THF, 2.2 equiv.) at -78 °C under nitrogen atmosphere. The reaction mixture was stirred at this temperature for 1 h, then a solution of the corresponding salicylaldehyde S₁ (10 mmol, 1.0 equiv.) in 4 mL of THF was added dropwise via a cannula. The reaction mixture was stirred at -78 °C for another 1-1.5 h until the disappearance of the starting material indicated by TLC (thin-layer chromatography) analysis. Then the reaction mixture was quenched with saturated aqueous NH₄Cl solution and THF was removed under vacuum. The resulting aqueous phase was extracted with EtOAc (30 mL × 3). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography (petroleum ether/EtOAc = 10/1) or by crystallization with petroleum ether to give **1**. The spectral data was in accordance with the reported data.^[1]

General procedure for the synthesis of o-aminophenyl propargylalcohols

o-Aminophenyl propargylalcohols were prepared according to known procedures.^[2] To an eggshaped flask was added 2-aminobenzaldehydes S_3 (10 mmol, 1.0 equiv.), DCM (25 mL) and pyridine (13 mmol, 1.3 equiv.). Then TsCl or NsCl (12 mmol, 1.2 equiv.) was added to the above mixture under 0 °C and stirred at room temperature for about 4 h. The reaction was monitored by TLC. Upon completion, the mixture was quenched with water and extracted with DCM (30 mL × 3). The combined organic extracts were washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford S₄.

To an egg-shaped flask was added 2-aminobenzaldehydes S_{3a} (10 mmol, 1.0 equiv.), DMF (25 mL) and Et₃N (30 mmol, 3 equiv.). Then Boc₂O (12 mmol, 1.2 equiv.) was added to the above mixture under 0 °C and stirred at room temperature for 12 h. The reaction was monitored by TLC. Upon completion, the mixture was quenched with water and extracted with DCM (30 mL × 4). The combined organic extracts were washed with water (30 mL × 3) and brine (30 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to afford S_{4a}.

To a solution of S_2 (5.5 mmol, 2.2 equiv.) in THF (5 mL) was added *n*-BuLi dropwise (5.5 mmol, 2.5 M in THF, 2.2 equiv.) at -78 °C under nitrogen atmosphere. Then the mixture was stirred for 10 min at -78 °C. The mixture was warmed to -40 °C and allowed to continue for another 1 h. After that, the system was cooled down to -78 °C and a solution of S_4 (2.5 mmol, 1.0 equiv.) in THF (4 mL) was added slowly to the above mixture. The reaction was stirred for 1 h at -78 °C and warmed to room temperature while stirring for another 1 h (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution, and extracted with EtOAc (20 mL×3) after removal of THF under vacuum. The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **4**. The spectral data was in accordance with the reported data.^[2]

General procedure for the synthesis of 2-propynolphenol/2-propynolaniline

To a solution of compound S_5 (10.0 mmol) in THF (30 mL) and Et₃N (20.0 mmol, 2.8 mL) was added copper iodide (0.2 mmol, 0.038 g), Pd (PPh₃)₂Cl₂ (0.1 mmol, 0.07 g), and ethynyltrimethylsilane (12.0 mmol, 1.7 mL). The reaction was stirred at room temperature (rt) for about 18 h and the progress of the reaction was monitored by TLC. Upon completion, the solution was then filtered and concentrated under a reduced pressure.^[3] The TBAF (12.0 mmol, 1.0 M in THF) was slowly added to a stirred solution of the above compound in dry THF (30 mL) at 0 °C. The resulting mixture was then stirred at rt and the progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution, and extracted with EtOAc (20 mL×3) after removal of THF under vacuum. The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 50-78%, 2 steps) to afford S₆.

To a solution of S_6 (5.5 mmol, 2.2 equiv.) in THF (5 mL) was added *n*-BuLi dropwise (5.5 mmol, 2.5 M in THF, 2.2 equiv.) at -78 °C under nitrogen atmosphere. Then the mixture was stirred for 10 min at -78 °C. The mixture was warmed to -40 °C and allowed to continue for another 1 h. After that, the system was cooled down to -78 °C and a solution of S_7 (2.5 mmol, 1.0 equiv.) in THF (4 mL) was added slowly to the above mixture. The reaction was stirred for 1 h at -78 °C and warmed to room temperature while stirring for another 1 h (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution, and extracted with EtOAc (20 mL×3) after removal of THF under vacuum. The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) to afford **8**.

General procedure for the synthesis of 2-alkyl-3-fluoroalkanesulfonyl benzofurans

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-hydroxyphenyl propargylic alcohols 1 (0.2 mmol), DABCO (0.3 mmol), and toluene (3 mL) followed by CF₃SOCl **2a** (0.3 mmol). The reaction mixture was stirred at 50 °C under a nitrogen atmosphere for 1 hours and monitored by TLC. Upon completion, the reaction mixture was extracted to room temperature and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (10 mL \times 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and

evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to give products **3**.

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-hydroxyphenyl propargylic alcohols **1a** (0.2 mmol), DABCO (0.3 mmol), and toluene (3 mL) followed by **2** (0.3 mmol). The reaction mixture was stirred at 50 °C under a nitrogen atmosphere for 1 hours and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (10 mL × 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to give products **3y**, **3z**, **3aa** and **3ab**.

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-hydroxyphenyl propargylic alcohols **8** (0.2 mmol), DABCO (0.24 mmol), and 1,2-DCE (3 mL) followed by CF₃SOCl **2a** (0.3 mmol). The reaction mixture was stirred at 50 °C under a nitrogen atmosphere for 1 hours and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (10 mL \times 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to give products **3a**, **3l-3n**.

General procedure for the synthesis of 2-alkyl-3-fluoroalkanesulfonyl indoles

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-aminophenyl propargylalcohols 4 (0.2 mmol), DABCO (0.4 mmol), and toluene (3 mL) followed by CF₃SOCl **2a** (0.3 mmol). The reaction mixture was stirred at 50 °C under a nitrogen atmosphere for 30 min and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (10 mL \times 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated

under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to give products **5**.

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-aminophenyl propargylalcohols **8** (0.2 mmol), DABCO (0.24 mmol), and 1,2-DCE (3 mL) followed by CF₃SOCl **2a** (0.3 mmol). The reaction mixture was stirred at 50 °C under a nitrogen atmosphere for 2 hours and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (10 mL \times 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to give products **5a**, **5j**.

Gram-scale experiment

Scale-up preparation of 3a

To a 100 mL round-bottom flask, equipped with a stir bar and condenser, was added *o*-hydroxyphenyl propargylic alcohol **1a** (1.12 g, 5.00 mmol, 1.0 equiv.), DABCO (0.84g, 7.5 mmol, 1.5 equiv.), and toluene (20 mL) followed by CF₃SOCl **2a** (0.62 ml, 7.5 mmol, 1.5 equiv.) The reaction mixture was stirred at 50 °C under a nitrogen atmosphere for 1 hours and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (10 mL × 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to give product **3a** in 91% yield (1.55 g, 4.55 mmol).

Scale-up preparation of 5a

To a 100 mL round-bottom flask, equipped with a stir bar and condenser, was added *o*-hydroxyphenyl propargylic alcohol **1a** (1.13 g, 3.00 mmol, 1.0 equiv.), DABCO (0.67g, 6.0 mmol, 2.0 equiv.), and toluene (20 mL) followed by CF₃SOCl **2a** (0.37 ml, 4.5 mmol, 1.5 equiv.) The reaction mixture was stirred at 50 °C under a nitrogen atmosphere for 30 min and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous

NH₄Cl solution. The aqueous phase was extracted with EtOAc (10 mL \times 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to give product **5a** in 82% yield (1.21 g, 2.45 mmol)

Product derivatization

Synthesis of compound 9

To a solution of compound **3a** (0.4 mmol) in DCM (2 mL). The DIBAL-H (2.0 mmol, 2.0 M in hexane) was slowly added to a stirred solution of the above compound at 0 °C. The resulting mixture was then stirred at rt and the progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched with water and extracted with DCM (30 mL \times 4). The combined organic extracts were washed with water (30 mL \times 3) and brine (30 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to afford **9**.

Synthesis of compounds 10^[4]

2-Alkyl-3-fluoroalkanesulfonyl benzofurans **3a** (0.3 mmol), (4-methoxyphenyl)boronic acid (0.45 mmol, 1.5 equiv.), Pd(acac)₂ (5 mol%), RuPhos (20 mol%) and K₃PO₄ (0.9 mmol, 3.0 equiv.) were weighed into a Schlenk tube, sealed, evacuated and backfilled with nitrogen 3 times. Then, 1.0 mL of anhydrous dioxane and 10 μ L of DMSO were added. The solutions were stirred and heated at 100 °C for 12 h. The reaction was determined to be complete by TLC. After the reaction was cooled to room temperature, the crude mixture was filtered through a bed of Celite and washed with dichloromethane, dried over Na₂SO₄ and concentrated in vacuo.The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to afford **10**.

Spectra data of compounds 3a-3z, 3aa, 3ab, 5a-5v, 7, 9 and 10

2-benzyl-3-((trifluoromethyl)sulfonyl)benzofuran (3a)

Compound **3a** (96% yield, yellow solid, Melting point: 79.3 – 82.4 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 1H), 7.51 – 7.49 (m, 1H), 7.39–7.36 (m, 4H), 7.35 – 7.32 (m, 2H), 7.29 – 7.25 (m, 1H), 4.50 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.3, 153.6, 134.4, 129.1, 128.8, 127.4, 126.4, 125.3, 123.6, 120.6, 120.0 (q, *J* = 323 Hz), 111.7, 108.4, 33.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.65 (s). **IR**: \bar{v} = 2953, 1298, 1165, 1087, 1062, 735 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₆H₁₁F₃NaO₃S⁺ 363.0273; found: 363.0275.

2-benzyl-4-methyl-3-((trifluoromethyl)sulfonyl)benzofuran (3b)

Compound **3b** (83% yield, white solid, Melting point: 107.6 – 110.6 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.36 (m, 2H), 7.34 – 7.31 (m, 3H), 7.29 – 7.23 (m, 2H), 7.16 (d, *J* = 7.6 Hz, 1H), 4.57 (s, 2H), 2.69 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 154.1, 134.9, 132.5, 129.2, 128.9, 128.8, 128.1, 127.4, 126.2, 121.8, 120.0 (q, *J* = 322 Hz), 109.5, 34.1, 21.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -78.56 (s). **IR**: \bar{v} = 2971, 1366, 1199, 1120, 1062, 743 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃F₃NaO₃S⁺ 377.0430; found:

377.0439.

2-benzyl-5-methyl-3-((trifluoromethyl)sulfonyl)benzofuran (3c)

Compound **3c** (97% yield, yellow solid, Melting point: 93.9 – 94.7 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.39 – 7.37 (m, 3H), 7.35 – 7.31 (m, 2H), 7.29 – 7.25 (m, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 4.48 (s, 2H), 2.46 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.2, 152.2, 135.4, 134.5, 129.2, 128.9, 127.7, 127.5, 123.8, 120.3, 120.0 (q, *J* = 322 Hz), 111.3, 108.2, 33.5, 21.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.70 (s). **IR**: \bar{v} = 2931, 1487, 1362, 1192, 1124, 633 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for

 $C_{17}H_{13}F_3NaO_3S^+$ 377.0430; found: 377.0431.

2-benzyl-5-methoxy-3-((trifluoromethyl)sulfonyl)benzofuran (3d)

Compound **3d** (96% yield, yellow solid, Melting point: 60.8 - 64.0 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.37 (m, 3H), 7.35 – 7.31 (m, 2H), 7.29 – 7.26 (m, 2H), 6.97 (dd, J = 9.2, 2.4 Hz, 1H), 4.47 (s, 2H), 3.84 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 168.6, 157.8, 148.5, 134.5, 129.2, 128.9, 127.5, 124.6, 120.0 (q, J = 322 Hz), 115.7, 112.5, 108.4, 102.5, 56.0, 33.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.72 (s). **IR**: $\bar{v} =$ 3033, 1366, 1185, 1123, 1052 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd

for C₁₇H₁₃F₃NaO₄S⁺ 393.0379; found: 393.0379.

2-benzyl-5-chloro-3-((trifluoromethyl)sulfonyl)benzofuran (3e)

Compound **3e** (92% yield, yellow solid, Melting point: 106.2 – 109.0 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, J = 2.0 Hz, 1H), 7.43 (d, J = 8.8Hz, 1H), 7.38 – 7.32 (m, 5H), 7.29 (d, J = 6.8 Hz, 1H), 4.49 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 152.1, 134.0, 131.5, 129.3, 129.0, 127.7, 127.0, 125.2, 120.5, 120.0 (q, J = 323 Hz), 113.0, 108.4, 33.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.57 (s). **IR**: $\bar{v} = 2929$, 1554, 1366, 1185, 1131, 750, 656 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for

C₁₆H₁₀ClF₃NaO₃S⁺ 396.9883 (100%), 398.9854 (32%); found: 396.9882, 398.9851.

2-benzyl-5-bromo-3-((trifluoromethyl)sulfonyl)benzofuran (3f)

Compound **3f** (90% yield, yellow solid, Melting point: 115.2–116.7 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 2.0 Hz, 1H), 7.51 (dd, J = 8.8, 2.0 Hz, 1H), 7.39 – 7.32 (m, 5H), 7.31 – 7.27 (m, 1H), 4.49 (s, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 169.3, 152.5, 134.0, 129.7, 129.2, 129.0, 127.7, 125.6, 123.4, 119.9 (q, J = 323 Hz), 118.9, 113.3, 108.2, 33.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.55 (s). **IR**: $\bar{v} = 3096$ 1544, 1366, 1188, 1064, 814, 603 cm⁻¹; **HRMS** (ESI) m/z: [M + H]⁺ calcd for

 $C_{16}H_{11}BrF_{3}O_{3}S^{+}$ 418.9559 (100%), 420.9539 (97%); found: 418.9556, 420.9538.

2-benzyl-5-nitro-3-((trifluoromethyl)sulfonyl)benzofuran (3g)

Compound **3g** (49% yield, yellow solid, Melting point: 125.1 – 125.9 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 2.4 Hz, 1H), 8.34 (dd, J = 9.2, 2.4 Hz, 1H), 7.66 (d, J = 9.2 Hz, 1H), 7.41 – 7.37 (m, 3H), 7.35 – 7.30 (m, 2H), 4.55 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 156.0, 145.8, 133.4, 129.2, 129.1, 127.9, 124.6, 122.3, 119.8 (q, J = 322 Hz), 117.3, 112.7, 109.7, 33.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.35 (s). **IR**: \bar{v} = 3099, 1525, 1377, 1193, 1128, 1086, 732 cm⁻¹; **HRMS** (ESI)

m/z: $[M + Na]^+$ calcd for $C_{16}H_{10}F_3NNaO_5S^+$ 408.0124; found: 408.0122.

2-benzyl-6-methyl-3-((trifluoromethyl)sulfonyl)benzofuran (3h)

Compound **3h** (96% yield, yellow solid, Melting point: 63.4 – 64.1 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 7.6 Hz, 3H), 7.32 (d, J = 8.0 Hz, 2H), 7.28–7.24 (m, 1H), 7.20 (d, J = 8.0 Hz, 1H), 4.48 (s, 2H), 2.45 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 167.6, 154.1, 137.2, 134.6, 129.1, 128.8, 127.4, 126.8, 121.2, 120.1, 120.0 (q, J = 322Hz), 111.9, 108.4, 33.4, 21.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.73 (s). **IR**: $\bar{v} = 2944$, 1532, 1369, 1203, 1062, 743 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺

calcd for $C_{17}H_{13}F_3NaO_3S^+$ 377.0430; found: 377.0431.

2-benzyl-6-methoxy-3-((trifluoromethyl)sulfonyl)benzofuran (3i)

Compound **3i** (95% yield, yellow solid, Melting point: 52.5 - 55.9 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 1H), 7.38 – 7.31 (m, 4H), 7.28 (d, J = 7.2 Hz, 1H), 6.99 (d, J = 8.4 Hz, 2H), 4.46 (s, 2H), 3.83 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 167.0, 159.4, 154.8, 134.7, 129.1, 128.8, 127.4, 120.8, 120.0 (q, J = 323 Hz), 116.7, 114.4, 108.4, 96.2, 55.8, 33.4. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.74 (s). **IR**: $\bar{v} =$ 3039, 1370, 1199, 1117, 1052, 711 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺

calcd for C₁₇H₁₃F₃NaO₄S⁺ 393.0379; found: 393.0375.

2-benzyl-7-methyl-3-((trifluoromethyl)sulfonyl)benzofuran (3j)

Compound **3j** (95% yield, white solid, Melting point: 113.3 – 115.7 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 6.8 Hz, 2H), 7.33 (t, *J* = 7.2 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.18 (d, *J* = 7.6 Hz, 1H), 4.51 (s, 2H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 152.8, 134.6, 129.2, 128.8, 127.4, 127.3, 125.4, 123.3, 122.2, 120.0 (q, *J* = 322 Hz), 118.1, 108.6, 33.5, 14.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.68 (s). **IR**: \bar{v} = 2989, 1366, 1205, 1134, 712 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃F₃NaO₃S⁺

377.0430; found: 377.0433.

2-benzyl-7-methoxy-3-((trifluoromethyl)sulfonyl)benzofuran (3k)

Compound **3k** (96% yield, white solid, Melting point: 105.6 – 107.2 °C): ¹**H NMR** (400 MHz, CDCl₃) 7.42 – 7.39 (m, 3H), 7.34 – 7.30 (m, 2H), 7.29 – 7.24 (m, 2H), 6.88 (d, J = 8.4 Hz, 1H), 4.50 (s, 2H), 3.97 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 168.1, 145.3, 143.2, 134.5, 129.1, 128.8, 127.4, 126.3, 125.4, 119.9 (q, J = 322 Hz), 112.4, 108.8, 108.4, 56.1, 33.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.62 (s). **IR**: $\bar{v} = 3046$, 1495, 1367, 1184, 1104, 778 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃F₃NaO₄S⁺ 393.0379; found:

393.0386.

2-(4-methylbenzyl)-3-((trifluoromethyl)sulfonyl)benzofuran (3l)

Compound **31** (98% yield, yellow solid, Melting point: 73.3 – 74.8 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 1H), 7.51 – 7.48 (m, 1H), 7.41 – 7.36 (m, 2H), 7.28 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 7.6 Hz, 2H), 4.46 (s, 2H), 2.32 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.6, 153.7, 137.2, 131.3, 129.6, 129.1, 126.4, 125.3, 123.8, 120.7, 120.0 (q, J = 323 Hz), 111.8, 108.3, 33.1, 21.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.70 (s). **IR**: \bar{v} = 2956, 1554, 1366, 1189, 1117, 649 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃F₃NaO₃S⁺

377.0430; found: 377.0433.

2-(4-methoxybenzyl)-3-((trifluoromethyl)sulfonyl)benzofuran (3m)

Compound **3m** (97% yield, yellow solid, Melting point: 79.4 – 80.7 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 4.4, 2.4 Hz, 1H), 7.50 – 7.49 (m, 1H), 7.39 – 7.37 (m, 2H), 7.31 (d, J = 7.6 Hz, 2H), 6.87 (d, J = 6.4 Hz, 2H), 4.44 (s, 2H), 3.77 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 168.7, 159.0, 153.7, 130.3, 126.4, 125.3, 123.8, 120.7, 120.0 (q, J = 323 Hz), 114.6, 114.3, 111.7, 108.1, 55.2, 32.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.72 (s). **IR**: \bar{v} = 2956, 1553, 1367, 1196, 1129, 743cm⁻¹; **HRMS** (ESI)

m/z: $[M + Na]^+$ calcd for $C_{17}H_{13}F_3NaO_4S^+$ 393.0379; found: 393.0385.

2-(4-chlorobenzyl)-3-((trifluoromethyl)sulfonyl)benzofuran (3n)

Compound **3n** (95% yield, yellow solid, Melting point: 76.0 – 77.4 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 1H), 7.52 – 7.50 (m, 1H), 7.43 – 7.37 (m, 2H), 7.34 – 7.29 (m, 4H), 4.47 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.5, 153.7, 133.6, 132.8, 130,5, 129.0, 126.6, 125.5, 123.6, 120.7, 120.0 (q, *J* = 322 Hz), 111.8, 108.7, 32.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.68 (s). **IR**: \bar{v} = 2925, 1555, 1365, 1188, 1130, 802, 750 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₆H₁₀ClF₃NaO₃S⁺ 396.9883 (100%), 398.9854 (32%);

found: 396.9880, 398.9856.

2-(4-pentylbenzyl)-3-((trifluoromethyl)sulfonyl)benzofuran (30)

Compound **30** (82% yield, yellow solid, Melting point: 78.6 – 80.8 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 1H), 7.52 – 7.49 (m, 1H), 7.41 – 7.36 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 7.6 Hz, 2H), 4.47 (s, 2H), 2.57 (t, *J* = 7.6 Hz, 2H), 1.63 – 1.57 (m, 2H), 1.35 – 1.26 (m, 4H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6,

153.7, 142.3, 131.5, 129.1, 128.9, 126.4, 125.3, 123.8, 120.7, 120.0 (q, J = 322 Hz), 111.98, 108.3, 35.5, 33.1, 31.5, 31.1, 22.5, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.70 (s). **IR**: $\bar{v} = 2959$, 1551, 1367, 1198, 1117, 1056, 647 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₂₁F₃NaO₃S⁺ 433.1056; found: 433.1058.

2-(3-methylbenzyl)-3-((trifluoromethyl)sulfonyl)benzofuran (3p)

Compound **3p** (97% yield, yellow solid, Melting point: 60.7 – 63.8 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 1H), 7.52 – 7.49 (m, 1H), 7.41 – 7.36 (m, 2H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.19 – 7.17 (m, 2H), 7.09 (d, *J* = 7.2 Hz, 1H), 4.46 (s, 2H), 2.34 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.4, 153.7, 138.6, 134.3, 129.9, 128.7, 128.3, 126.4, 126.2, 125.4, 123.8, 120.7, 120.0 (q, *J* = 323 Hz), 111.8, 108.5, 33.4, 21.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.68 (s). **IR**: \bar{v} = 2925, 1555, 1369, 1188, 1056, 812 cm⁻¹; **HRMS** (ESI)

m/z: $[M + Na]^+$ calcd for $C_{17}H_{13}F_3NaO_3S^+$ 377.0430; found: 377.0434.

2-(2-methylbenzyl)-3-((trifluoromethyl)sulfonyl)benzofuran (3q)

Compound **3q** (95% yield, yellow solid, Melting point: 117.2 – 119.6 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.86 (m, 1H), 7.48 – 7.45 (m, 1H), 7.40 – 7.38 (m, 2H), 7.22 – 7.20 (m, 2H), 7.19 – 7.14 (m, 2H), 4.54 (s, 2H), 2.43 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.5, 153.7, 136.7, 132.9, 130.6, 129.8, 127.7, 127.4, 126.4, 125.4, 123.8, 120.7, 120.1 (q, *J* = 323 Hz), 111.8, 108.7, 31.0, 19.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.56 (s). **IR**: \bar{v} = 3058, 1547, 1372, 1185, 1132, 750 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃F₃NaO₃S⁺

377.0430; found: 377.0433.

2-(naphthalen-2-ylmethyl)-3-((trifluoromethyl)sulfonyl)benzofuran (3r)

Compound **3r** (76% yield, yellow solid, Melting point: 149.8 – 152.3 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 5.6, 3.2 Hz, 1H), 7.82 – 7.79 (m, 4H), 7.50 – 7.44 (m, 4H), 7.38 – 7.36 (m, 2H), 4.65 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 153.7, 133.5, 132.6, 131.8, 128.6, 128.1, 127.7, 127.6, 126.9, 126.5, 126.4, 126.1, 125.4, 123.7, 120.7, 120.0 (q, J= 322 Hz), 111.8., 108.6, 33.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.60 (s). IR: \bar{v} = 3062, 1554, 1367, 1188, 1062, 820, 673 cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₄F₃O₃S⁺ 391.0610; found: 391.0609

2-(thiophen-2-ylmethyl)-3-((trifluoromethyl)sulfonyl)benzofuran (3s)

Compound **3s** (83% yield, yellow solid, Melting point: 74.8 – 76.1 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 7.87 – 7.85 (m, 1H), 7.56 – 7.52 (m, 1H), 7.45 – 7.38 (m, 2H), 7.23 (dd, J = 5.2, 1.2 Hz, 1H), 7.05 (d, J = 3.6 Hz, 1H), 6.98 – 6.96 (m, 1H), 4.71 (s, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 166.8, 153.7, 135.3, 127.4, 127.2, 126.7, 125.5, 123.6, 123.3, 120.8, 119.9 (q, J = 322 Hz), 111.9., 108.4, 27.7. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.64 (s). **IR**: $\bar{v} = 2993$, 1560, 1360,

1196, 1135, 693 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{14}H_9F_3NaO_3S_2^+$ 368.9837; found: 368.9836.

2-pentyl-3-((trifluoromethyl)sulfonyl)benzofuran (3t)

Compound **3t** (81% yield, yellow oil): ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 - 7.84 (m, 1H), 7.55 - 7.53 (m, 1H), 7.43 - 7.37 (m, 2H), 3.17 (t, *J* = 8.0 Hz, 2H), 1.88 - 1.80 (m, 2H), 1.42 - 1.37 (m, 4H), 0.92 (t, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.4, 153.5, 126.1, 125.3, 123.9, 120.5, 120.0 (q, *J* = 322 Hz), 111.6., 108.0, 31.3, 27.6, 27.5, 22.2, 13.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.96 (s). **IR**: \bar{v} = 2963, 1556, 1373, 1196, 1139, 749, 610 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₄H₁₅F₃NaO₃S⁺

343.0586; found: 343.0585.

2-neopentyl-3-((trifluoromethyl)sulfonyl)benzofuran (3u)

Compound **3u** (55% yield, yellow solid, Melting point: 76.2 – 78.5): ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.86 (m, 1H), 7.57 – 7.55 (m, 1H), 7.44 – 7.38 (m, 2H), 3.10 (s, 2H), 1.12 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 153.5, 126.3, 125.2, 123.7, 120.7, 120.0 (q, *J* = 323 Hz), 111.6., 109.8, 40.2, 33.2, 30.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.56 (s). **IR**: \bar{v} = 3378, 2963, 1453, 1048, 817, 746 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₄H₁₅F₃NaO₃S⁺ 343.0586;

found: 343.0592.

2-methyl-3-((trifluoromethyl)sulfonyl)benzofuran (3v)

Compound **3v** (80% yield, yellow solid, Melting point: 71.3 – 72.7 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.2 Hz, 1H), 7.44 – 7.38 (m, 2H), 2.83 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 167.6, 153.4, 126.2, 125.3, 123.9, 120.4, 120.1 (q, J = 322 Hz), 111.5, 108.5, 13.9. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -80.03 (s). **IR**: $\bar{v} = 2922$, 1558, 1358, 1176, 1075, 749 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₀H₇F₃NaO₃S⁺ 286.9960; found: 286.9969.

2,5-dimethyl-3-((trifluoromethyl)sulfonyl)benzofuran (3w)

Compound **3w** (84% yield, yellow solid, Melting point: 78.4 – 80.6 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 2.80 (s, 3H), 2.47 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.6, 151.9, 135.3, 127.4, 124.0, 120.1 (q, J = 322 Hz), 120.0, 111.0., 108.1, 21.4, 13.9. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -80.06 (s). **IR**: \bar{v} = 2923, 1554, 1359, 1189, 1117, 1071, 818 cm⁻¹; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₀F₃O₃S⁺ 279.0297; found: 279.0230.

2-benzyl-1-((trifluoromethyl)sulfonyl)naphtho[2,1-b]furan (3x)

Compound **3x** (67% yield, yellow solid, Melting point: 153.8 – 155.7 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 9.00 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 4.66 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 152.1, 135.1, 131.7, 129.2, 129.1, 129.0. 128.8, 127.6, 127.4, 126.4, 125.8, 125.4, 120.2 (q, J = 323 Hz), 117.8, 111.6., 110.6, 34.2. ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -78.64 (s). **IR**: $\bar{v} = 3021$, 1151, 1372, 1192, 746 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₀H₁₃F₃NaO₃S⁺ 413.0430; found: 413.0433.

2-benzyl-3-((perfluorobutyl)sulfonyl)benzofuran (3y)

Compound **3y** (54% yield, white solid, Melting point: 105.8 – 107.1 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 1H), 7.52 – 7.50 (m, 1H), 7.41 – 7.39 (m, 4H), 7.36 – 7.33 (m, 2H), 7.30 – 7.27 (m, 1H), 4.52 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.7, 153.6, 134.4, 129.2, 128.9, 127.5, 126.5, 125.4, 123.9, 120.9, 111.8, 109.7, 33.6, ¹³C NMR for CF₂CF₂CF₂CF₃ could not be assigned. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -80.68 (t, *J* = 9.4 Hz, 3F), -113.05 – -113.13 (m, 2F), -120.95 – -121.04 (m, 2F), -125.86 – -125.95 (m, 2F). **IR**: \bar{v} = 3000, 1601 1453, 1244, 1027, 834, 714 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{19}H_{11}F_9NaO_3S^+$ 153.0177; found: 153.0181.

2-benzyl-3-((perfluorohexyl)sulfonyl)benzofuran (3z)

Compound **3z** (46% yield, yellow oil): ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.87 (m, 1H), 7.53 – 7.51 (m, 1H), 7.41 (d, *J* = 6.0 Hz, 4H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 6.8 Hz, 1H), 4.52 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.7, 153.6, 134.4, 129.2, 128.9, 127.5, 126.5, 125.4, 123.8, 120.8, 111.8, 109.6, 33.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -80.72 – -80.80 (m, 3F), -112.87 (s, 2H), -119.97 (s, 2H), -121.68 (s, 2H), -122.67 (s, 2H), -126.09 – -126.14 (m, 2F) . **IR**: \bar{v} = 2924, 1454, 1358, 1195, 1141, 871 cm⁻¹; **HRMS** (ESI) m/z:

 $[M + Na]^+$ calcd for $C_{21}H_{11}F_{13}NaO_3S^+$ 613.0114; found: 613.0104.

2-benzyl-3-(tert-butylsulfonyl)benzofuran (3aa)

Compound **3aa** (42% yield, white solid, Melting point: 95.2 – 96.5 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.86 (m, 1H), 7.45 – 7.43 (m, 3H), 7.33 – 7.30 (m, 4H), 7.26 – 7.25 (m, 1H), 4.48 (s, 2H), 1.43 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 163.7, 153.5, 135.6, 129.2, 128.6, 127.1, 125.8, 125.4, 124.3, 121.7, 112.6, 111.4, 61.2, 33.5, 23.4. **IR**: \bar{v} = 2958, 1342, 1150, 1043, 754, 642 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₂₀NaO₃S⁺ 351.1025; found: 351.1029.

2-benzyl-3-(phenylsulfonyl)benzofuran (3ab)

Compound **3ab** (68% yield, white solid, Melting point: 157.8 – 159.2 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.88 (m, 3H), 7.55 – 7.51 (m, 1H), 7.45 – 7.41 (m, 3H), 7.34 – 7.27 (m, 7H), 4.59 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 161.7, 153.4, 142.1, 135.6, 133.3, 129.2, 129.0, 128.7, 127.1, 126.7, 125.5, 124.4, 124.1, 120.5, 117.9, 111.5, 33.2. **IR**: $\bar{v} = 3198$, 2159, 1505, 1359, 1148, 1057, 756 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₁₆NaO₃S⁺ 371.0712; found: 371.0715.

2-benzyl-3-((trifluoromethyl)sulfonyl)benzo[b]thiophene (7)

Compound 7 (66% yield, yellow solid, Melting point: 89.6 – 93.1 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.37 – 7.32 (m, 5H), 4.71 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 137.4, 137.1, 136.2, 129.4, 128.9, 127.7, 126.5, 125.9, 123.6, 122.0, 120.3 (q, J = 323 Hz), 108.5, 36.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.11 (s). **IR**: \bar{v} = 2923, 1554, 1359, 1189, 1117, 1071, 818 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₆H₁₁F₃NaO₂S₂⁺ 379.0045;

found: 379.0053.

2-benzyl-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5a)

Compound **5a** (88% yield, white solid, Melting point: 191.9 – 192.5 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.23 – 7.21 (m, 3H), 7.19 (d, J = 8.4 Hz, 2H), 7.14 – 7.11 (m, 2H), 7.01 (d, J = 8.0 Hz, 2H), 5.01 (s, 2H), 2.30 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 149.9, 146.2, 136.3, 135.5, 134.2, 129.0, 128.8, 128.5, 127.1, 126.7, 126.4, 125.4, 125.3, 120.7, 120.1(q, J = 324 Hz), 114.9, 110.6, 31.2, 21.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.38 (s). **IR**: $\bar{v} = 3138$, 1369, 1256,

1178, 1044, 788 cm⁻¹; HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{23}H_{18}F_3NNaO_4S_2^+$ 516.0522; found: 516.0525.

2-benzyl-5-methyl-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5b)

Compound **5b** (88% yield, yellow solid, Melting point: $169.2 - 169.7 \,^{\circ}$ C): ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, $J = 8.8 \,\text{Hz}$, 1H), 7.85 (s, 1H), 7.26 (d, $J = 8.8 \,\text{Hz}$, 1H), 7.21 – 7.20 (m, 4H), 7.18 (s, 1H), 7.12 – 7.10 (m, 2H), 7.00 (d, $J = 8.0 \,\text{Hz}$, 2H), 4.99 (s, 2H), 2.46 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 146.0, 136.4, 135.5, 134.3, 133.7, 129.9, 128.7, 128.5, 127.9, 127.0, 126.6, 125.5, 120.3, 120.1(q, $J = 323 \,\text{Hz}$), 114.5, 110.2, 31.2, 21.5, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.37 (s). **IR**: $\bar{v} = 3031$,

1362, 1215, 1196, 1088, 725, cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{24}H_{20}F_3NNaO_4S_2^+$ 530.0678; found: 530.0688.

2-benzyl-5-methoxy-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5c)

Compound **5c** (85% yield, yellow solid, Melting point: 154.2 – 154.9 °C): ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 9.6 Hz, 1H), 7.49 (d, J = 2.8 Hz, 1H), 7.22 – 7.19 (m, 4H), 7.17 (s, 1H), 7.13 – 7.11 (m, 2H), 7.05 (dd, J = 9.2, 2.8 Hz, 1H), 7.00 (d, J = 8.0 Hz, 2H), 4.98 (s, 2H), 3.85 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 149.9, 146.1, 136.4, 134.2, 130.1, 129.9, 128.7, 128.5, 126.9, 126.6, 126.5, 120.1(q, J = 324 Hz), 116.1, 115.8, 110.0, 102.2, 55.7, 31.2, 21.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.42 (s). **IR**: \bar{v} = 3031, 1468, 1355, 1196, 1083, 814 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₄H₂₀F₃NNaO₅S₂⁺ 546.0627; found: 546.0638.

2-benzyl-5-chloro-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5d)

Compound **5d** (83% yield, yellow solid, Melting point: 192.5 – 195.0 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.8 Hz, 1H), 8.05 (s, 1H), 7.41 (d, *J* = 9.2 Hz, 1H), 7.23 – 7.22(m, 3H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.11 – 7.09 (m, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 4.98 (s, 2H), 2.31 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 151.0, 146.5, 136.0, 133.9, 133.8, 131.7, 130.0, 128.7, 128.6, 127.0, 126.9, 126.8, 126.5, 120.2, 120.0 (q, *J* = 323 Hz), 115.1, 110.7, 31.3, 21.6. **IR**: \bar{v} = 3035, 1357, 1215, 1193, 1092, 750,

667 cm⁻¹, ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.30 (s). HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₃H₁₇ClF₃NNaO₄S₂⁺ 550.0132 (100%), 552.0103 (32%); found: 550.0140, 552.0114.

2-benzyl-5-bromo-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5e)

Compound **5e** (90% yield, yellow solid, Melting point: 202.6 – 205.6 °C): ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.55 (d, J = 9.2 Hz, 1H), 7.23 – 7.22 (m, 3H), 7.16 (d, J = 6.4 Hz, 2H), 7.11 – 7.09 (m, 2H), 7.02 (d, J = 8.0 Hz, 2H), 4.98 (s, 2H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 146.5, 136.0, 134.3, 133.9, 130.0, 129.6, 128.7, 128.6, 127.0, 126.9, 126.8, 123.2, 120.0(q, J = 323 Hz), 119.4, 116.3, 109.9, 31.2, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.28 (s).

IR: $\bar{v} = 3126$, 1355, 1215, 1192, 1089, 738, 572cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{23}H_{17}BrF_3NNaO_4S_2^+$ 593.9627 (100%), 595.9607 (97%); found: 593.9637, 595.9623.

2-benzyl-6-methyl-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5f)

Compound **5f** (91% yield, yellow solid, Melting point: 179.6 – 181.1 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 5.6 Hz, 1H), 7.21 – 7.19 (m, 5H), 7.11 - 7.09 (m, 2H), 7.01 (d, J = 8.0 Hz, 2H), 4.98 (s, 2H), 2.50 (s, 3H), 2.29 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 149.1, 146.0, 136.9, 136.5, 136.0, 134.4, 129.9, 128.7, 128.5, 127.0, 126.9, 126.6, 123.0, 120.2, 120.1(q, J = 324 Hz), 114.8, 110.6, 31.2, 22.0, 21.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.40 (s). **IR**: \bar{v} = 3035, 1358,

1216, 1192, 1082, 812 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{24}H_{20}F_3NNaO_4S_2^+$ 530.0678; found: 530.0688.

2-benzyl-4-chloro-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5g)

Compound **5g** (63% yield, yellow solid, Melting point: 196.2 – 198.0 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 9.2 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 7.41 (dd, J = 9.2, 2.0 Hz, 1H), 7.23 – 7.21 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 7.11 – 7.09 (m, 2H), 7.02 (d, J = 8.0 Hz, 2H), 4.98 (s, 2H), 2.31 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 151.0, 146.5, 136.0, 134.0, 133.9, 131.8, 130.0, 128.7, 128.6, 127.0, 126.9, 126.8, 126.5, 120.3, 120.0 (q, J = 324 Hz), 116.0, 110.1, 31.3, 21.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.30 (s). **IR**: \bar{v} = 3035,

1354, 1215, 1192, 1091, 773, 750 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{23}H_{17}ClF_3NNaO_4S_2^+$ 550.0132 (100%), 552.0103 (32%); found: 550.0139, 552.0114.

2-(4-methylbenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5h)

Compound **5h** (86% yield, yellow solid, Melting point: 207.7 – 209.6 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, J = 8.8 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.01 – 6.97 (m, 6H), 4.96 (s, 2H), 2.32 (s, 3H), 2.31 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 150.3, 146.0, 136.3, 135.6, 134.4, 133.3, 129.8, 129.1, 128.6, 127.0, 126.4, 125.4, 125.3, 120.7, 120.1 (q, J = 324 Hz), 114.9, 110.5, 30.8, 21.6, 21.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.40 (s). **IR**: \bar{v} = 3031,

1360, 1211, 1170, 1089, 709 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{24}H_{20}F_3NNaO_4S_2^+$ 530.0678; found: 530.0686.

2-(4-methoxybenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5i)

Compound **5i** (87% yield, white solid, Melting point: 178.2 – 179.8 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.8 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 8.0 Hz, 4H), 6.74 (d, J = 8.4 Hz, 2H), 4.93 (s, 2H), 3.78 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 150.4, 146.0, 135.6, 134.4, 134.2, 129.8, 128.3, 127.0, 126.4, 125.4, 125.3, 120.7, 120.1 (q, J = 324 Hz), 114.9, 113.9, 110.4, 55.3, 30.3, 21.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.40 (s).

IR: $\bar{v} = 3039$, 1360, 1212, 1173, 1086, 1029, 708 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{24}H_{20}F_3NNaO_5S_2^+$ 546.0627; found: 546.0636.

2-(4-chlorobenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5j)

Compound **5**j (79% yield, yellow solid, Melting point: 182.4 - 184.1 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.50 - 7.42 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 4.96 (s, 2H), 2.34 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 149.0, 146.4, 135.8, 134.7, 134.5, 134.3, 132.7, 129.9, 128,5, 126.7, 126.6, 125.6, 125.1, 120.7. 120.0 (q, J = 323 Hz), 114.9, 110.9, 30.6, 21.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.36 (s). **IR**: $\bar{\nu}$ = 3035, 1358, 1203, 1190, 1090, 753, 709 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd

for C₂₃H₁₇ClF₃NNaO₄S₂⁺ 550.0132 (100%), 552.0103 (32%); found: 550.0145, 552.0121.

2-(4-bromobenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5k)

Compound **5k** (71% yield, yellow solid, Melting point: 197.9 – 200.1 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.26 – 7.22 (m, 4H), 7.05 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 4.94 (s, 2H), 2.34 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 148.9, 146.4, 135.9, 135.2, 134.3, 131.5, 130.3, 129.9, 126.7, 126.6, 125.6, 125.1, 120.7, 120.6, 120.0 (q, J = 324 Hz), 114.9, 110.9, 30.6, 21.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -79.35 (s). **IR**: \bar{v} = 3069, 1359, 1211, 1170, 1083, 708,

564 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{23}H_{17}BrF_3NNaO_4S_2^+$ 593.9627 (100%), 595.9607 (97%); found: 593.9636, 595.9626.

2-(4-pentylbenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5l)

Compound **51** (80% yield, white solid, Melting point: 178.4 – 179.9 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, J = 7.6 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.46 – 7.39 (m, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.04 (s, 4H), 6.99 (d, J = 8.4 Hz, 2H), 4.96 (s, 2H), 2.57 (t, J = 7.6 Hz, 2H), 2.30 (s, 3H), 1.64 – 1.57 (m, 2H), 1.36 – 1.32 (m, 4H), 0.90 (t, J = 6.8 Hz, 3H). ¹³**C**

NMR (100 MHz, CDCl₃) δ 150.3, 146.0, 141.5, 135.5, 134.3, 133.4, 129.8, 128.7, 128.5, 127.1, 126.4, 125.4, 125.3, 120.7, 120.1 (q, *J* = 324 Hz), 114.8, 110.4, 35.5, 31.6, 31.4, 30.8, 22.6, 21.6, 14.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.40 (s). **IR**: \bar{v} = 3035, 1358, 1215, 1192, 1082, 810 cm⁻¹; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₉F₃NO₄S₂⁺ 564.1485; found: 564.1483.

2-(2-methylbenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5m)

Compound **5m** (80% yield, yellow solid, Melting point: 178.2 – 180.5 °C): ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.25 (s, 2H), 7.21 (d, J = 7.6 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 7.01 (d, J = 8.0 Hz, 2H), 6.75 (t, J = 7.6 Hz, 1H), 6.30 (d, J = 7.6 Hz, 1H), 4.92 (s, 2H), 2.49 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 146.2, 136.0, 135.7, 135.3, 134.1, 130.2, 129.9, 127.1, 127.0, 126.4, 126.0, 125.4, 120.6, 120.1(q, J = 323 Hz), 114.9, 111.0, 28.5, 21.6, 19.8. ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -79.27 (s). **IR**: $\bar{v} = 3024, 1357, 1209, 1143, 1081, 746 \text{ cm}^{-1}$; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₄H₂₀F₃NNaO₄S₂⁺ 530.0678; found: 530.0688.

2-(2-chlorobenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5n)

Compound **5n** (78% yield, yellow solid, Melting point: 180.2 – 184.0 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.53 – 7.47 (m, 3H), 7.45 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.13 – 7.08 (m, 3H), 6.87 (t, J = 7.6 Hz, 1H), 6.40 (d, J = 7.6 Hz, 1H), 5.03 (s, 2H), 2.31 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 148.2, 146.5, 135.9, 135.0, 134.2, 133.3, 130.1, 129.3, 128.3, 127.6, 126.9, 126.8, 126.7, 125.6, 125.1, 120.6, 120.0 (q, J = 323 Hz), 115.0, 111.4, 29.3, 21.6. ¹⁹**F** NMR (376

MHz, CDCl₃) δ -79.22 (s). **IR**: \bar{v} = 3020, 1358, 1203, 1188, 1082, 754, 709 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₃H₁₇ClF₃NNaO₄S₂⁺ 550.0132 (100%), 552.0103 (32%); found: 550.0141, 552.0114.

2-(3-methylbenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (50)

Compound **50** (85% yield, yellow solid, Melting point: 181.3 – 184.2 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.0 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.19 (d, J = 7.2 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 7.00 (t, J = 8.4 Hz, 3H), 6.93 (d, J = 7.6 Hz, 1H), 6.80 (s, 1H), 4.98 (s, 2H), 2.29 (s, 3H), 2.18 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 150.0, 146.0, 138.1, 136.1, 135.6, 134.2, 129.8, 129.2, 128.4, 127.3, 127.0, 126.4, 125.9, 125.4, 125.3, 120.6, 120.1 (q, J = 324 Hz), 114.9, 110.5, 31.1, 21.5, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.36 (s). **IR**: \bar{v} = 3024, 1360, 1192, 1173, 1086, 708 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₄H₂₀F₃NNaO₄S₂⁺ 530.0678; found: 530.0688.

2-(3-methoxybenzyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5p)

Compound **5p** (83% yield, white solid, Melting point: 195.0 – 196.8 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 8.8 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.25 (d, J = 6.8 Hz, 2H), 7.13 (td, J = 8.0, 2.0 Hz, 1H), 7.02 (d, J = 7.6 Hz, 2H), 6.75 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 7.6 Hz, 1H), 6.58 (s, 1H), 4.99 (s, 2H), 3.69 (s, 3H), 2.30 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.7, 149.6, 146.1, 137.8, 135.6, 134.3, 129.8, 129.4, 127.0, 126.5, 125.4, 125.3, 121.1,

120.7, 120.1 (q, J = 323 Hz), 114.9, 114.5, 112.1, 110.7, 55.1, 31.1, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.33 (s). **IR**: $\bar{v} = 3016$, 1354, 1209, 1188, 1083, 705 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₄H₂₀F₃NNaO₅S₂⁺ 546.0627; found: 546.0637.

2-(naphthalen-2-ylmethyl)-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5q)

Compound **5q** (70% yield, yellow solid, Melting point: 170.9 – 173.5 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.46 – 7.34 (m, 4H), 7.31 (d, J = 8.0 Hz, 1H), 7.13 (s, 1H), 7.06 (d, J = 8.0 Hz, 2H), 6.55 (d, J = 8.0 Hz, 2H), 5.16 (s, 2H), 1.97 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 149.6, 145.9, 136.0, 134.1, 133.6, 133.2, 132.2, 129.4, 128.1, 127.6, 127.4, 127.0, 126.9, 126.6, 126.4, 126.0, 125.7, 125.5, 125.2, 120.7, 120.1 (q, J = 323 Hz), 115.0, 110.8,

31.3, 21.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.28 (s). **IR**: \bar{v} = 3054, 1362 1211, 1185, 1079, 814 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₇H₂₀F₃NNaO₄S₂⁺ 566.0678; found: 566.0688.

2-pentyl-1-tosyl-3-((trifluoromethyl)sulfonyl)-1H-indole (5r)

Compound **5r** (80% yield, yellow solid, Melting point: 98.1 – 102.5 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 7.6Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.44 – 7.36 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.44 – 3.40 (m, 2H), 2.40 (s, 3H), 1.82 – 1.74 (m, 2H), 1.52 – 1.45 (m, 2H), 1.42 – 1.35 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.4, 146.5, 135.6, 135.1, 130.7, 130.4, 126.6, 126.1, 125.5, 120.4, 120.1 (q, J = 323 Hz), 114.9, 108.6, 32.1, 31.8, 26.7, 22.1, 21.7, 13.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.56. **IR**: \bar{v} = 2963, 1363, 1215, 1181, 1086, 754, 682 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₂₂F₃NNaO₄S₂⁺ 496.0835; found: 496.0840.

2-methyl-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5s)

Compound **5s** (86% yield, white solid, Melting point: 135.0 – 137.7 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 7.2 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.46 – 7.37 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 2.99 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 146.7, 135.5, 134.9, 130.5, 126.8, 126.2, 125.4, 125.3, 120.3, 120.1 (q, J = 322 Hz), 114.5, 109.0, 21.7, 13.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.95 (s). **IR**: \bar{v} = 2926, 1359, 1203, 1177, 1083, 710 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₄F₃NNaO₄S₂⁺ 440.0209; found: 440.0214.

5-chloro-2-methyl-1-tosyl-3-((trifluoromethyl)sulfonyl)-1*H*-indole (5t)

Compound **5t** (84% yield, white solid, Melting point: 188.5 – 189.9 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 9.2 Hz, 1H), 7.97 (d, J = 2.0 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.40 (dd, J = 9.2, 2.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 2.97 (s, 3H), 2.43 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 150.0, 147.1, 134.5, 133.9, 131.6, 130.6, 126.9, 126.7, 126.6, 120.0 (q, J = 323 Hz), 119.9, 115.7, 108.4, 21.7, 13.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.87 (s). **IR**: $\bar{v} = 3100$, 1359, 1203, 1181, 1087, 772, 671cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for

 $C_{17}H_{13}ClF_3NNaO_4S_2^+$ 473.9819; found: 473.9817.

2-benzyl-1-((4-nitrophenyl)sulfonyl)-3-((trifluoromethyl)sulfonyl)-1H-indole (5u)

Compound **5u** (83% yield, white solid, Melting point: 193.3 – 195.7 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 7.6 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.54 – 7.46 (m, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 7.6 Hz, 1H), 7.18 – 7.14 (m, 2H), 7.05 (d, J = 7.2 Hz, 2H), 5.00 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 150.6, 149.5, 142.4, 135.6, 128.9, 128.7, 128.4, 128.1, 127.2, 127.1, 126.1, 125.2, 124.2, 121.2, 120.0 (q, J = 323 Hz), 114.5, 112.3, 31.1. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.22 (s). **IR**: \bar{v} = 3114, 1532,

1363, 1211, 1188, 1092, 738, 720 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{22}H_{15}F_3N_2NaO_6S_2^+$ 547.0216; found: 547.0215.

tert-butyl 2-benzyl-3-((trifluoromethyl)sulfonyl)-1H-indole-1-carboxylate (5v)

Compound **5v** (73% yield, white solid, Melting point: 138.6 – 140.2 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 – 8.08 (m, 1H), 8.00 – 7.98 (m, 1H), 7.45 – 7.38 (m, 2H), 7.24 (d, *J* = 7.2 Hz, 2H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.03 (d, *J* = 7.6 Hz, 2H), 4.94 (s, 2H), 1.42 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 149.9, 148.2, 137.2, 135.5, 128.5, 127.9, 126.6, 126.0, 125.2, 124.9, 120.4, 120.0 (q, *J* = 323 Hz), 114.9, 108.9, 87.2, 31.6, 27.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.71 (s). **IR**: \bar{v} = 3208, 2058, 1359, 1157, 1035, 709 cm⁻¹; **HRMS** (ESI) m/z:

 $[M + Na]^+$ calcd for $C_{21}H_{20}F_3NNaO_4S^+$ 462.0957; found: 462.0948.

2-benzyl-3-((trifluoromethyl)thio)benzofuran (9)

Compound **9** (62% yield, white solid, Melting point: 83.4 – 84.3 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.70 (m, 1H), 7.49 – 7.47 (m, 1H), 7.36 – 7.35 (m, 6H), 7.31 – 7.28 (m, 1H), 4.37 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.3, 154.3, 136.1, 129.2, 129.1 (q, *J* = 308 Hz), 128.8, 128.7, 127.0, 125.0, 123.9, 119.8, 111.5, 99.0, 32.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -42.68 (s). **IR**: \bar{v} = 3049, 1483, 1438, 915, 752, 680, 523cm⁻¹; **HRMS** (ESI) m/z: [M + H]⁺ calcd

for C₁₆H₁₂F₃OS⁺ 309.0555; found: 309.0556.

2-benzyl-3-(4-methoxyphenyl)benzofuran (10)

Compound **10** (82% yield, white solid, Melting point: 135.5 – 136.8 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.2 Hz, 1H), 7.44 – 7.42 (m, 3H), 7.31 – 7.20 (m, 7H), 7.01 (d, *J* = 8.0 Hz, 2H), 4.19 (s, 2H), 3.85 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.9, 154.3, 152.2, 138.0, 130.2, 128.9, 128.6, 128.5, 126.5, 124.7, 123.8, 122.6, 119.7, 117.8, 114.3, 111.1, 55.3, 32.8. **IR**: \bar{v} = 3034, 1549, 1367, 1159, 1024, 712, 543cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₂H₁₈NaO₂⁺ 337.1199; found: 337.1196.

Crystallography of 2-alkyl-3-fluoroalkanesulfonyl benzofuran 3a

The single crystal of **3a** that was used for the structure determination via X-ray crystallography (see below), was recrystallized from dichloromethane and petroleum ether. The supplementary

crystallographic data for the structure of 3a has been deposited at the Cambridge Crystallographic Data Centre as CCDC 2405045.

Figure S1. ORTEP drawings of **3a** (Ellipsoid contour probability level = 50%).

CCDC	2405045			
Empirical formula	$C_{16}H_{11}F_{3}O_{3}S$			
Formula weight	340.31			
Temperature/K	277			
Crystal system	triclinic			
Space group	P 1			
a/Å	9.4196(10)			
b/Å	9.5749(10)			
c/Å	9.8697(10)			
a/°	108.212(10)			
β/°	111.479(10)			
$\gamma/^{\circ}$	94.182(10)			
Volume/Å ³	768.970(15)			
Z	1			
pcalcg/cm ³	1.470			
μ/mm^{-1}	2.294			
F(000)	348.0			
Crystal size/mm ³	$0.18\times0.15\times0.08$			
Radiation	Cu Ka ($\lambda = 1.54184$)			
2Θ range for data collection/°	9.952 to 169.334			
Index ranges	$-11 \le h \le 12, -11 \le k \le 12, -12 \le l \le 12$			
Reflections collected	19527			
Independent reflections	5549 [$R_{int} = 0.0397$, $R_{sigma} = 0.0218$]			
Data/restraints/parameters	5549/16/415			
Goodness-of-fit on F ²	1.068			
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0411, wR_2 = 0.1164$			
Final R indexes [all data]	$R_1 = 0.0436, wR_2 = 0.1200$			
Largest diff. peak/hole / e Å ⁻³	0.21/-0.34			

Table S2 Crystal data and structure refinement for 3a

References

- Li, Y.; Xue, J.; Li, X.; Chen, R. Synlett 2012, 23, 1043-1046. (b) Ranjith Kumar, G.; Kiran Kumar, Y.; Kant, R.; Sridhar Reddy, M. Org. Biomol. Chem. 2016, 14, 4077-4088. (c) Saha, S.; Schneider, C. Org. Lett. 2015, 17, 648-651. (d) Yoshida, M.; Fujino, Y.; Doi, T. Org. Lett. 2011, 13, 4526-4529. (e) Zhang, M.; Yang, J.; Xu, Q.; Dong, C.; Han, L.-B.; Shen, R. Adv. Synth. Catal. 2018, 360, 334-345.
- [2]. Susanti, D.; Koh, F.; Kusuma, J. A.; Kothandaraman, P.; Chan, P. W. J. Org. Chem. 2012, 77, 7166-7175. (b) Ueda, J. I.; Enomoto, Y.; Seki, M.; Konishi, T.; Ogasawara, M.; Yoshida, K. J. Org. Chem. 2020, 85, 6420-6428. (c) Wang, A.; Hu, X.; Xie, X.; Liu, Y. Adv. Synth. Catal. 2021, 363, 3769-3774.
- [3]. Álvarez, R.; Martínez, C.; Madich, Y.; Denis, J. G.; Aurrecoechea, J. M.; de Lera, Á. R. Chem. Eur. J. 2010, 16, 12746-12753.
- [4]. Chatelain, P.; Sau, A.; Rowley, C. N. Angew. Chem., Int. Ed. 2019, 58, 14959-14963.

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3a**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3a

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3b**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3b

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3c

 ^{1}H NMR (400 MHz, CDCl₃) spectroscopy of 3d

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3d

 ^{13}C NMR (100 MHz, CDCl₃) spectroscopy of 3e

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3e

 1H NMR (400 MHz, CDCl₃) spectroscopy of 3f

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **3f**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3f

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3g

 ^1H NMR (400 MHz, CDCl₃) spectroscopy of 3h

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **3h**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3h

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **3**i

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3i

 1H NMR (400 MHz, CDCl₃) spectroscopy of 3j

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3j

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **3**k

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3k

 ^1H NMR (400 MHz, CDCl₃) spectroscopy of **3**l

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of **3**I

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **3m**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3m

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3n**

^{13}C NMR (100 MHz, CDCl₃) spectroscopy of 3n

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3n

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **30**

45

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3p**

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **3p**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3p

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 3q

48

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3q

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3r**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3r

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 3s

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3s

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3**t

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3t

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **3u**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of **3u**

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3**v

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 3v

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3v

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3**w

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **3**w

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3w

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3**x

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 3x

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3**y

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of **3**y

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3z**

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3aa**

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 3aa

¹H NMR (400 MHz, CDCl₃) spectroscopy of **3ab**

 ^{13}C NMR (100 MHz, CDCl_3) spectroscopy of 3ab

¹H NMR (400 MHz, CDCl₃) spectroscopy of 7

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 7

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 7

¹H NMR (400 MHz, CDCl₃) spectroscopy of 5a

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 5a

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5a

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **5b**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5b

¹H NMR (400 MHz, CDCl₃) spectroscopy of **5**c

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5c

 ^{13}C NMR (100 MHz, CDCl_3) spectroscopy of 5d

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5d

 ^1H NMR (400 MHz, CDCl_3) spectroscopy of 5e

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **5**e

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5e

 ^{13}C NMR (100 MHz, CDCl₃) spectroscopy of 5f

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5f

¹H NMR (400 MHz, CDCl₃) spectroscopy of 5g

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5g

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **5h**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5h

 ^1H NMR (400 MHz, CDCl_3) spectroscopy of 5i

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5i

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 5j

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5j

¹H NMR (400 MHz, CDCl₃) spectroscopy of 5k

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 5k

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5k

¹H NMR (400 MHz, CDCl₃) spectroscopy of **5**l

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 5l

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 51

 ^1H NMR (400 MHz, CDCl_3) spectroscopy of 5m

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5m

 ^{13}C NMR (100 MHz, CDCl₃) spectroscopy of 5n

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5n

¹H NMR (400 MHz, CDCl₃) spectroscopy of **50**

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **50**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 50

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **5**p

 ^{19}F NMR (376 MHz, CDCl_3) spectroscopy of 5p

¹H NMR (400 MHz, CDCl₃) spectroscopy of 5q

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5q

¹H NMR (400 MHz, CDCl₃) spectroscopy of **5**r

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 5r

 ^{19}F NMR (376 MHz, CDCl_3) spectroscopy of 5r

¹H NMR (400 MHz, CDCl₃) spectroscopy of 5s

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5s

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 5t

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5t

¹H NMR (400 MHz, CDCl₃) spectroscopy of **5u**

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **5u**

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 5u

¹H NMR (400 MHz, CDCl₃) spectroscopy of **5**v

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **5**v

 ^{19}F NMR (376 MHz, CDCl₃) spectroscopy of 5v

¹H NMR (400 MHz, CDCl₃) spectroscopy of 9

¹H NMR (400 MHz, CDCl₃) spectroscopy of **10**

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 10

