Metal-free Electrochemical Anti-Markovnikov Hydration of Aryl Alkenes

Rongxing Linghu, ^{a b} Jun Shi, ^{a b} Biaobiao Jiang, ^{a b} Junrong Song, ^{a b} Wei Wu, ^{*a b} and Hai Ren^{*a b} ^a State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, P. R. China

^b Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China E-mail: wuwei@gmc.edu.cn; renhai@gmc.edu.cn

Supporting Information

Table of Content

1. General Information	3
2. Preparation of aryl alkenes	4
3. Optimization of the reaction conditions	6
3.1 Electrolysis general informations	6
3.2 Screening of solvents, amounts of water	6
3.3 Screening of electrolyte	7
3.4 Screening of electrodes, electric current	7
3.5 Screening of additives	8
4. Mechanistic studies	9
4.1 Kinetic experiments	9
4.2 Control experiments	10
4.3. General procedure for cyclic voltammetry (CV)	15
5. General procedure for 3-5 and product characterizations	16
6. References	26
7. ¹ H NMR and ¹³ C NMR Spectra of compounds	28

1. General Information

All solvents and reagents were obtained from commercial sources and were purified according to standard procedures before use (unless stated otherwise). Column chromatography was performed on silica gel (Qingdao, 300 - 400 mesh) using the indicated eluents. ¹H and ¹³C NMR data were collected on a Varian Mercury 400 MHz or Agilent Mercury 600 MHz NMR spectrometer at room temperature using chloroform-d or DMSO-d6 as a solvent and TMS as an internal standard, and chemical shift (δ) was expressed in parts per million (ppm). ¹H and ¹³C NMR spectra were internally referenced to the proton (¹H) of the internal TMS signal at 0.00 ppm or the solvent residue of DMSO-d6 at 2.50 ppm and the residual carbon nuclei (¹³C) of the solvent at 77.0 or 39.5 ppm, respectively. The following abbreviations were used in expressing the multiplicity: s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectra (HRMS-ESI) were recorded on a Bruker ESI-QTOF mass spectrometer. The course of the reactions was monitored by thin-layer chromatography (TLC).

2. Preparation of aryl alkenes

All of aryl alkenes are known compounds. Substrates **1a-1r** were prepared according to the published literature.¹ Other substrate were obtained from commercial sources or prepared according to known procedures as below:

Method A: To a solution of PPh₃MeBr (1.2 equiv., 4.8 mmol, 1.7 g) in THF (8 mL) was added NaH (60%, 1.1 equiv., 4.4 mmol, 105.6 mg), the reaction mixture was refluxed for 1 h. Then the corresponding ketones (4 mmol) in THF (2 mL) were added dropwise at 0 °C. The mixture was refluxed overnight. When the starting material was consumed (monitored by TLC), the reaction mixture was diluted by petroleum ether and filtered through a pad of silica gel. The filtrate was concentrated to give a crude product which was purified through flash column chromatography to obtain the desired product.

Method B: According to known procedures ², the 4-vinylbenzoic acid (1.2 equiv., 6 mmol, 888.9 mg), DL-Menthol (1.0 equiv., 5 mmol, 781.4 mg), and 4-dimethylaminopyridine (5 mol %, 30.5 mg) were mixed in a flask, 30 mL CH₂Cl₂ was added. Then a solution of N, N'-dicyclohexylcarbodiimide (1.2 equiv., 6 mmol, 1237.9 mg) in CH₂Cl₂ (10 mL) was added slowly at room temperature. The reaction mixture was maintained at room temperature with stirring for 1-3 h, during which time the reaction mixture became cloudy and a white solid precipitated from the solution. The white solid was removed via vacuum filtration and the filtrate was

removed under reduced pressure. The residue was purified by flash column chromatography to give **1s**.

Method C: According to the published procedures³, a mixture of aryl bromine (3 mmol), 4-vinylphenylboronic acid (3.03 mmol, 448.3 mg), K_2CO_3 solution (2N, 3 mL), toluene (10 mL), ethanol (2.5 mL), Pd(PPh₃)₄ (1 mol%, 34.7 mg) were placed in a two-neck glass-reactor equipped with a magnetic stirring bar and reflux condenser. The suspension was heated in an oil bath at 85°C for 12 h. After the reaction was completed (monitored by TLC), the resulting mixture was transferred to a separatory funnel. The mixture was extracted with EtOAc (3×10 mL), and the resulting organic solution was washed with brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the resulting residue was purified by silica gel chromatography (5% ethyl acetate in hexanes) provided the desired product **1t** or **1u**.

3. Optimization of the reaction conditions

3.1 Electrolysis general information

Electrochemical reactions were performed with ElectraSyn 2.0 package (IKA) using the constant current or constant voltage modes. The reactions were conducted in a 10 mL vial for 6 mL of solvent with a stir bar and a carbon graphite-SK-50 ($5.0 \times 0.8 \times 0.2$ cm) working electrode (anode and cathode) with a distance of 0.6 cm between the two electrodes.

3.2 Screening of solvents, amounts of water ^a

	Ph	$\begin{array}{c} \downarrow \\ (+) C, (-) C \\ 10 \text{ mA}, 6 \text{ h r.t} \\ \hline \\ 1a \end{array}$		4
Entry	Solvent	Electrolyte	H_2O	2a Yield (%)
1	TBAC	DMA	36 µL	36
2	TBAC	DMSO	36 µL	-
3	TBAC	DMF	36 µL	54
4	TBAC	DMF	108 µL	49
5	TBAC	DMF	500 μL	51
6 ^b	TBAC	DMF	1 mL	52
7°	TBAC	DMF	3 mL	22

^a Conditions: undivided cell, carbon cloth anode and cathode, **1a** (0.2 mmol), TBAC (0.2 mmol), Solvent (6 mL), H₂O, CCE = 10 mA, T = 6 h, RT, under air. Yields were isolated yields. CCE = constant current electrolysis. ^b 5 mL DMF was used. ^c 3 mL DMF was used.

3.3 Screening of electrolyte ^a

		Ph la Solvent/H ₂ O, Electrolyte	Ph 2a	
Entry	Solvent	Electrolyte	$H_2O~(\mu L)$	2a Yield (%)
1	DMF	ⁿ Bu ₄ NBr	36	22
2	DMF	ⁿ Bu ₄ NI	36	13
3	DMF	TBAC	36	58
4	DMF	NH ₄ Cl	36	-
5	DMF	ⁿ Bu ₄ NBF ₄	36	-
6 ^b	DMF	ⁿ Bu ₄ NBF ₄	36	28
7	DMF	(CH ₃) ₄ NCl	36	45
8	DMF	$(C_2H_5)_4NCl$	36	44
9	DMF	(C ₃ H ₇) ₄ NCl	36	41
10	DMF	C ₁₆ H ₃₃ (CH ₃) ₃ NCl	36	55
11°	DMF	TBAC	36	51
12 ^d	DMF	TBAC	36	54
13°	DMF	TBAC	36	58

Ph to Ph to

^a Conditions: undivided cell, carbon-cloth anode and cathode, **1a** (0.2 mmol), Electrolyte (0.4 mmol), DMF (6 mL), H₂O (36 μ L), CCE = 10.0 mA, 6 h, RT, under air. Yields were isolated yields. CCE = constant current electrolysis. ^b 0.2 mmol NaCl was used. ^c 0.1 mmol TBAC was used. ^d 0.2 mmol TBAC was used. ^e 0.6 mmol TBAC was used.

3.4 Screening of electrodes, electric current ^a

	Ph	x mA, r.t. DMF/H ₂ O, TBAC	Ph 2a	
Entry	electrode	CCE (x mA)	T (h)	2a Yield (%)
1	(+)C, (-)C	5 mA	12	34
2	(+)C, (-)C	10 mA	6	58
3	(+)C, (-)C	20 mA	3	50
4	(+)C, (-)Pt	10 mA	6	51

^a Conditions: undivided cell, carbon-cloth anode and cathode, **1a** (0.2 mmol), TBAC, (0.4 mmol) DMF (6 mL), H₂O (36 μ L), CCE, T, RT, under air. Yields are based on product isolated by column chromatography. CCE = constant current electrolysis.

3.5 Screening of additives ^a

		14		
Entry	Electrolyte	Additives	$H_2O~(\mu L)$	2a Yield (%)
1	TBAC	Bu ₄ NHSO ₄	36	39
2	TBAC	KH ₂ PO ₄	36	44
3	TBAC	K ₃ PO ₄	36	65
4	TBAC	K_2CO_3	36	45
5	TBAC	t-BuOK	36	41
6	TBAC	КОН	36	63
7	TBAC	Na ₃ PO ₄	36	56
8	TBAC	NaOH	36	42
9	TBAC	AcONa	36	64
10	TBAC	CH ₃ CH ₂ ONa	36	30
11	TBAC	AcOK	36	39
12	TBAC	TFA	36	-
13	TBAC	Et ₃ N	36	-
14	TBAC	K ₂ HPO ₄	36	63
15	TBAC	(PhO) ₂ P(O)OH	36	26
16	TBAC	H ₃ PO ₄	36	16
17	TBAC	HCl	36	14
18 ^b	TBAC	K ₃ PO ₄	36	45
19°	TBAC	K ₃ PO ₄	36	49

Ph la (+) C, (-) C OH (+) C, (-) C OH 2a

^a Conditions: undivided cell, carbon-cloth anode and cathode, **1a** (0.2 mmol), TBAC (0.4 mmol), DMF (6 mL), H₂O (36 μ L), Additives (0.2 mmol), CCE = 10.0 mA, 6h, RT, under air. Yields are based on product isolated by column chromatography. CCE = constant current electrolysis. ^b 0.1 mmol K₃PO₄ was used. ^c 0.4 mmol K₃PO₄ was used.

4. Mechanistic studies

4.1 Kinetic experiments

Reaction procedure:

A mixture of **1a** (0.2 mmol, 36.1 mg), K₃PO₄ (0.2 mmol, 42.5 mg) and TBAC (0.4 mmol, 111.2 mg) were added in a 10 mL vial with a stir bar, then DMF (6 mL), H₂O (36 μ L) were added under air atmosphere. The vial was covered with the electrode holder. The electrolysis was carried out at RT using a constant current of 10.0 mA between a carbon graphite anode and carbon graphite cathode (1.4 x 0.8 x 0.2 cm submerged in solution) with stirring. The reactions were stopped respectively at 0.5 h, 1 h, 2 h, 4 h, 6 h. The reaction mixture was diluted with EtOAc. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Yields were determined by ¹H NMR with TTCE as internal standard. The plots of the percentage yield of the product displayed in Figure S2.

Entry	<i>t</i> (h)	Yield 5 (%)	Yield 6 (%)	Yield 2a (%)	Recoved yield 1a (%)
1	0.5	6	19	13	52
2	1	4	18	28	37
3	2	3	12	49	4
4	4	2	7	61	1
5	6	0	0	74	0

Figure S2 Results of kinetic experiments

4.2 Control experiments

To a 10 mL flask, equipped with a magnetic stir bar and two graphite rods ($\Phi = 5$ mm) as anode and cathode, was added **5** (0.2 mmol, 46.5 mg), TBAC (0.4 mmol, 111.2 mg), K₃PO₄ (0.2 mmol, 42.5 mg), DMF (6ml), H₂O (10.0 equiv.). The mixture was stirred at room temperature and reacted at a constant current of 10 mA for 6 h. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (eluent: Petroleum ether/ethyl acetate = 5:1, v/v) to afford. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel to afford **2a** (26.1 mg, 66% yield).

To a 10 mL flask, equipped with a magnetic stir bar and two graphite rods ($\Phi = 5$ mm) as anode and cathode, was added **6** (0.2 mmol, 39.3 mg), TBAC (0.4 mmol, 111.2 mg), K₃PO₄ (0.2 mmol, 42.5 mg), DMF (6 mL), H₂O (10.0 equiv.). The mixture was stirred at room temperature and reacted at a constant current of 10 mA for 6 h. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (eluent: Petroleum ether/ethyl acetate = 5:1, v/v) to afford. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel to afford **2a** (32.5 mg, 82% yield).

To a 10 mL flask, equipped with a magnetic stir bar and two graphite rods ($\Phi = 5$ mm) as anode and cathode, was added **6** (0.2 mmol, 39.3 mg), TBAC (0.4 mmol, 111.2 mg), K₃PO₄ (0.2 mmol, 42.5 mg), DMF (6 mL), H₂O (10.0 equiv.), TEMPO

(46.8 mg 1.5 equiv.). The mixture was stirred at room temperature and reacted at a constant current of 10 mA for 6 h. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (eluent: Petroleum ether/ethyl acetate = 5:1, v/v) to afford. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel to recovery **6** (34.9 mg, 89% yield). We further investigated the possible intermediates generated in the reaction process by the use of high resolution mass spectrometry (HRMS) analysis, and the corresponding TEMPO adduct could be clearly detected. **HRMS** (ESI) m/z: $[M + H]^+$ Calcd for C₂₃H₃₂O₂N 354.2428; Found 354.2416.

To a 10 mL flask, equipped with a magnetic stir bar and two graphite rods ($\Phi = 5$ mm) as anode and cathode, was added **6** (0.2 mmol, 39.3 mg), TBAC (0.4 mmol, 111.2 mg), K₃PO₄ (0.2 mmol, 42.5 mg), DMF (6 mL), H₂O (10.0 equiv.), BHT (66.0 mg 1.5 equiv.). The mixture was stirred at room temperature and reacted at a constant

current of 10 mA for 6 h. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (eluent: Petroleum ether/ethyl acetate = 5:1, v/v) to afford. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel to afford **2a** (11.9 mg, 30% yield). We further investigated the possible intermediates generated in the reaction process by the use of high resolution mass spectrometry (HRMS) analysis, and the corresponding BHT adduct could be clearly detected. **HRMS** (ESI) m/z: [M + Na] ⁺ Calcd for C₂₉H₃₆O₂Na 439.2608; Found 439.2597.

To a 10 mL flask, equipped with a magnetic stir bar and two graphite rods ($\Phi = 5$ mm) as anode and cathode, was added **1a** (0.2 mmol, 36.1 mg), TBAC (0.4 mmol, 111.2 mg), K₃PO₄ (0.2 mmol, 42.5 mg), DMF (6 or 5 mL), D₂O (36 µL. or 1 mL), the mixture was stirred at room temperature and reacted at a constant current of 10 mA for 6 h. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (eluent: Petroleum ether/ethyl acetate = 5:1, v/v) to afford. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel to afford **D-2a**.

4.3. General procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed with ElectraSyn 2.0 package (IKA). A glassy carbon disc (diameter 3 mm) working electrode, a platinum wire counter electrode and a saturated silver chloride electrode as reference electrode were used at scan rate of 400 mV/s. The experiments were conducted in a 10 mL vial without stirring in CH₃CN (5 mL) with **1a** (0.025 M) and/or TBAC (0.025 M), K₃PO₄ (0.025 M), H₂O (36 μ L) and Et₄NBF₄ (0.025 M) at 25 °C.

Figure S2. Cyclic voltammogram of Et₄NBF₄ (0.025 M) in CH₃CN

5. General procedure for 3-5 and product characterizations

To a 10 mL flask, equipped with a magnetic stir bar and two graphite rods ($\Phi = 5$ mm) as anode and cathode, was added aryl alkenes (0.2 mmol), TBAC (0.4 mmol, 111.2 mg), K₃PO₄ (0.2 mmol, 42.5 mg), DMF (6 mL), H₂O (10.0 equiv.), the mixture was stirred at room temperature and reacted at a constant current of 10 mA for 6 h. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (eluent: Petroleum ether/ethyl acetate = 5:1, v/v) to afford. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel to afford products.

2-([1,1'-biphenyl]-4-yl) ethan-1-ol (2a)

white solid, 6 h, 25.9 mg, 65% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.60 (dd, J = 22.8, 7.8 Hz, 4H), 7.47 (t, J = 7.8 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.7 Hz, 2H), 3.91 (t, J = 6.6 Hz, 2H), 2.93 (t, J = 6.6 Hz, 2H), 1.87 (s, 1H). The spectral data is consistent with the literature.⁴

2-([1,1'-biphenyl]-3-yl) ethan-1-ol (2b)

white solid, 6 h, 20.4 mg, 51% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.37 – 7.32 (m, 2H), 7.28 – 7.25 (m, 3H), 3.90 (t, J = 6.6 Hz, 2H), 2.90 (t, J = 6.6 Hz, 2H), 1.62 (s, 1H). ppm. The spectral data is consistent with the literature.⁵

2-(4-(naphthalen-2-yl) phenyl) ethan-1-ol (2c)

·ΟΗ

white solid, 6 h, 27.3 mg, 55% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.95 – 7.89 (m, 3H), 7.77 (dd, J = 8.4, 1.8 Hz, 1H), 7.72–7.71 (m, 2H), 7.55 – 7.51 (m, 2H),

7.40 – 7.38 (m, 2H), 3.96 (t, J = 6.6 Hz, 2H), 2.98 (t, J = 6.4 Hz, 2H), 1.53 (s, 1H). ppm. ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.4, 138.3, 137.7, 133.7, 132.6, 129.6, 128.4, 128.2, 127.7, 127.6, 126.3, 125.9, 125.6, 125.5, 63.7, 38.9. ppm. HRMS (ESI) m/z: [M + Na] + Calcd for C₁₈H₁₆ONa 271.1086; Found 271.1093.

2-(4-(benzo[b]thiophen-2-yl) phenyl) ethan-1-ol (2d)

OH.

white solid, 6 h, 11.4 mg, 22% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.52 (s, 1H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.32 – 7.30 (m, 3H), 3.91 (t, *J* = 6.6 Hz, 2H), 2.92 (t, *J* =

6.6 Hz, 2H), 1.56 (s, 1H) ppm. ¹³C NMR (151 MHz, Chloroform-*d*) δ 144.1, 140.7, 139.4, 138.9, 132.7, 129.6, 126.7, 124.5, 124.2, 123.5, 122.3, 119.2, 63.6, 38.9. ppm. HRMS (ESI) m/z: [M + H] + Calcd for C₁₆H₁₅OS 255.0839; Found 255.0838.

2-(naphthalen-1-yl) ethan-1-ol (2e)

Colorless oil, 6 h, 18.4 mg, 53% yield; ¹H NMR (600 MHz, Chloroform-d) δ 8.05 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.43 – 7.37 (m, 2H), 3.99 (d, J = 6.8 Hz, 2H), 3.35 (t, J = 6.8 Hz, 2H), 1.64 (s, 1H) ppm. The spectral data is consistent with the literature.⁴

2-(naphthalen-2-yl) ethan-1-ol (2f)

6.4 Hz, 2H), 1.51 (s, 1H) ppm. The spectral data is consistent with the literature.⁶

2-phenylethan-1-ol (2g)

Colorless oil, 6 h, 8.6 mg, 35% yield; ¹H NMR (600 MHz, 2g Chloroform-d) δ 7.37 – 7.35 (m, 2H), 7.29 – 7.26 (m, 3H), 3.86 (t, J =7.8 Hz, 2H), 2.89 (t, J = 6.6 Hz, 2H),2.03 (s, 1H) ppm. The spectral data is consistent with the literature.⁴

2-(p-tolyl)ethan-1-ol (2h)

Colorless oil, 6 h, 10.1 mg, 37% yield;¹H NMR (600 MHz, Chloroform-d) δ 7.17-7.14 (s, 4H), 3.87 (t, J = 6.6 Hz, 2H), 2.86 (t, J = 6.6 Hz, 2H), 2.35 (s, 3H), 1.41 (s, 1H) ppm. The spectral data is

consistent with the literature.⁴

2-(o-tolyl) ethan-1-ol (2i)

Colorless oil, 6 h, 10.5 mg, 39% yield; ¹H NMR (600 MHz,
2i

$$J = 7.0$$
 Hz, 2H), 2.37 (s, 3H), 1.65 (s, 1H) ppm. The spectral data is

consistent with the literature.⁴

2-(4-methoxyphenyl) ethan-1-ol (2j)

Pale yellow oil, 6 h, 8.8 mg, 29% yield;¹H NMR (600 MHz, Chloroform-*d*) δ 7.19-7.16 (m, 2H), 6.90-6.88 (m, 2H), 3.85 (t, *J* = 6.6 Hz, 2H), 3.82 (s, 3H), 2.84 (t, *J* = 6.6 Hz, 2H). 1.66 (s, 1H)

ppm.

4-(2-hydroxyethyl) benzonitrile (2k)

OH

Pale yellow oil, 6 h, 13.6mg, 46% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.60 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 3.90 (t, J = 6.4 Hz, 2H), 2.93 (t, J = 6.6 Hz, 2H), 1.74 (s, 1H) ppm.

The spectral data is consistent with the literature.⁴

3-(2-hydroxyethyl) benzonitrile (21)

Pale yellow oil, 6 h, 18.5mg, 63% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.59 – 7.52 (m, 2H), 7.53 – 7.48 (m, 1H), 7.43 (t, J = 7.8 Hz, 1H), 3.90 (t, J = 6.4 Hz, 2H), 2.92 (t, J = 6.6 Hz, 2H), 1.76 (s,

1H) ppm. The spectral data is consistent with the literature.⁷

methyl 4-(2-hydroxyethyl) benzoate (2m)

Colorless oil, 6 h, 25.6 mg, 71% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.97 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 3.90 (s, 3H), 3.87 (t, J = 6.6 Hz, 4H), 2.91 (t, J = 6.6 Hz,

2H), 1.92 (s, 1H) ppm. The spectral data is consistent with the literature.⁸

2-(2-methoxyphenyl) ethan-1-ol (2n)

 $\begin{array}{c} \begin{array}{c} \text{OMe} \\ \text{OH} \end{array} \\ \begin{array}{c} \text{Pale yellow oil, 6 h, 7.2 mg, 24\% yield; } ^{1}\text{H} & \text{NMR} & (600 \text{ MHz,} \end{array} \\ \begin{array}{c} \text{Chloroform-}d \end{pmatrix} \delta & 7.23 & (t, J = 7.8 \text{Hz}, 1 \text{H}), 7.17 & (d, J = 7.2 \text{ Hz}, 1 \text{H}), 6.91 \\ (t, J = 7.6 \text{ Hz}, 1 \text{H}), & 6.88 & (d, J = 8.2 \text{ Hz}, 1 \text{H}), & 3.86 - 3.81 & (m, 5 \text{H}), \end{array}$

2.92-2.90 (t, J = 6.3 Hz, 2H), 1.81 (s, 1H) ppm. The spectral data is consistent with

the literature.9

2-(4-(trimethylsilyl) phenyl) ethan-1-ol (20)

ppm. The spectral data is consistent with the literature.¹⁰

(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl 4-(2-hydroxyethyl) benzoate (2p)

white solid, 6 h, 9.1 mg, 15% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.99 (d, J = 7.6 Hz, 2H), 7.31 (d, J = 6.8Hz, 2H), 4.94 – 4.90 (m, 1H), 3.89 (t, J = 6.6 Hz, 2H), 2.94–

2.92 (m, 2H), 2.12 (d, J = 11.8 Hz, 1H), 1.98 – 1.93 (m, 1H), 1.74 – 1.72 (m, 2H), 1.66 (s, 1H),1.59 – 1.52 (m, 3H), 1.14 – 1.06 (m, 2H), 0.93 – 0.90 (m, 6H), 0.79 (d, J = 7.0 Hz, 3H) ppm. The spectral data is consistent with the literature.¹¹

2-phenylpropan-1-ol (3a)

Colorless oil, 6 h, 13.3 mg, 49% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.35-7.33 (m, 2H), 7.26 – 7.22 (m, 3H), 3.72 (d, J = 6.8 Hz, 2H), 2.98 – 2.94 (m, 1H), 1.58 (s, 1H), 1.28 (d, J = 7.2 Hz, 3H)

ppm. The spectral data is consistent with the literature.⁴

2-(p-tolyl) propan-1-ol (3b)

Colorless oil, 6 h, 13.4 mg, 45% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.16-7.13 (m, 4H), 3.68 (d, *J* = 5.6 Hz 2H), 2.94 – 2.90 (m, 1H), 2.33 (s, 3H), 1.58 (s, 1H), 1.26 (d, *J* = 6.8 Hz, 3H) ppm.

The spectral data is consistent with the literature.¹²

2-(m-tolyl) propan-1-ol (3c)

= 7.0 Hz, 3H) ppm. The spectral data is consistent with the literature.¹³

2-phenylpentan-1-ol (3d)

ĊN

3e

Colorless oil, 6 h,15.1 mg, 46% yield; ¹H NMR (600 MHz, OH Chloroform-d) δ 7.34 – 7.32 (m, 2H), 7.26 – 7.20 (m, 3H), 3.79 – 3.70 (m, 2H), 2.83 – 2.78 (m, 1H), 1.69 – 1.64(m, 1H), 1.59 (s, 1H), 1.57 – 1.54 (m, 1H),1.25– 1.20 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H) ppm. The spectral data is consistent with the literature.¹⁴

3-(1-hydroxypropan-2-yl) benzonitrile (3e)

Pale yellow oil, 6 h, 18.3 mg, 57% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.54 – 7.49(m, 3H), 7.45 – 7.42 (m, 1H), 3.72 (t, *J* = 6.2 Hz, 2H), 3.01 – 2.99 (m, 1H), 1.80 (s, 1H), 1.30–1.29 (d, *J* = 7.0 Hz, 3H). ppm. ¹³C NMR (151 MHz, Chloroform-*d*) δ 145.6, 132.3,

131.2, 130.3, 129.3, 119.0, 112.4, 68.0, 42.0, 17.4. ppm. **HRMS** (ESI) m/z: [M + H] + Calcd for C₁₀H₁₂ON 162.0909; Found 162.0913.

2-cyclopentyl-2-phenylethan-1-ol (3f)

Colorless oil, 6 h, 12.4 mg, 33% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.32(t, J = 7.6 Hz, 2H), 7.25 – 7.21 (m, 3H), 3.92 – 3f 3.88 (m, 1H), 3.77 (t, J = 10.0 Hz, 1H), 2.58 – 2.54 (m, 1H), 2.10 – 2.02 (m, 1H), 1.94 – 1.89 (m, 1H), 1.71 – 1.68 (m, 1H), 1.59 (s, 1H), 1.54 – 1.49 (m, 1H), 1.45 – 1.39 (m, 2H), 1.29 – 1.23 (m, 2H), 1.02 – 0.98 (m, 1H) ppm. The spectral data is consistent with the literature.¹⁵

2-cyclohexyl-2-phenylethan-1-ol (3g)

Colorless oil, 6 h, 17.3 mg, 42% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.34 – 7.31 (m, 2H), 7.25 –7.23 (t, J = 7.4 Hz, 1H), 7.20 – 7.18 (m, 2H), 3.97 – 3.93 (m, 1H), 3.82 (t, J = 10.6 Hz, 1H), 2.59 – 2.56 (m, 1H), 1.90 – 1.87 (m, 1H), 1.77 – 1.73(m, 1H), 1.63 – 1.61(m, 1H), 1.60 (s, 1H), 1.43 – 1.39 (m, 1H), 1.29 – 1.22 (m, 2H), 1.14 – 1.09 (m, 3H), 1.06–0.99 (m, 1H), 0.85–0.79 (m, 1H) ppm. The spectral data is consistent with the literature.¹⁵

2,2-diphenylethan-1-ol (3h)

white solid, 6 h, 14.3 mg, 36% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.35 – 7.31 (m, 4H), 7.28 – 7.22 (m, 6H), 4.23 – 4.21 (m, 1H), 4.19-4.17 (m, 2H), 1.49 (s, 1H) ppm. The spectral data is

consistent with the literature.⁴

1,2-diphenylethan-1-ol (3i)

white solid, 6 h, 12.2 mg, 31% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.37 – 7.34 (m, 4H), 7.32 – 7.27 (m, 3H), 7.25 – 7.19 (m, 3H), 4.91 – 4.89 (m, 1H), 3.04 (dd, J = 13.6, 4.8 Hz, 1H),

2.99 (dd, J = 13.6, 8.6 Hz, 1H), 1.98 (s, 1H) ppm. The spectral data is consistent with the literature.¹⁶

1,2-di-p-tolylethan-1-ol (3j)

white solid, 6 h, 14.9 mg, 33% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 7.12-7.09 (m, 4H), 4.85 – 4.81 (m, 1H), 2.99 (dd, *J* = 13.8,

4.6 Hz, 1H), 2.92 (dd, J = 13.8, 8.8 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H), 1.93 (s, 1H) ppm. The spectral data is consistent with the literature.¹⁷

1-phenylpropan-2-ol (3k)

Colorless oil, 6 h, 15.7 mg, 58% yield; ¹H NMR (600 MHz, $_{3k}$ Chloroform-*d*) δ 7.33 – 7.30 (m, 2H), 7.25 – 7.20 (m, 3H), 4.05 – 3.99 (m, 1H), 2.80-2.77 (m, 1H), 2.67-2.71 m, 1H), 1.65 (s, 1H), 1.25 (d, *J* = 6.2 Hz, 3H) ppm. The spectral data is consistent with the literature.¹⁵

1-(o-tolyl) propan-2-ol (3l)

Colorless oil, 6 h,13.1 mg, 44% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.18 – 7.14(m, 4H), 4.05 – 4.02 (m, 1H), 2.80 (dd, J = 13.6, 5.0 Hz, 1H), 2.73 (dd, J = 13.6, 8.0 Hz, 1H), 2.33 (s, 3H), 1.63 (s, 1H), 1.27 (d, J = 6.2 Hz, 3H) ppm. The spectral data is consistent with the literature.¹⁸

1-(m-tolyl) propan-2-ol (3m)

Colorless oil, 6 h, 15.7 mg, 52% yield; ¹H NMR (600 MHz, $_{3m}^{OH}$ Chloroform-d) δ 7.20 (t, J = 7.6 Hz, 1H), 7.06 – 7.00 (m, 3H), 4.04 – 4.00(m, 1H), 2.77 – 2.74(m, 1H), 2.66– 2.63 (m, 1H), 2.34 (s, 3H), 1.63 (s, 1H), 1.25 (d, J = 6.2 Hz, 3H) ppm. The spectral data is consistent with the literature.¹⁵ **1-(p-tolyl) propan-2-ol (3n)**

Colorless oil, 6 h, 12.6 mg, 42% yield;¹H NMR (600 MHz, 3n Chloroform-d) δ 7.13 – 7.09 (m, 4H), 4.02 – 3.97 (m, 1H), 2.76 (dd, J = 13.6, 4.8 Hz, 1H), 2.64 (dd, J = 13.6, 8.0 Hz, 1H), 2.33 (s, 3H), 1.61 (s, 1H), 1.24 (d, J = 6.2 Hz, 3H) ppm. The spectral data is consistent with the literature.¹⁹

1-phenylbutan-2-ol (30)

Colorless oil, 6 h, 15.6 mg, 52% yield; ¹H NMR (600 MHz, 30 Chloroform-d) δ 7.33 – 7.30 (m, 2H), 7.26 – 7.21 (m, 3H), 3.77 – 3.74 (m, 1H), 2.84 (dd, J = 13.6, 4.4 Hz, 1H), 2.65 (dd, J = 13.6, 8.2 Hz, 1H), 1.64 (s, 1H), 1.57 – 1.50 (m, 2H), 1.00 (t, J = 7.5 Hz, 3H) ppm. The spectral data is consistent with the literature.²⁰

1-(p-tolyl) butan-2-ol (3p)

Colorless oil, 6 h, 13.6 mg, 41% yield; ¹H NMR (600 MHz, $_{3p}$ Chloroform-*d*) δ 7.13 – 7.10 (m, 4H), 3.74 – 3.70(m, 1H), 2.80 (dd, J = 13.6, 4.4 Hz, 1H), 2.60 (dd, J = 13.6, 8.4 Hz, 1H), 2.33 (s, 3H), 1.64 (s, 1H), 1.55 – 1.49 (m, 3H), 0.99 (t, J = 7.4 Hz, 3H) ppm. The spectral data is consistent with the literature.²¹

2,3-dihydro-1H-inden-2-ol (3q)

white solid, 6 h, 9.8 mg, 37% yield; ¹H NMR (600 MHz, 3q Chloroform-d) δ 7.26 – 7.24 (m, 2H), 7.19 – 7.17 (m, 2H), 4.72 – 4.69 (m, 1H), 3.22 (dd, J = 16.4, 5.9 Hz, 2H), 2.92 (dd, J = 16.4, 3.2 Hz,

2H),1.70 (s, 1H) ppm. The spectral data is consistent with the literature.¹⁵

1,2,3,4-tetrahydronaphthalen-2-ol (3r)

white solid, 6 h, 15.2 mg, 51% yield; ¹H NMR (600 MHz, .OH Chloroform-d) δ 7.13 – 7.07 (m, 4H), 4.18 – 4.14 (m, 1H), 3.09 (dd, J 3r = 16.0, 4.8 Hz, 1H), 2.98–2.93 (m, 1H), 2.87–2.82 (m, 1H), 2.79–

2.75 (m, 1H), 2.08 - 2.05 (m, 1H), 1.85 - 1.79 (m, 1H). 1.73 (s, 1H) ppm. The spectral data is consistent with the literature.¹⁵

2-methyl-1-phenylpropan-2-ol (4a)

Colorless oil, 6 h, 24.7 mg, 82% yield; ¹H NMR (600 MHz, HO Chloroform-d) & 7.33-7.21 (m, 5H), 2.77 (s, 2H), 1.64 (s, 1H), 1.23 (s, 4a

6H) ppm. The spectral data is consistent with the literature.¹⁸

2-methyl-1-(o-tolyl) propan-2-ol (4b)

ͺΗÓ 4b

ΗŐ

Colorless oil, 6 h, 19.6 mg, 60% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.23 – 7.22 (m, 2H), 7.21 – 7.16 (m, 2H), 2.86 (s, 2H), 2.39 (s, 3H), 1.65 (s, 1H), 1.29 (s, 6H) ppm. ¹³C NMR (151 MHz, Chloroform-*d*) δ 137.5, 136.1, 131.4, 130.7, 126.6, 125.6, 71.8, 45.5, 29.5, 20.4. ppm.

HRMS (ESI) m/z: [M + H] + Calcd for C₁₁H₁₇O 165.1272; Found 165.1274.

2-methyl-1-(m-tolyl) propan-2-ol (4c)

Colorless oil, 6 h, 23.1 mg, 70% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.20 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 7.03 –

4c 7.00 (m, 2H), 2.73 (s, 2H), 2.34 (s, 3H), 1.68 (s, 1H), 1.23 (s, 6H). ppm. ¹³C NMR (151 MHz, Chloroform-d) δ 137.8, 137.6, 131.3, 128.1, 127.5, 127.3, 49.7, 29.2, 21.4. ppm. **HRMS** (ESI) m/z: [M + H] + Calcd for C₁₁H₁₇O 165.1274; Found 165.1274.

2-methyl-1-(p-tolyl) propan-2-ol (4d)

Colorless oil, 6 h, 20.1 mg, 61% yield; ¹H NMR (600 MHz, НÓ Chloroform-*d*) δ 7.11 (q, J = 8.0 Hz, 4H), 2.73 (s, 2H), 2.34 (s, 3H), 4d 1.61 (s, 1H), 1.22 (s, 6H) ppm. The spectral data is consistent with the

literature.22

1-(4-ethylphenyl)-2-methylpropan-2-ol (4e)

Colorless oil, 6 h, 24.2 mg, 68% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.16 – 7.13 (m, 4H), 2.74 (s, 2H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.44 (s, 1H), 1.26 – 1.23 (m, 9H) ppm. The spectral data is

consistent with the literature.²³

3-(2-hydroxy-2-methylpropyl) benzonitrile (4f)

Pale yellow oil, 6 h,24.2mg, 69% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.56 – 7.55 (m, 2H), 7.50 – 7.49 (m, 1H), 7.44 – 7.41 (m, 1H), 2.81 (s, 2H), 1.76 (s, 1H), 1.25 (s, 6H). ppm. ¹³C NMR (151

MHz, Chloroform-*d*) δ 139.5, 135.0, 133.9, 130.2, 128.8, 119.0, 112.1, 70.7, 49.1, 29.4. ppm. **HRMS** (ESI) m/z: [M + H] + Calcd for C₁₁H₁₄ON 176.1075; Found 176.1070.

1,2-diphenylpropan-2-ol (4g)

J = 13.2 Hz, 1H), 1.88 (s, 1H), 1.57 (s, 3H) ppm. The spectral data is consistent with the literature.²⁴

2-methyl-3-phenylbutan-2-ol (4h)

Colorless oil, 6 h, 4.6 mg, 14% yield; ¹H NMR (600 MHz, Chloroform-d) δ 7.31 (t, J = 7.6 Hz, 2H), 7.26 – 7.23 (m, 3H), 2.81 (q, J = 7.2 Hz, 1H), 1.59 (s, 1H), 1.35 (d, J = 7.2 Hz, 3H), 1.18 (s, 6H)

ppm. The spectral data is consistent with the literature.²⁵

2-phenethyloxirane (4i')

Colorless oil, 6 h, 13.8 mg, 46% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.34 – 7.31 (m, 2H), 7.25 – 7.22 (m, 3H), 3.00 – 2.97 (m, 1H), 2.88 – 2.83 (m, 1H), 2.81 – 2.76 (m, 2H), 2.50 (dd, *J*

= 4.9, 2.8 Hz, 1H), 1.94 - 1.84 (m, 2H) ppm. The spectral data is consistent with the literature.²⁶

1-([1,1'-biphenyl]-4-yl)-2-chloroethan-1-ol (5)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.65 – 7.61 (m, 4H),
7.50-7.46 (m, 4H), 7.41 – 7.38 (m, 1H), 4.96 (dd, *J* = 8.6, 3.4 Hz, 1H), 3.82 (dd, *J* = 11.2, 3.4 Hz, 1H), 3.73 (dd, *J* = 11.2,
8.8 Hz, 1H), 2.72 (d, *J* = 3.2 Hz, 1H) ppm. The spectral data

is consistent with the literature.²⁷

2-([1,1'-biphenyl]-4-yl)oxirane (6)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.63 – 7.61 (m, 4H), 7.49
- 7.46 (m, 2H), 7.40 – 7.37 (m, 3H), 3.95 (dd, J = 4.2, 2.6 Hz, 1H), 3.22 (dd, J = 5.4, 4.2 Hz, 1H), 2.89 (dd, J = 5.6, 2.6 Hz, 1H)

ppm. The spectral data is consistent with the literature.²⁷

6. References

- [1] B. Yang, Z. Lu, Chem. Commun. 2017, 53, 12634-12637.
- [2] F. Lian, F-X. Luo, M. Wang, K. Xu, C.-C. Zeng, Chin. J. Chem. 2023, 41, 1583-1588.
- [3] M. Majchrzak, G. Wilkowski, M. Kubicki, J. Org. Chem. 2017,29, 4291-4299.
- [4] C. Huang, W. Ma, X.-L. Zheng, M.-H. Xu, X.-T. Qi, J. Am. Chem. Soc. 2022, 144, 1389-1395.
- [5] W. Pendergast, J.- V. Johnson, S.- H. Dickerson, I.- K. Dev, D.- S. Duch, R. Ferone, W.- R. Hall, J. Humphreys, J.- M. Kelly, D.- C. Wilson, *J. Med. Chem.* 1993 36, 2279-2291.
- [6] S. -N. Kessler, H. -A. Wegner, Org. Lett. 2010, 12, 4062-4065.
- [7] B.- C. Lee, J.- Y. Paik, D.- Y. Chi, K.- H. Lee, Y.- S. Choe, *Bioconjugate Chem*.2004, 15, 104-111.
- [8] C. Chen, G. Nagy, A. -V. Waiker, K. Maurer, A. McShea, K.- D. Moeller, J. Am. Chem. Soc. 2006, 128, 16020-16021.
- [9] N.- N.- H. Ton, B.- K. Mai, T.- V. Nguyen, J. Org. Chem. 2021, 86, 9117-9133.
- [10] A. Graml, B. Konig, Chem. Photo. Chem. 2021, 5, 362-368.
- [11] X. -C. Lin, Y. -M. Wang, X. Chen, P. -Y. You, K. -M. Mo, G. -H. Ning, D. Li, *Angew. Chem. Int. Ed.* **2023**, *62*, e202306497.
- [12] S. M. A. Hakim Siddiki, A.- S. Touchy, M. A.- R. Jamil, T. Toyao, Ken-ichi. Shimizu, ACS Catal. 2018, 8, 3091-3103.
- [13] H.-Q. Geng, T. Meyer, R. Franke, X.-F. Wu, Chem. Sci. 2021,12, 14937-14943.
- [14] Y. Zhang, B. Han, S. -L. Zhu, Angew. Chem. Int. Ed. 2019, 58, 13860-13864.
- [15] X. Hu, G.-T. Zhang, F.-X. Bu, A.-W. Lei, ACS Catal. 2017, 7, 1432-1437.
- [16] S.- V. Ley, C. Mitchell, D. Pears, C. Ramarao, J.-Q. Yu, W- Z. Zhou, Org Lett.2003, 5, 4665-4668.
- [17] D.-K. Nielsen, A.-G. Doyle, Angew. Chem. Int. Ed. 2011, 50. 6056-6059.
- [18] Y-. Zhao, D.- J. Weix, J. Am. Chem. Soc. 2014, 136, 48-51.
- [19] X.- Y. Du, Y.- L. Zhang, D.- J. Peng, Z. Huang, Angew. Chem. Int. Ed. 2016, 55,

6671-6675.

[20] T. Mahdi, D.- W. Stephan, Angew. Chem. Int. Ed. 2015, 54, 8511-8514.

[21] M. Parasram, B.- J. Shields, O. Ahmad, T. Knauber, A.- G. Doyle, ACS Catal.2020, 10, 5821-5827.

[23] S.- C. Richter, M. Oestreich, J. Org. Chem, 2021, 14, 2103-2106.

- [24] C.- C. Li, X.-J. Dai, H.- N. Wang, D.- H. Zhu, J. Gao, C.- J. Li, Org. Lett. 2018, 20, 3801-3805.
- [25] J. Harnedy, H.- A. Maashi, Albara A. M. A. El Gehani, M. Burns, L.- C. Morrill, Org. Lett. 2023, 25, 1486-1490.
- [26] J. M. Mitchell and N. S. Finney, J. Am. Chem. Soc., 2001, 123, 862-869.
- [27] Y. Yuki, T. Touge, H. Nara, K. Matsumura, M. Fujiwhara, Y. Kayaki, T. Ikariya, *Adv. Synth. Catal.*, **2017**, *360*, 568-574.

7. ¹H NMR and ¹³C NMR Spectra of compounds

P	arameters
Parameter	value
Title	LH489-1.1.fid
Origin	Bruker BioSpin GmbH & Co. K
Solvent	CDCl3
Temperature	298.0
Number of Scans	4
Acquisition Date	2025-03-04T21:50:39
Spectrometer Frequency	600 MHz
Nucleus	IH

- 63.69

[139.39] [138.26] [137.73] [137.73] [137.59] [132.59] [125.61] [125.62] [125.51] [125.52] [125.51] [125.51] [125.52]

alue
GmbH & Co. K
2:10:20

-38.87

 $\left\{\begin{array}{c} 3.924 \\ 5.914 \\ 3.905 \\ 3.905 \\ 2.917 \\ 2.906 \\ 2.906 \end{array}\right.$

Р	arameters
Parameter	value
Title	LH489-2.1.fid
Origin	Bruker BioSpin GmbH & Co. KG
Solvent	CDCl3
Temperature	298.0
Number of Scans	4
Acquisition Date	2025-03-04T22:55:54
Spectrometer Frequency	600 MHz
Nucleus	111

144.07 140.74 139.43 139.43 132.66 125.65 126.72 126.72 124.53 124.53 124.53 124.53 124.53 124.53 124.53 124.53 123.52 123.52

Paran	neters
Parameter	value
Title	LH294-2-1.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCl3
Temperature	298.0
Number of Scans	512
Acquisition Date	2024-08-21T05:48:12
Spectrometer Frequency	151 MHz
Nucleus	13C

- 63.57		

∕ОН

80 f1 (ppm) $\frac{1}{70}$ 20 0 160 150 140 130 120 110 100 90 60 50 40 30 10

Parameters				
Parameter	value			
Title	LH299-2.1.fid			
Origin	Bruker BioSpin GmbH			
Solvent	CDCl3			
Temperature	295.0			
Number of Scans	4			
Acquisition Date	2024-07-25T19:48:38			
Spectrometer Frequency	600 MHz			
Nucleus	1H			

$\begin{array}{c} & \left(\begin{array}{c} 7,1890\\ 7,174\\ 7,174\\ 7,176\\ 6,892\\ 6,892\\ 6,883\\ 6,88$

$$< 7.976$$

 < 7.303
 < 7.290
 < 7.290
 < 7.290
 < 7.290
 < 3.899
 3.863
 3.863
 3.863
 $$< 3.874$
 $$< 3.874$
 < 3.863
 < 3.863
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 < 2.903
 $<$$$

$\begin{array}{c} 7.34\\ 7.331\\ 7.332\\ 7.3$

 $\begin{cases} 3.726 \\ 3.705 \\ 3.705 \\ 2.098 \\ (2.986 \\ -1.798 \\ -1.798 \end{cases}$

7,348 7,7315 7,7315 7,7315 7,7315 7,7315 7,7315 7,7315 7,7315 7,7315 7,7315 7,7315 7,7315 7,7325 7,7315 7,7328 7,7348 7,7328 7,7

7,3687,3557,3557,3557,3557,3557,3357,3357,3357,2307,7237,2307,7237,72

$\begin{array}{c} 7.264 \\ 7.1250 \\ 7.151 \\ 7.151 \\ 7.151 \\ 7.161 \\ 7.161 \\ 7.187 \\ 7.087$

$\begin{array}{c} 7.330\\ 7.331\\ 7.331\\ 7.331\\ 7.331\\ 7.339\\ 7.239\\ 7.239\\ 7.209\\ 7.200\\ 7.$

7.179 7.175 7.165 7.161 7.165 7.161 7.155 7.145 7.145 7.145 7.139

$\begin{array}{c} 7.216 \\ 7.1216 \\ 7.1216 \\ 7.029 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.003 \\ 7.035 \\ 7.035 \\ 7.033 \\ 7.03$

$\begin{array}{c} & 7.128 \\ 7.1124 \\ 7.120 \\ 7.107 \\ 7.106 \\ 7.1$

$\begin{array}{c} 7,326\\ 7,330\\ 7,313\\ 7,313\\ 7,313\\ 7,313\\ 7,313\\ 7,313\\ 7,313\\ 7,313\\ 7,313\\ 7,315\\ 7,224\\ 7,224\\ 7,2345\\ 7,235\\$

73.743 73.722 73.722 73.722 73.723 73.723 73.723 73.723 74.550 75.584 75.5947 75.5947 75.5947 75.5947 75.5947 75.5947 75.5947 75.5947 7

 $\underbrace{\underbrace{}^{7.132}_{7.118}}_{7.098}$

$= \begin{bmatrix} 7.255 \\ 7.240 \\ 7.182 \\ 7.175 \\ 7.177 \\ 7.177 \\ 7.177 \\ 7.177 \\ 7.177 \\ 7.177 \\ 7.177 \\ 7.197 \\ 7.197 \\ 7.197 \\ 7.199 \\ 7.2934 \\ 1.688 \\ 7.2934 \\ 7.2934 \\ 7.2934 \\ 7.2997 \\ 7.29$

Parameter value Titlo LH295-11.fid Origin Buker BidSpin GmbH Solvent CDCI3 Temperature 295 0 Number of Semis 4 Acquisition Datta 2024-07-24T22.22.23 Spectrometer Frequency 600 MTL Nucleus 111	Parameter value Title 1H295-11.fid Origin Braker Blospin (mbl) Solvent CDC13 Temperature 295.0 Number OScans 4 Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequency 600 MLz Nucleus 11	Paran	eters		~
Title 14295-11.fd Origin Bruker BioSpin GmbH Solvent CDCI3 Temperature 295.0 Number of Senses 4 Acquisition Data 2024-07-24T22:22:23 Spectrometer Frequency 600 MHz Nucleus III	Trile IH205-11 fid Origin Braker BioSpin GmbB Solvent CDC13 Temperature 295.0 Number 01Seans 4 Acquisition Date 2024-07-24T22 22 23 Spectrometer Frequeny 600 MHz Nucleus III	Parameter	value		\searrow
Origin Bruker BioSpin Ombil Solvent CDCl3 Temperature 295.0 Number of Seans 4 Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequency 600 MLz Nucleus 11	Origin Bruker BioSpin GmbH Solvent CDC13 Temperature 295:0 Number of Seans 4 Acquisition Date 2024-07-24T22:22:23 Spectrometer Frequency 600 MHz Nucleus III	Title	LH295-1.1.fid		
Solvent CDCI3 Temperature 295.0 Number of Seams 4 Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequency 600 MLz Nucleus III	Solvent CDCI3 Temperature 205.0 Number of Sems 4 Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequency 600 MLZ Nucleus III	Origin	Bruker BioSpin GmbH		
Temperature 295.0 30 Number of Seans 4 Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequency 600 MLz Nucleus III	Temperature 295.0 Number of Sense 4 Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequency 600 MIL// Nucleus 111	Solvent	CDCl3		
Number of Seans 4 Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequeny 600 MIL Nucleus III	Number of Seans 4 Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequency 600 MIz Nucleus 11 Nucleus 11 Section deter 11 Section determine 11	Temperature	295.0		3q
Acquisition Date 2024-07-24/T22/22.23 Spectrometer Frequency 600 MLZ Nucleus 111	Acquisition Date 2024-07-24T22.22.23 Spectrometer Frequency 600 MIL Nucleus III	Number of Scans	4		
Spectrometer Frequency 600 MIIz Nucleus III	Spectrometer Frequency 600 MIZ Nucleus III	Acquisition Date	2024-07-24T22.22.23		
	Nucleus III	Spectrometer Frequency	600 MHz		
	1.93 1.95 2.17= 2.17= 2.17= 0.01=0.01=	Nucleus	IH		
	1.93€ 1.95€ 2.17≡ 2.17≡ 0.91≡			. 1	

90 80 f1 (ppm) -10 $\frac{1}{70}$

(7,335)(7,332)(7,332)(7,332)(7,332)(7,332)(7,332)(7,332)(7,332)(7,332)(7,325)(7,732)(7,7

$\begin{bmatrix} 7.528\\ 7.624\\ 7.624\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.612\\ 7.62$

