Syndiospecific polymerization of styrene by half-titanocene catalysts with fluorinated phenoxy ligands in the presence of low MAO cocatalyst

Bin Wu, Qingyu Zhang, Hongyu Liu, Tongtong Zhang, Xiaolong Yang, Fangming Zhu*.

Characterization of catalysts

The 1H NMR and ^{19}F NMR spectrum of Cp*Ti(OC_6F_5)_3 are listed as follow.

Figure S1 The ¹H NMR spectrum of $Cp*Ti(OC_6F_5)_3$ (c2).

Figure S2 The ¹⁹F NMR spectrum of $Cp^*Ti(OC_6F_5)_3$ (c2).

The 1H NMR and ^{19}F NMR spectrum of Cp*Ti(O-2,6-C_6H_3F_2)_3 are listed as follow.

Figure S3 The ¹H NMR spectrum of $Cp*Ti(O-2,6-C_6H_3F_2)_3$ (c1).

Figure S4 The 19 F NMR spectrum of Cp*Ti(O-2,6-C₆H₃F₂)₃ (c1).

Characterization of sPS

						_						
			Т	t	Al _{MAO}	Al _{TIBA}	Polymer ^b	Syndiotactic		$M_{\rm w}{}^{\rm d}$		$T_{\rm m}^{\rm e}$
	Run	Cat	(°C)	(h)	/Ti	/Ti	(g)	Index ^b (%)	Activity ^c	(10 ⁵ g/mol)	PDI ^d	(°C)
	26	c1	80	3	100	500	8.21	96	456	1.80	1.98	271
	27	c1	80	3	100	500	6.05	95	336	2.40	1.71	270
	28	c1	80	3	100	500	4.07	95	226	1.88	1.85	270

Table S1 Styrene polymerization with half-titanocene c1 depended on additional toluene^a

^aPolymerization conditions: catalyst, 6.0 µmol in 2.0 mL DCM; styrene, 20 mL,

additional toluene; run 26, 5 mL; run 27, 10 mL; run 28, 20 mL

^bEstimated by the extraction experiment

^cActivity in kg-sPS·mol-cat⁻¹·hr⁻¹

^dGPC data

^eDSC data

Figure S5 Molecular wight dependence on (a) polymerization temperature (b) the Al/Ti ratio of MAO (c) the Al/Ti ratio of TIBA (d) additional toluene

Figure S6 The GPC curves of sPS synthesized by different catalysts from run14, 18, 21, 25. The DSC curves of sPS synthesized by different catalysts are listed as follow.

Figure S7 The DSC curves of sPS synthesized by different catalysts from run14, 18, 21, 25.