1	Supplementary Information
2	
3	Lithium metal batteries using lithiophilic oxidative interfacial layer on the
4	3D porous metal alloy media
5	
6	Yusong Choi ^{1,2} *, Tae-Young Ahn ¹ , Sang Hyeon Ha ¹ , Hyungu Kang ¹ , Won Jun Ahn ¹ , Jae In Lee ¹ , Eun-ji Yoo ¹ ,
7	Jae-Seong Yeo ¹
8	
9	¹ Defense Materials and Energy Development Center, Agency for Defense Development, Yuseong P.O. Box 35,
10	Daejeon, 34060, Korea
11	² Department of Defense System Engineering, University of Science and Technology, Daejeon 34113, Korea
12	*Corresponding author. yusongchoi@ust.ac.kr, Tel: +82-42-821-2457; Fax: +82-42-823-3400
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	

	(D)		wt%		
	58.94				
Free Contraction		15.06	12.91	6.8	5.9
2 100 um	Nickel	Chrome	Aluminum	Oxygen	Carbon

42 Fig. S2. Comparison of the infusion characteristics of lithium melted at 400 °C: (a) Li-NAFA (good 43 molten lithium impregnation) and (b) oxidized Ni foam (Catch fire, burn out, and leave a hole). Bending 44 test result comparison: images of Li-NAFA (c) pre-test and (d) post-test, and oxidized Ni foam (e) pre-45 test and (f) post-test (g). The bending test results show that the maximum applied load for Li-NAFA is 46 2.82 kgf, whereas that for oxidized Ni foam is 0.45 kgf.

47

41

48

Fig. S3. Comparison of weight of lithium content according to the variation of the thickness of oxidised NAF. (An increase in the density of the foam directly corresponds to a reduction in the internal pore volume. Therefore, as the thickness increases, the overall lithium volume within the foam increases, leading to a reduction in the foam's overall volume fraction. As confirmed in our study, the optimal foam thickness for achieving the best electrochemical performance is 0.6 t.)

83 Table S1. Resistivity measurement result for control NAF and after oxidation of NAF according

84

to Van Der Pauw

	Resistance control	Resistance after oxidation
	(mΩ)	(mΩ)
	9.0	9.5
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		

107 Fig. S5. (a) Compressive stress variation and (b) oxide layer weight gain of NAFA according to

108 the oxidation time.

-

121 Table S2. Specific Gibbs free energy ($\Delta G_{\text{specific}}$) of the reaction between Li and coated materials.

	Layer material	Product	$\Delta G_{\text{specific}} (10^9 \text{ J m}^{-2})$				
	NiO	Li ₂ O, Ni	-56.1 × t ^[A]				
	Ni ₂ O ₃	Li ₂ O, Ni	$-59.3 \times t^{our work}$				
	TiO ₂	Ti, Li ₂ O	$-8.5 \times t^{[B]}$				
	ZnO	Li_3Zn, Li_2O	$-20.0 \times t^{[B]}$				
	Al	Li ₉ Al ₄	$-4.9 \times t^{[B]}$				
	Au	Li ₁₅ Au ₄	-15.6 × t ^[B]				
	Si	$Li_{21}Si_5$	-9.3 × t				
Notes: t is the layer thickness.							

Fig. S6. Photographs of the anodes after cycle test. (a) Li-foil anode, (b) oxidised NAF anode.

Fig. S7. Optical microscope image comparison of anodes after cycle test of the NAF control and
oxidized-NAF electrodes. (a) control NAF anode at magnitude of 5 times, (b) control NAF anode
at magnitude of 50 times, (c) oxidised NAF anode at magnitude of 5 times, (d) oxidised NAF
anode at magnitude of 50 times.

- 151 References
- 152
- 153 [A] Choi, Y. S.; Ahn, T. Y.; Lee, E. H.; Hur, T. U.; Ha, S. H.; Lee, J. I.; Park, T. R.; Choi, C. H.; Kim,
- 154 I. Y.; Cho, J. H. An ultra-lithiophilic oxidation layer in a Ni-foam-based anode for lithium metal
- batteries. Mater. Adv. **2021**, 2, 1972–1980. DOI: 10.1039/D1MA00065A
- 156 [B] Wang, J.; Wang, H.; Xie, J.; Yang, A.; Pei, A. Wu, C-.L.; Shi, F.; Liu, Y.; Lin, D.; Gong, Y.; Cui,
- 157 Y. Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 2018, 14,
- 158 345–350. DOI: 10.1016/j.ensm.2018.05.021