Supporting Information for

Copper-promoted oxidative mono- and di-bromination of 8aminoquinoline amides with HBr and DMSO

Changdong Shao,* Jingyi Liu, Yanan Shen, Li Li, Chen Ma, Zhengsong Hu, Yuhe Kan, Ping Chen and Tingting Zhang*

Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China. E-mail: shaochangdong@hytc.edu.cn.

Table of Contents

1. General information	S2
2. General procedure for the monobromination reaction	S2
3. General procedure for the dibromination reaction	S2
4. Characterization of isolated products	
5. Copies of NMR spectra	S16
6. References	

1. General information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded on Bruker ARX400 instrument. High resolution mass spectra were obtained on a Bruker micrOTOF II ESI mass spectrometer. NMR spectra were recorded in CDCl₃. ¹H NMR spectra were referenced to residual CHCl₃ at 7.26 ppm, and ¹³C NMR spectra were referenced to the central peak of CDCl₃ at 77.16 ppm. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

8-Amidequinolines were synthesized according to the previously reported protocol. ^[1-2] All other chemicals were purchased from commercial sources and used directly without further purification.

2. General procedure for the monobromination reaction

A 35 mL sealed tube equipped with a stir bar was charged with 8-amidequinolines (1, 0.2 mmol, 1.0 equiv.), CuSO₄·5H₂O (0.04 mmol, 20 mol%), HBr (0.4 mmol, 2.0 equiv.), DMSO (0.2 mL), and MeCN (1.0 mL). The tube was sealed with a *Teflon* cap under air, then the mixture was stirred at 100°C for 6 h. After completion, the reaction mixture was diluted with ethyl acetate (20 mL) and washed with saturated sodium bicarbonate and brine successively. The organic layer was dried over anhydrous sodium sulfate and concentrated *in vacuo*. The residue was purified on preparative thin layer chromatography (PTLC) to afford the desired product **2**.

3. General procedure for the dibromination reaction

A 35 mL sealed tube equipped with a stir bar was charged with 8-amidequinolines (1, 0.2 mmol, 1.0 equiv.), $Cu(NO_3)_2 \cdot 3H_2O$ (0.04 mmol, 20 mol%), HBr (0.8 mmol, 4.0 equiv.), DMSO (1.6 mL), and MeCN (1.0 mL). The tube was sealed with a *Teflon* cap under air, then the mixture was stirred at 100°C for 6 h. After completion, the reaction mixture was diluted with ethyl acetate (20 mL) and washed with saturated sodium bicarbonate and brine successively. The organic layer was dried over anhydrous sodium sulfate and concentrated *in vacuo*. The residue was purified on preparative thin layer chromatography (PTLC) to afford the desired product **3** and the incidental monosubstituted product **2**.

4. Characterization of isolated products

N-(5-bromoquinolin-8-yl)benzamide (2a)

Purified with PTLC (PE/EA = 5/1, R_f = 0.69) to afford the title compound as a white solid (58.9 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 10.67 (s, 1H), 8.86 – 8.78 (m, 2H), 8.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.09 – 8.02 (m, 2H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.63 – 7.50 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 165.37, 148.81, 139.44, 136.01, 134.91, 134.55, 132.08, 131.00, 128.92, 127.35, 127.27, 122.78, 117.05, 114.48. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)-2-methylbenzamide (2b)

Purified with PTLC (PE/EA = 5/1, R_f = 0.70) to afford the title compound as a white solid (66.1 mg, 97%). ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 8.82 (d, *J* = 8.3 Hz, 1H), 8.76 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.49 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.82 (d, *J* = 8.3 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.52 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.40 (td, *J* = 7.5, 1.5 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H), 2.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.12, 148.80, 139.34, 136.88, 136.36, 135.99, 134.73, 131.54, 130.96, 130.57, 127.30, 127.28, 126.13, 122.76, 117.03, 114.54, 20.32. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)-4-methylbenzamide (2c)

Purified with PTLC (PE/EA = 5/1, R_f = 0.71) to afford the title compound as a white solid (59.3 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 10.65 (s, 1H), 8.83 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.81 (d, *J* = 8.4 Hz, 1H), 8.50 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 2H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.55 (dd, *J* = 8.6, 4.2 Hz, 1H), 7.33 (d, *J* = 7.9 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.53, 148.86, 142.70, 139.59, 136.14, 134.77, 132.18, 131.13, 129.64, 127.43, 127.39, 122.83, 117.09,

114.37, 21.69. Characterization data were consistent with a previous report.^[3]

N-(5-bromoquinolin-8-yl)-4-methoxybenzamide (2d)

Purified with PTLC (PE/EA = 5/1, R_f = 0.51) to afford the title compound as a white solid (68.5 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 10.62 (s, 1H), 8.85 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.80 (d, *J* = 8.4 Hz, 1H), 8.52 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.56 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.05, 162.80, 148.80, 139.58, 136.12, 134.86, 131.15, 129.31, 127.38, 127.29, 122.80, 116.98, 114.18, 55.61. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)-4-(tert-butyl)benzamide (2e)

Purified with PTLC (PE/EA = 5/1, R_f = 0.78) to afford the title compound as a white solid (69.0 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 10.65 (s, 1H), 8.84 – 8.78 (m, 2H), 8.49 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.00 (d, *J* = 8.5 Hz, 2H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.60 – 7.50 (m, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.45, 155.69, 148.79, 139.51, 136.03, 134.74, 132.15, 131.06, 127.31, 127.26, 125.89, 122.77, 117.02, 114.29, 35.14, 31.30. Characterization data were consistent with a previous report. ^[4]

N-(5-bromoquinolin-8-yl)-4-(trifluoromethyl)benzamide (2f)

Purified with PTLC (PE/EA = 5/1, R_f = 0.70) to afford the title compound as a white solid (69.5 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 10.67 (s, 1H), 8.82 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.74 (d, *J* = 8.4 Hz, 1H), 8.49 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.13 (d, *J* = 8.2 Hz, 2H), 7.82 – 7.75 (m, 3H), 7.55 (dd, *J* = 8.5, 4.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.91. ¹³C NMR (101 MHz, CDCl₃) δ 163.90,

148.97, 139.34, 138.10, 136.13, 134.09, 133.71 (q, *J* = 33.6 Hz), 130.96, 127.81, 127.30, 125.98 (q, *J* = 3.8 Hz), 122.92, 123.83 (q, *J* = 273.7 Hz), 117.23, 115.05. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)-2-fluorobenzamide (2g)

Purified with PTLC (PE/EA = 5/1, R_f = 0.62) to afford the title compound as a white solid (62.1 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 11.14 (d, *J* = 12.8 Hz, 1H), 8.90 – 8.83 (m, 2H), 8.52 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.21 (td, *J* = 7.9, 1.9 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.60 – 7.49 (m, 2H), 7.33 (td, *J* = 7.5, 1.1 Hz, 1H), 7.24 (dd, *J* = 11.9, 8.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.95. ¹³C NMR (101 MHz, CDCl₃) δ 161.67 (d, *J* = 3.3 Hz), 160.72 (d, *J* = 249.3 Hz), 149.04, 139.57, 135.94, 134.89, 133.86 (d, *J* = 9.2 Hz), 132.19 (d, *J* = 2.0 Hz), 131.00, 127.31, 125.02 (d, *J* = 3.3 Hz), 122.81, 121.91 (d, *J* = 11.5 Hz), 117.81, 116.47 (d, *J* = 24.5 Hz), 114.92. Characterization data were consistent with a previous report. ^[6]

N-(5-bromoquinolin-8-yl)-3-fluorobenzamide (2h)

Purified with PTLC (PE/EA = 5/1, R_f = 0.62) to afford the title compound as a white solid (62.8 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 10.65 (s, 1H), 8.85 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.78 (d, *J* = 8.4 Hz, 1H), 8.52 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.76 (dt, *J* = 9.4, 2.2 Hz, 1H), 7.58 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.52 (td, *J* = 8.0, 5.5 Hz, 1H), 7.33 – 7.24 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.30. ¹³C NMR (101 MHz, CDCl₃) δ 163.93 (d, *J* = 2.6 Hz), 163.04 (d, *J* = 248.0 Hz), 148.92, 139.37, 137.15 (d, *J* = 6.7 Hz), 136.08, 134.22, 130.96, 130.58 (d, *J* = 7.8 Hz), 127.28, 122.87, 122.76 (d, *J* = 3.2 Hz), 119.10 (d, *J* = 21.3 Hz), 117.16, 114.83, 114.77 (d, *J* = 23.1 Hz). Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)-4-fluorobenzamide (2i)

Purified with PTLC (PE/EA = 5/1, R_f = 0.62) to afford the title compound as a white solid (59.3 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 10.63 (s, 1H), 8.85 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.78 (d, *J* = 8.4 Hz, 1H), 8.53 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.12 - 8.02 (m, 2H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.58 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.27 - 7.17 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.22. ¹³C NMR (101 MHz, CDCl₃) δ 165.25 (d, *J* = 253.0 Hz), 164.40, 148.94, 139.56, 136.23, 134.53, 131.21 (d, *J* = 3.2 Hz), 131.13, 129.82 (d, *J* = 8.9 Hz), 127.44, 122.92, 117.18, 116.07 (d, *J* = 22.0 Hz), 114.69. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)-3-chlorobenzamide (2j)

Purified with PTLC (PE/EA = 5/1, R_f = 0.62) to afford the title compound as a white solid (69.5 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 8.82 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.73 (d, *J* = 8.3 Hz, 1H), 8.48 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.00 (t, *J* = 1.8 Hz, 1H), 7.88 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.58 – 7.49 (m, 2H), 7.45 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.86, 148.87, 139.33, 136.61, 136.04, 135.10, 134.15, 132.02, 130.90, 130.10, 127.69, 127.24, 125.22, 122.79, 117.15, 114.79. Characterization data were consistent with a previous report. ^[3]

4-bromo-N-(5-bromoquinolin-8-yl)benzamide (2k)

Purified with PTLC (PE/EA = 5/1, R_f = 0.65) to afford the title compound as a white solid (75.5 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 10.61 (s, 1H), 8.82 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.75 (d, *J* = 8.4 Hz, 1H), 8.50 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.93 – 7.85 (m, 2H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.69 – 7.61 (m, 2H), 7.55 (dd, *J* = 8.5, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.35, 148.91, 139.41, 136.14, 134.30, 133.74, 132.18, 131.03, 128.94, 127.33, 126.94, 122.88, 117.16, 114.78. Characterization data were consistent with a previous report. ^[3]

Purified with PTLC (PE/EA = 5/1, R_f = 0.66) to afford the title compound as a white solid (80.6 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 10.63 (s, 1H), 8.86 – 8.81 (m, 1H), 8.76 (d, *J* = 8.2 Hz, 1H), 8.52 (dd, *J* = 8.6, 1.3 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.57 (dd, *J* = 8.5, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.62, 148.94, 139.45, 138.20, 136.18, 134.36, 134.33, 131.06, 128.92, 127.37, 122.91, 117.20, 114.81, 99.30. Characterization data were consistent with a previous report. ^[7]

methyl 3-((5-bromoquinolin-8-yl)carbamoyl)benzoate (2m)

Purified with PTLC (PE/EA = 5/1, R_f = 0.35) to afford the title compound as a white solid (61.6 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 10.66 (s, 1H), 8.83 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.76 (d, *J* = 8.4 Hz, 1H), 8.67 (t, *J* = 1.8 Hz, 1H), 8.48 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.25 – 8.18 (m, 2H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.54 (dd, *J* = 8.5, 4.2 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.33, 164.37, 148.96, 139.40, 136.05, 135.31, 134.29, 132.91, 131.69, 130.99, 130.96, 129.13, 128.36, 127.27, 122.86, 117.23, 114.81, 52.52. Characterization data were consistent with a previous report. ^[7]

N-(5-bromoquinolin-8-yl)-3-cyanobenzamide (2n)

Purified with PTLC (PE/EA = 5/1, R_f = 0.35) to afford the title compound as a white solid (62.0 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 8.90 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.78 (d, *J* = 8.4 Hz, 1H), 8.56 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.33 (t, *J* = 1.7 Hz, 1H), 8.29 (dt, *J* = 7.9, 1.5 Hz, 1H), 7.91 – 7.82 (m, 2H), 7.69 (t, *J* = 7.8 Hz, 1H), 7.62 (dd, *J* = 8.5, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.15, 149.21, 139.50, 136.39, 136.29, 135.26, 134.02, 131.65, 131.13, 131.10, 130.04, 127.52,

123.13, 118.16, 117.49, 115.40, 113.56. Characterization data were consistent with a previous report.

N-(5-bromoquinolin-8-yl)-2,4,6-trimethylbenzamide (20)

Purified with PTLC (PE/EA = 5/1, R_f = 0.76) to afford the title compound as a white solid (62.0 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.91 (d, *J* = 8.4 Hz, 1H), 8.73 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.50 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.52 (dd, *J* = 8.5, 4.2 Hz, 1H), 6.92 (s, 2H), 2.41 (s, 6H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.13, 148.77, 139.26, 138.95, 135.91, 135.18, 134.54, 134.48, 130.94, 128.53, 127.28, 122.72, 117.19, 114.60, 21.21, 19.47. Characterization data were consistent with a previous report. ^[4]

N-(5-bromoquinolin-8-yl)benzo[d][1,3]dioxole-5-carboxamide (2p)

Purified with PTLC (PE/EA = 5/1, R_f = 0.35) to afford the title compound as a white solid (70.5 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 10.59 (s, 1H), 8.86 (d, *J* = 4.5 Hz, 1H), 8.78 (d, *J* = 8.4 Hz, 1H), 8.54 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.66 – 7.55 (m, 2H), 7.53 (s, 1H), 6.94 (d, *J* = 8.1 Hz, 1H), 6.08 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.76, 151.02, 148.89, 148.41, 139.60, 136.19, 134.76, 131.16, 129.27, 127.43, 122.87, 122.35, 117.07, 114.38, 108.41, 107.99, 102.01. HRMS (ESI-TOF) m/z: calculated for C₁₇H₁₂BrN₂O₃⁺: 371.0026 (M + H)⁺, found: 371.0030.

N-(5-bromoquinolin-8-yl)-1-naphthamide (2q)

Purified with PTLC (PE/EA = 5/1, R_f = 0.63) to afford the title compound as a white solid (70.1 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 1H), 8.95 (d, *J* = 8.4 Hz, 1H), 8.77 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.59 - 8.49 (m, 2H), 8.02 (d, *J* = 8.3 Hz, 1H), 7.96 - 7.87 (m, 3H), 7.64 - 7.52 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 167.81, 148.93, 139.49, 136.14, 134.91, 134.52, 134.06, 131.47,

131.11, 130.47, 128.58, 127.54, 127.45, 126.72, 125.70, 125.63, 124.98, 122.88, 117.36, 114.81. Characterization data were consistent with a previous report.^[4]

N-(5-bromoquinolin-8-yl)furan-2-carboxamide (2r)

Purified with PTLC (PE/EA = 5/1, R_f = 0.60) to afford the title compound as a white solid (60.9 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 10.71 (s, 1H), 8.87 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.74 (d, *J* = 8.3 Hz, 1H), 8.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.62 (s, 1H), 7.56 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.30 (d, *J* = 3.5 Hz, 1H), 6.58 (dd, *J* = 3.5, 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.47, 149.03, 148.32, 144.79, 139.47, 136.09, 134.29, 131.06, 127.43, 122.89, 117.26, 115.54, 114.73, 112.67. Characterization data were consistent with a previous report. ^[5]

N-(5-bromoquinolin-8-yl)thiophene-2-carboxamide (2s)

Purified with PTLC (PE/EA = 5/1, R_f = 0.60) to afford the title compound as a white solid (64.0 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 8.82 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.69 (d, *J* = 8.4 Hz, 1H), 8.49 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.82 – 7.75 (m, 2H), 7.58 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.54 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.17 (dd, *J* = 5.0, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.00, 148.88, 139.86, 139.21, 136.06, 134.32, 131.26, 131.03, 128.68, 128.02, 127.30, 122.84, 117.03, 114.51. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)-2-phenylacetamide (2t)

Purified with PTLC (PE/EA = 5/1, R_f = 0.55) to afford the title compound as a white solid (51.2 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 8.67 – 8.59 (m, 2H), 8.39 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.46 – 7.39 (m, 5H), 7.39 – 7.30 (m, 1H), 3.88 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.50, 148.62, 139.06, 135.75, 134.53, 134.31, 130.80, 129.60, 129.07,

127.47, 127.03, 122.57, 116.79, 114.29, 45.39. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)pivalamide (2u)

Purified with PTLC (PE/EA = 5/1, R_f = 0.75) to afford the title compound as a white solid (49.1 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.81 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.68 (d, *J* = 8.4 Hz, 1H), 8.49 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.54 (dd, *J* = 8.5, 4.2 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.39, 148.81, 139.64, 136.05, 134.80, 131.08, 127.30, 122.70, 116.87, 114.01, 40.52, 27.82. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)cyclopropanecarboxamide (2v)

Purified with PTLC (PE/EA = 5/1, R_f = 0.57) to afford the title compound as a white solid (50.0 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 8.78 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.60 (d, *J* = 8.4 Hz, 1H), 8.46 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.51 (dd, *J* = 8.5, 4.2 Hz, 1H), 1.85 – 1.73 (m, 1H), 1.19 – 1.07 (m, 2H), 1.00 – 0.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.34, 148.61, 138.97, 135.97, 134.71, 131.00, 127.21, 122.67, 116.92, 113.88, 16.39, 8.38. Characterization data were consistent with a previous report. ^[7]

N-(5-bromoquinolin-8-yl)cyclobutanecarboxamide (2w)

Purified with PTLC (PE/EA = 5/1, R_f = 0.66) to afford the title compound as a white solid (53.7 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 8.79 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.69 (d, *J* = 8.4 Hz, 1H), 8.49 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.53 (dd, *J* = 8.6, 4.2 Hz, 1H), 3.38 (p, *J* = 8.5 Hz, 1H), 2.55 – 2.41 (m, 2H), 2.39 – 2.26 (m, 2H), 2.14 – 1.89 (m, 2H). ¹³C NMR (101

MHz, CDCl₃) δ 173.84, 148.69, 139.22, 136.04, 134.64, 131.06, 127.27, 122.70, 116.96, 114.03, 41.50, 25.59, 18.28. Characterization data were consistent with a previous report. ^[10]

N-(5-bromoquinolin-8-yl)cyclohexanecarboxamide (2x)

Purified with PTLC (PE/EA = 5/1, R_f = 0.68) to afford the title compound as a white solid (58.0 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.81 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.68 (d, *J* = 8.4 Hz, 1H), 8.50 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.54 (dd, *J* = 8.5, 4.2 Hz, 1H), 2.46 (tt, *J* = 11.7, 3.5 Hz, 1H), 2.12 – 2.03 (m, 2H), 1.92 – 1.84 (m, 2H), 1.77 – 1.69 (m, 1H), 1.69 – 1.56 (m, 2H), 1.46 – 1.23 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.97, 148.69, 139.34, 136.09, 134.73, 131.08, 127.30, 122.70, 117.06, 114.00, 47.00, 29.84, 25.89, 25.86. Characterization data were consistent with a previous report. ^[3]

N-(5-bromoquinolin-8-yl)adamantane-1-carboxamide (2y)

Purified with PTLC (PE/EA = 5/1, R_f = 0.84) to afford the title compound as a white solid (69.3 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 8.83 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.70 (d, *J* = 8.4 Hz, 1H), 8.49 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.54 (dd, *J* = 8.5, 4.2 Hz, 1H), 2.17 – 2.06 (m, 9H), 1.80 (t, *J* = 3.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 176.87, 148.77, 139.68, 136.02, 134.77, 131.08, 127.28, 122.65, 117.00, 113.93, 42.42, 39.44, 36.64, 28.34. Characterization data were consistent with a previous report. ^[7]

N-(5-bromoquinolin-8-yl)-4-methylbenzenesulfonamide (2z)

Purified with PTLC (PE/EA = 5/1, R_f = 0.37) to afford the title compound as a white solid (54.3 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.76 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.42 (dd, *J* = 8.5,

1.6 Hz, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 2.1 Hz, 2H), 7.51 (dd, J = 8.5, 4.2 Hz, 1H), 7.16 (d, J = 8.1 Hz, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.31, 144.11, 139.23, 136.38, 136.00, 133.98, 130.47, 129.75, 127.61, 127.35, 123.13, 115.38, 115.00, 21.58. Characterization data were consistent with a previous report. ^[8]

N-(5-bromo-6-methoxyquinolin-8-yl)benzamide (2aa)

Purified with PTLC (PE/EA = 5/1, R_f = 0.50) to afford the title compound as a white solid (67.6 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 8.91 (s, 1H), 8.64 (dd, *J* = 4.2, 1.5 Hz, 1H), 8.45 (dd, *J* = 8.6, 1.5 Hz, 1H), 8.08 – 8.02 (m, 2H), 7.62 – 7.51 (m, 3H), 7.46 (dd, *J* = 8.6, 4.2 Hz, 1H), 4.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.53, 154.63, 146.32, 135.43, 134.99, 134.80, 134.72, 132.22, 128.99, 128.13, 127.33, 123.18, 104.52, 99.81, 57.09. Characterization data were consistent with a previous report. ^[3]

N-(5,7-dibromoquinolin-8-yl)benzamide (**3a**)

Purified with PTLC (PE/EA = 5/1, R_f = 0.26) to afford the title compound as a white solid (70.0 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 9.25 (s, 1H), 8.81 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.47 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.10 - 8.04 (m, 3H), 7.62 - 7.46 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 165.44, 150.72, 143.95, 136.12, 134.54, 134.30, 134.17, 132.40, 128.87, 128.16, 127.00, 122.94, 120.09, 118.93. Characterization data were consistent with a previous report. ^[9]

N-(5,7-dibromoquinolin-8-yl)-4-methylbenzamide (3c)

Purified with PTLC (PE/EA = 5/1, R_f = 0.28) to afford the title compound as a white solid (71.4 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 8.80 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.45 (dd, *J* = 8.5,

1.6 Hz, 1H), 8.07 (s, 1H), 7.96 (d, J = 8.3 Hz, 2H), 7.51 (dd, J = 8.5, 4.2 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.42, 150.61, 143.92, 142.90, 136.05, 134.46, 134.38, 131.23, 129.44, 128.14, 126.92, 122.86, 120.18, 118.79, 21.68. Characterization data were consistent with a previous report. ^[9]

N-(5,7-dibromoquinolin-8-yl)-4-methoxybenzamide (3d)

Purified with PTLC (PE/EA = 5/1, R_f = 0.12) to afford the title compound as a white solid (71.5 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 8.80 (dd, *J* = 4.2, 1.5 Hz, 1H), 8.45 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.07 (s, 1H), 8.05 – 8.00 (m, 2H), 7.52 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.00 – 6.92 (m, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.05, 162.93, 150.56, 143.92, 136.11, 134.48, 130.07, 126.95, 126.33, 122.86, 120.18, 118.69, 114.00, 55.60. Characterization data were consistent with a previous report. ^[9]

4-(tert-butyl)-N-(5,7-dibromoquinolin-8-yl)benzamide (3e)

Purified with PTLC (PE/EA = 5/1, R_f = 0.28) to afford the title compound as a white solid (73.9 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.82 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.49 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.10 (s, 1H), 8.06 – 7.99 (m, 2H), 7.59 – 7.50 (m, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.29, 156.05, 150.64, 143.97, 136.14, 134.59, 134.46, 131.29, 128.06, 127.02, 125.85, 122.92, 120.03, 118.74, 35.21, 31.32. Characterization data were consistent with a previous report. ^[9]

N-(5,7-dibromoquinolin-8-yl)-4-(trifluoromethyl)benzamide (3f)

Purified with PTLC (PE/EA = 5/1, $R_f = 0.29$) to afford the title compound as a white solid (80.6 mg,

85%). ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.82 (dd, J = 4.2, 1.6 Hz, 1H), 8.50 (dd, J = 8.5, 1.6 Hz, 1H), 8.16 (d, J = 8.0 Hz, 2H), 8.10 (s, 1H), 7.72 (d, J = 8.1 Hz, 2H), 7.56 (dd, J = 8.5, 4.3 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.00. ¹³C NMR (101 MHz, CDCl₃) δ 164.26, 150.79, 144.02, 137.23, 136.38, 134.51, 133.94 (q, J = 32.3 Hz), 133.75, 128.55, 127.15, 125.87 (q, J = 3.8 Hz), 123.79 (q, J = 273.7 Hz), 123.08, 120.91, 119.68. Characterization data were consistent with a previous report. ^[9]

N-(5,7-dibromoquinolin-8-yl)-4-fluorobenzamide (3i)

Purified with PTLC (PE/EA = 5/1, R_f = 0.25) to afford the title compound as a white solid (67.1 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.84 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.50 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.13 – 8.05 (m, 3H), 7.56 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.23 – 7.14 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.81. ¹³C NMR (101 MHz, CDCl₃) δ 165.43 (d, *J* = 253.1 Hz), 164.48, 150.74, 143.93, 136.23, 134.55, 134.16, 130.60 (d, *J* = 9.2 Hz), 130.35 (d, *J* = 3.0 Hz), 127.06, 122.99, 120.24, 119.11, 115.95 (d, *J* = 22.0 Hz). Characterization data were consistent with a previous report. ^[9]

3-chloro-N-(5,7-dibromoquinolin-8-yl)benzamide (3j)

Purified with PTLC (PE/EA = 5/1, R_f = 0.25) to afford the title compound as a white solid (68.8 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 9.09 (s, 1H), 8.85 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.11 (s, 1H), 8.05 (t, *J* = 1.9 Hz, 1H), 7.96 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.46 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.19, 150.83, 143.93, 136.23, 135.93, 135.12, 134.53, 133.91, 132.43, 130.19, 128.45, 127.08, 126.18, 123.04, 120.34, 119.34. Characterization data were consistent with a previous report. ^[9]

methyl 3-((5,7-dibromoquinolin-8-yl)carbamoyl)benzoate (3m)

Purified with PTLC (PE/EA = 5/1, R_f = 0.10) to afford the title compound as a white solid (64.0 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 9.29 (s, 1H), 8.84 (dd, *J* = 4.3, 1.6 Hz, 1H), 8.71 (t, *J* = 1.7 Hz, 1H), 8.50 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.30 – 8.21 (m, 2H), 8.10 (s, 1H), 7.63 – 7.52 (m, 2H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.41, 164.53, 150.84, 143.99, 136.21, 134.54, 134.53, 134.02, 133.30, 132.74, 130.91, 129.17, 128.97, 127.08, 123.02, 120.40, 119.31, 52.54. HRMS (ESI-TOF) m/z: calculated for C₁₈H₁₃Br₂N₂O₃⁺: 462.9287 (M + H)⁺, found: 462.9295.

3-cyano-N-(5,7-dibromoquinolin-8-yl)benzamide (3n)

Purified with PTLC (PE/EA = 5/1, R_f = 0.10) to afford the title compound as a white solid (60.3 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 8.83 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.50 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.33 (t, *J* = 1.7 Hz, 1H), 8.28 (dt, *J* = 8.0, 1.5 Hz, 1H), 8.08 (s, 1H), 7.85 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.57 (dd, *J* = 8.5, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.45, 150.93, 143.86, 136.32, 135.45, 135.43, 134.47, 133.52, 132.24, 131.85, 129.88, 127.10, 123.14, 120.51, 119.74, 118.03, 113.39. HRMS (ESI-TOF) m/z: calculated for C₁₇H₁₀Br₂N₃O⁺: 429.9185 (M + H)⁺, found: 429.9181.

5. Copies of NMR spectra

¹H NMR for *N*-(5-bromoquinolin-8-yl)benzamide (2a)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)benzamide (2a)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-2-methylbenzamide (2b)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-4-methylbenzamide (2c)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-4-methylbenzamide (2c)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-4-methoxybenzamide (2d)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-4-(tert-butyl)benzamide (2e)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-4-(tert-butyl)benzamide (2e)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-4-(trifluoromethyl)benzamide (2f)

¹⁹F NMR for N-(5-bromoquinolin-8-yl)-4-(trifluoromethyl)benzamide (2f)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR for N-(5-bromoquinolin-8-yl)-4-(trifluoromethyl)benzamide (2f)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-2-fluorobenzamide (2g)

¹⁹F NMR for *N*-(5-bromoquinolin-8-yl)-2-fluorobenzamide (2g)

 $^{13}\mathrm{C}$ NMR for N-(5-bromoquinolin-8-yl)-2-fluorobenzamide (2g)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-3-fluorobenzamide (2h)

¹⁹F NMR for *N*-(5-bromoquinolin-8-yl)-3-fluorobenzamide (2h)

^{10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210}

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-3-fluorobenzamide (2h)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-4-fluorobenzamide (2i)

¹⁹F NMR for *N*-(5-bromoquinolin-8-yl)-4-fluorobenzamide (2i)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-4-fluorobenzamide (2i)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-3-chlorobenzamide (2j)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-3-chlorobenzamide (2j)

¹H NMR for 4-bromo-*N*-(5-bromoquinolin-8-yl)benzamide (2k)

¹³C NMR for 4-bromo-*N*-(5-bromoquinolin-8-yl)benzamide (2k)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-4-iodobenzamide (2l)

¹³C NMR for N-(5-bromoquinolin-8-yl)-4-iodobenzamide (2l)

¹H NMR for methyl 3-((5-bromoquinolin-8-yl)carbamoyl)benzoate (2m)

¹³C NMR for methyl 3-((5-bromoquinolin-8-yl)carbamoyl)benzoate (2m)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-3-cyanobenzamide (2n)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-3-cyanobenzamide (2n)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-2,4,6-trimethylbenzamide (20)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹H NMR for *N*-(5-bromoquinolin-8-yl)benzo[d][1,3]dioxole-5-carboxamide (2p)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)benzo[d][1,3]dioxole-5-carboxamide (2p)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹**H NMR** for *N*-(5-bromoquinolin-8-yl)-1-naphthamide (**2q**)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-1-naphthamide (2q)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)furan-2-carboxamide (2r)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹³C NMR for *N*-(5-bromoquinolin-8-yl)thiophene-2-carboxamide (2s)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-2-phenylacetamide (2t)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)-2-phenylacetamide (2t)

¹H NMR for *N*-(5-bromoquinolin-8-yl)pivalamide (2u)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)pivalamide (2u)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)cyclopropanecarboxamide (2v)

¹H NMR for *N*-(5-bromoquinolin-8-yl)cyclobutanecarboxamide (2w)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)cyclobutanecarboxamide (2w)

¹H NMR for *N*-(5-bromoquinolin-8-yl)cyclohexanecarboxamide (2x)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)cyclohexanecarboxamide (2x)

¹H NMR for *N*-(5-bromoquinolin-8-yl)adamantane-1-carboxamide (2y)

¹³C NMR for *N*-(5-bromoquinolin-8-yl)adamantane-1-carboxamide (2y)

¹H NMR for *N*-(5-bromoquinolin-8-yl)-4-methylbenzenesulfonamide (2z)

4.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹³C NMR for N-(5-bromoquinolin-8-yl)-4-methylbenzenesulfonamide (2z)

¹H NMR for *N*-(5-bromo-6-methoxyquinolin-8-yl)benzamide (2aa)

¹³C NMR for *N*-(5-bromo-6-methoxyquinolin-8-yl)benzamide (2aa)

¹H NMR for *N*-(5,7-dibromoquinolin-8-yl)benzamide (3a)

¹³C NMR for *N*-(5,7-dibromoquinolin-8-yl)benzamide (3a)

¹H NMR for *N*-(5,7-dibromoquinolin-8-yl)-4-methylbenzamide (3c)

¹³C NMR for *N*-(5,7-dibromoquinolin-8-yl)-4-methylbenzamide (3c)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR for *N*-(5,7-dibromoquinolin-8-yl)-4-methoxybenzamide (3d)

¹³C NMR for *N*-(5,7-dibromoquinolin-8-yl)-4-methoxybenzamide (3d)

¹³C NMR for 4-(tert-butyl)-*N*-(5,7-dibromoquinolin-8-yl)benzamide (3e)

¹⁹F NMR for *N*-(5,7-dibromoquinolin-8-yl)-4-(trifluoromethyl)benzamide (3f)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR for *N*-(5,7-dibromoquinolin-8-yl)-4-(trifluoromethyl)benzamide (3f)

¹H NMR for *N*-(5,7-dibromoquinolin-8-yl)-4-fluorobenzamide (3i)

¹⁹F NMR for *N*-(5,7-dibromoquinolin-8-yl)-4-fluorobenzamide (3i)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹³C NMR for 3-chloro-*N*-(5,7-dibromoquinolin-8-yl)benzamide (3j)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹H NMR for methyl 3-((5,7-dibromoquinolin-8-yl)carbamoyl)benzoate (3m)

¹³C NMR for methyl 3-((5,7-dibromoquinolin-8-yl)carbamoyl)benzoate (3m)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹H NMR for 3-cyano-*N*-(5,7-dibromoquinolin-8-yl)benzamide (**3n**)

¹³C NMR for 3-cyano-*N*-(5,7-dibromoquinolin-8-yl)benzamide (**3n**)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

¹H-¹H COSY for *N*-(5-bromoquinolin-8-yl)benzamide (2a)

¹H-¹H COSY for *N*-(5,7-dibromoquinolin-8-yl)benzamide (3a)

6. References

- [1] L. Zhu, R. Qiu, X. Cao, S. Xiao, X. Xu, C.-T. Au and S.-F. Yin, Org. Lett., 2015, 17, 5528– 5531.
- [2] Y. Kuninobu, M. Nishi and M. Kanai, Org. Biomol. Chem., 2016, 14, 8092-8100.
- [3] H. Qiao, S. Sun, F. Yang, Y. Zhu, J. Kang, Y. Wu and Y. Wu, Adv. Synth. Catal., 2017, 359, 1976–1980.
- [4] X. Yang, Q.-L. Yang, X.-Y. Wang, H.-H. Xu, T.-S. Mei, Y. Huang and P. Fang, J. Org. Chem., 2020, 85, 3497–3507.
- [5] J.-Y. Jiao, Y.-J. Mao, A.-W. Feng, X.-F. Li, M.-T. Li and X.-H. Zhang, *Tetrahedron*, 2017, 73, 1482–1488.
- [6] Y. Guan, K. Wang, J. Shen, J. Xu, C. Shen and P. Zhang, Catal. Lett., 2017, 147, 1574–1580.
- [7] C. Shao, T. Xu, C. Chen, Q. Yang, C. Tang, P. Chen, M. Lu, Z. Hu, H. Hu and T. Zhang, *RSC Adv.*, 2023, **13**, 6993–6999.
- [8] Q. Shu, Y. Li, T. Liu, S. Zhang, L. Jiang, K. Jin, R. Zhang and C. Duan, *Tetrahedron*, 2019, 75, 3636–3642.
- [9] J. Hou, K. Wang, C. Zhang, T. Wei, R. Bai and Y. Xie, *Eur. J. Org. Chem.*, 2020, 2020, 6382–6386.
- [10] C. Shao, C. Ma, L. Li, J. Liu, Y. Shen, C. Chen, Q. Yang, T. Xu, Z. Hu, Y. Kan and T. Zhang, *Beilstein J. Org. Chem.*, 2024, 20, 155–161.