Supporting information

Facile and cost effective NiO/MgO-SiO₂ composites for efficient oxygen evolution reaction and asymmetric supercapacitor systems

Gulzar Ali¹, Aneela Tahira², Asma Hayat¹, Mukhtiar Ali Bozdar⁸, Muhammad Ali Bhatti³, Elmuez

Dawi⁴, Ayman Nafady⁵, Matteo Tonezzer⁶, Ghulam Mustafa Thebo⁷, Muhammad Kashif Samoon⁷, Zafar Hussain Ibupoto^{*1}

¹Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan. gulzaralichemist@gmail.com; asmabaloch141617@gmail.com; zaffar.ibhupoto@usindh.edu.pk

²Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs, Sindh, Pakistan. <u>aneela.tahira@salu.edu.pk</u>

³Centre for Environmental Sciences, University of Sindh Jamshoro, 76080, Sindh, Pakistan. <u>mali.bhatti@usindh.edu.pk</u>

⁴College of Humanities and Sciences, Department of Mathematics and Sciences, Ajman University, P.O. Box 346, Ajman, UAE. <u>e.dawi@ajman.ac.ae</u>

⁵Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia. <u>anafady@ksu.edu.sa</u>; <u>ralshammari@ksu.edu.sa</u>

⁶Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy. <u>matteo.tonezzer@cnr.it</u>

⁷Centre for Pure and Applied Geology, University of Sindh Jamshoro, Jamshoro, Sindh, 76080, Pakistan. <u>kashif.samoon@usindh.edu.pk</u> ⁸Department of Energy and Environment, Sindh Agriculture University Tando Jam, Sindh, Pakistan.

*Corresponding author(s): Zafar Hussain Ibupoto, PhD, Email: <u>zaffar.ibhupoto@usindh.edu.pk</u>

Figure (S1): Non Faradic CV curves in 1M KOH aqueous solution using different scan rates (a) pure NiO, (b) MgO-SiO₂ composites (sample1), (c,d) NiO/MgO-SiO₂ composites (sample 2and sample 3) using different scan rates in electrolytic solution of 3M KOH for the illustration of capacitance performance of each electrode material, (f) Corresponding ECSA analysis.

Figure (S2): Various CV curves of AC in 3M KOH electrolyte with increasing sweeping rate.

Table (S1). OER comparative study of NiO/MgO-SiO₂ composite (sample 3).

Catalyst	η for OER (mV@mA cm ⁻²)	Electrolyte	References
CuCo ₂ S ₄ /NiCo ₂ S ₄	271 @ 10	1.0 M KOH	[1]
Mo-Ni-Se@NF	397@ 100		[2]
NiCoFe–S/Ti	230@ 10	1.0 M KOH	[3]
NiFe/(Ni,Fe) ₃ S ₂	224@10 303@400	1.0 M KOH	[4]
NiCoP/NF	280@10	1.0 M KOH	[5]

Co ₃ O ₄ @CoMoO ₄ /NF	318@20	1.0 M KOH	[6]
Co ₃ O ₄ /MgO–SiO ₂	340 @10	1.0 M KOH	[7]
Co ₃ O ₄ –MgO	247@10	1.0 M KOH	[8]
MgO/Co3O4 (C-2)	270@10	1.0 M KOH	[9]
ZnO-Cr-Mg:5%	345 @10	1.0 M KOH	[10]
Sample-3	230	1.0 M KOH	This Work

[1] L. Ma, J. Liang, T. Chen, Y. Liu, S. Li and G. Fang, Electrochim Acta. 2019, 326, 135002.

[2] H. Yang, Y. Huang, W.Y. Teoh, L. Jiang, W. Chen, L. Zhang and J. Yan, Electrochim Acta. 2020, 349, 136336.

[3] D. Li, Z. Liu, J. Wang, B. Liu, Y. Qin, W. Yang and J. Liu, Electrochim Acta. 2020, **340**, 135957.

[4] C.T. Hsieh, X.F. Chuah, C.L. Huang, H.W. Lin, Y.A. Chen and S.Y. Lu, Small Methods. 2019,3, 1900234

[5] H. Liang, A.N. Gandi, A.H. Anjum, X. Wang, U. Schwingenschlögl and H.N. Alshareef, Nano Lett. 2016, 16, 7718-25.

[6] L. Zhang, T. Mi, M.A. Ziaee, L. Liang and R. Wang, J Mater Chem A. 2018, 6, 1639-47.

[7]. G. Ali, A. Tahira, A. Hayat, M.A. Bhatti, A.A. Shah, S.N.U.S. Bukhari, E. Dawi, A. Nafady,
R.H. Alshammari, M. Tonezzer, M.K. Samoon, Z.H. Ibupoto. 2024. *RSC advances*, 2024, *14*, 38009-38021.

[8]. A.J. Laghari, U. Aftab, A. Tahira, A.A. Shah, A. Gradone, M.Y. Solangi, A.H. Samo, M.I. Abro, M. wasim Akhtar, R. Mazzaro, V. Morandi, A. M. Alotaibi[,] A. Nafady, A. Infantes-Molina, Z. H. Ibupoto, *International Journal of Hydrogen Energy*, (2023), *48*, 12672-12682.

[9]. A.A. Shah, M. Kumar, U. Aftab and M.I. Abro, *Chemical Engineering & Technology*, 2023, *46*, 459-465.

[10]. B. Naresh, T.V.M. Sreekanth, K. Prasad, K. Yoo and J. Kim, *Surfaces and Interfaces*, 2025, 56, 105437.

 Table (S2). Calculated Supercapacitor parameters of synthesized samples

Sample	Current Density (Ag ⁻¹)	Specific Capacitance (Fg ⁻¹)	Columbic Efficiency (%)	Capacitance Retention (%)	
Pure NiO	1.5	433.50			
	2.5	161.76			
	3.5	123.53]		
	4.5	88.62			
	5	70.33			
	1.5	414.71			
	2.5	140.66			
Sample-1	3.5	97.57]		
	4.5	82.86			
	5	66.50			
	1.5	636.83		101.5	
	2.5	258.95			
Sample-2	3.5	196.04	97.6		
	4.5	92.07			
	5	72.89			
Sample-3	1.5	1248.72			
	2.5	1008.31			
	3.5	758.18]		
	4.5	253.20]		
	5	148.34]		

Table (S3): Highlight points of ASC device.

Sample	Current Density (Ag ⁻¹)	Specific Capacitance (Fg ⁻¹)	Energy Density (Wh kg ⁻¹)	Power Density (W kg ⁻¹)	Columbic Efficiency (%)	Capacitance Retention (%)
	1.5	344.12	7.31	293.25	84.6	88.9
	2.5	275.58	5.85	488.75	(40000	(40000
Sample-2	3.5	78.77	1.67	684.25	Cycles)	Cycles)
	4.5	47.19	1.00	879.75]	
	5	20.46	0.43	977.50		

Active material	Specific capacitance	Current density	Electrolyte	Ref.
MnO ₂ /MnCo ₂ O ₄	497 F g ⁻¹	0.5 A g ⁻¹	2 M KOH	1
CoMoO ₄ /NiMoO ₄	751 F g ⁻¹	1.0 A g ⁻¹	3 М КОН	2
Co ₃ O ₄ /NiO/MnO ₂	549 F g ⁻¹	0.5 A g ⁻¹	6 M KOH	3
CoMn ₂ O ₄	$472.6 \mathrm{F g}^{-1}$	1.0 A g ⁻¹	2 M KOH	4
Co ₃ O ₄ @MnO ₂	1209.4 F g ⁻¹	1.0 A g ⁻¹	2 M KC1	5
CoMoO ₄ @C@MnO ₂	1824 F g ⁻¹	3.0 A g ⁻¹	3 M KOH	6
CuCo ₂ O ₄ @NiMoO ₄	2207 F g ⁻¹	1.25 A g ⁻¹	6 M KOH	7
CdMn ₂ O ₄ @CdMn ₂ O ₄	3885 F g ⁻¹	1.5 A g ⁻¹	2 M KOH	8
Co(OH) ₂ @FeCo ₂ O ₄	1173.43 F g ⁻¹	$1.0 \mathrm{~A~g^{-1}}$	6 M KOH	9
Chitosan-modified	$56.32 \ \mathrm{Fg}^{-1}$	$0.5 \ { m Ag}^{-1}$	3 M KOH	10
MgO				
NiCo@Si ₁ -C	518.1 F g ⁻¹	$0.5 \mathrm{~A~g^{-1}}$	3 M KOH	11
RH-SiO ₂	102 F/g	0.5 A/g	2 M KOH	12
SiO ₂ -NiFe ₂ O ₄	800.8 F g ⁻¹	1 A g ⁻¹	3 M KOH	13
rGO/n-SiO2	166.9 F g	0.1 A g-1	$1 M H_2 SO_4$	14
Sample-3	1248.72 F g ⁻¹	1.5 A g ⁻¹	3 М КОН	Present work

Table (S4). Comparison of the specific capacitance of $NiO/MgO-SiO_2$ composite (sample 3) with the reported data.

[1] Y. Zhang, H. Xuan, Y. Xu, B. Guo, H. Li, L. Kang, P. Han, D. Wang and Y. Du, Electrochim. Acta, 2016, 206, 278-290.

- [2] Q. Yang and S.Y. Lin, RSC Adv. 2016, 6, 10520–10526.
- [3] L. Su, Y. Wang, Y. Sha and M. Hao, J. Alloys Compd. 2016, 656, 585–589.
- [4] J. Bhagwan, B.N.V. Krishna and J.S. Yu, Int. J. Energy Res. 2021, 45, 19413–19422.

[5] K. Wang, Z. Shi, Y. Wang, Z. Ye, H. Xia, G. Liu and G. Qiao, J. Alloys Compd. 2015, **624**, 85–93.

[6] X. Cui, X. Chen, W. Zhang, X. Yan, M. Wang, J. Lian, Z. Zheng and H. Deng, J. Alloys Compd. 2017, **695**, 2109–2116.

[7] J. Lin, H. Liang, H. Jia, S. Chen, Y. Cai, J. Qi, J. Cao and W. Fei, J. Feng, Inorg. Chem. Front. 2017, 4, 1575–1581. [8] H.J. Kim, C.W. Kim, S.Y. Kim, A.E. Reddy and C.V.V.M. Gopi, Mater. Lett. 2018, 210, 143–147.

[9] Z. Wang, P. Hong, S. Peng, T. Zou, Y. Yang, X. Xing, Z. Wang, R. Zhao, Z. Yan and Y. Wang, Electrochim. Acta. 2019, **299**, 312–319.

[10]. S. Sharmila, A. Saranya, S. Rama, M. Lipna, M. Shandhiya, S. Sanjana and A. Murugan, *Ionics*, 2025, 1-20.

[11]. J. Jia, Z. Qin, X. Yang, X. Peng, G. Ren and Z. Lin, *Diamond and Related Materials*, 2023, *134*, p109786.

[12]. S.R. Priyan, G.S. Kumar, K. Lalithambigai, M. Shkir, A. Khan, R. Rajendran and G. Arumugam, *Journal of Alloys and Compounds*, 2024, **976**, 173206.

[13]. I.F.F. Christopher, A. Karuppiah, V.G. Thanapalan, A.V. Selestin and T. Suyambu, *Silicon*, 2024, *16*, 157-176.

[14]. D.D. Ristiana, M. Handayani, M.A. Anggoro, B.W. Widagdo, E. Angelina, H. Sutanto, I. Anshori, E. Febriana, F. Firdiyono, E. Sulistiyono and A.B. Prasetyo, *South African Journal of Chemical Engineering*, 2024, *48*, 130-137.