Carbon dot-mediated synthesis of NaYF₄:Yb³⁺,Er³⁺@carbon dot

composites with enhanced upconversion luminescence for

temperature sensing

(supporting information)

Linlin Zou¹, Ting Yu^{1,2*}, Haoyang Sheng¹, Yeqing Chen^{1*}, Qingguang Zeng^{1,2*}

¹School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P. R. China

²Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, 529020, P.R. China

*Author to whom correspondence should be addressed; electronic mail:

yuting1009@163.com, yqchenwyu@126.com, zengqg@mail.ustc.edu.cn

Figure S1. a) TEM and b) HRTEM images of CDs and c) α -NaYF₄:18%Yb³⁺,2%Er³⁺ nanoparticles. The inset showing the size distribution of α -NaYF₄:18%Yb³⁺,2%Er³⁺

nanoparticles.

Figure S2. UC emission spectra of β -NaYF₄:18%Yb³⁺,2%Er³⁺@CDs composites (obtained at

200 °C for 8 h) under various excitation power.

Figure S3. (a) The normalized UC emission spectra as a function of temperature for α -NaYF₄:18%Yb³⁺,2%Er³⁺ nanoparticles; (b-d) the parameters of *FIR*, S_a , and S_r as functions of temperature.

For the β -NYF@6CDs composite, the *FIR*, S_a , and S_r versus temperature are obtained through fitting as follows:

$$FIR = 0.12 \exp(959.55 / T) \tag{S1}$$

$$S_a = \frac{115.15}{T^2} \exp(959.55/T)$$
(S2)

$$S_r = \frac{959.55}{T^2}$$
(S3)

For the α -NaYF₄:18%Yb³⁺,2%Er³⁺ NPs, the *FIR*, S_a , and S_r versus temperature are obtained through fitting as follows:

$$FIR = 0.25 \exp(743.03 / T) \tag{S4}$$

$$S_a = \frac{185.76}{T^2} \exp(959.55/T)$$
(S5)

$$S_r = \frac{743.03}{T^2}$$
(S6)

Temperature uncertainty (δT) is a critical parameter for optical temperature sensing. The expression can be defined as:

$$\delta T = \frac{1}{S_r} \frac{\delta FIR}{FIR} \tag{S7}$$

where δFIR is the uncertainty of the determined *FIR* value. It can be computed by the following formula:

$$\frac{\delta FIR}{FIR} = \sqrt{\left(\frac{\delta I_H}{I_H}\right)^2 + \left(\frac{\delta I_S}{I_S}\right)^2} \tag{S8}$$

where δI_H and δI_S are the errors in the integrated area of the I_H and I_S transitions estimated dividing the readout fluctuations of the baseline by the maximum intensity value. The resulting signal-to-noise value is $\delta FIR/FIR=0.41\%$. Fig. S4 displays the values of δT calculated by Eq. S1 with respect to temperature from 298 K to 473 K.

Figure S4. Corresponding temperature uncertainties of the β -NYF@6CDs composite and α -

 $NaYF_4{:}18\%Yb^{3+}{,}2\%Er^{3+}\ nanoparticles.$