Supporting Information

Simple synthesis of 2-(phenylsulphinyl)benzo[d]oxazole derivatives via a silver-catalysed tandem condensation reaction

Runsheng Xu,^{*a} Qi Hu,a Jiahao Hu,^a Guangqu Liu^a and Jin Xu^{*a} College of Life and Health, Huzhou College, Huzhou Zhejiang 211300 Email: xurunsheng@zjhzu.edu.cn, xujin@zjhzu.edu.cn

Contents

General Information	S2
Procedure for optimization of the reaction condition	S2
General procedures for preparation of 4, 7 and 9	S4
Analytical Data	S6
Spectrum	S15

General Information

All reagents used in experiment were obtained from commercial sources and used without further purification. Solvents for chromatography were technical grade and distilled prior for using. Solvent mixtures were understood as volume/volume. Chemical yields refer to pure isolated substances. Catalysts were purchased for analytical reagent. Thin layer chromatography employed glass 0.25 mm silica gel plates with F_{254} indicator, visualized by irradiation with UV light. Reactions were carried out under argon in flame-dried or oven-dried glassware unless otherwise specified. Dichloroethane, dichloromethane, acetonitrile, toluene (after distilling from sodium), dimethyl sulfoxide, and tetrahydrofuran (after distilling from sodium) were dried from 4Å molecular sieves. Synthesis-grade solvents were used after as purchased. Chromatographic purification of products was accomplished using silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis, Merck pre-coated TLC plates (silica gel 60 GF₂₅₄, 0.25 mm) were employed, using UV light as the visualizing agent. The compounds were isolated using Biotage flash column chromatography.

The NMR spectra were recorded at 500 MHz for ¹H, 125 MHz for ¹³C, and 470 MHz for ¹⁹F spectra. The NMRs were recorded in the DMSO- d_6 as solvent. The chemical shift (δ) for ¹H NMR and ¹³C NMR are given in ppm relative to residual signals of the solvents. Coupling constants are given in Hertz (Hz). The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; sept, septet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the High-Resolution Mass Spectrometry using electrospray ionization time-of-flight (ESI-TOF) reflection experiments.

Procedure for optimization of the reaction condition

At the beginning, our investigated with the model reaction of 2-aminophenol 1, formaldehyde 2 and benzenethiol 3a to study reaction conditions including the optimization of catalysts, ligands, bases and solvents. As shown in Scheme 1, at the outset, silver salts were used as catalyst (entries 1-4), no desired product was gained when the reaction conducted in the presence of Ag₂O as the catalyst in DMSO (entry

1). AgOAc was proved to be the best efficient catalyst species in this reaction (entry 4). The examination of all available ligands including L1-L6 (entries 4-9), L4 was proved to be the best efficient catalyst species for this transformation (entry 7). Gratifyingly, the yield of product 4a was obtained in 12% when the catalyst changed to AgNO₃ (entries 2). By screening different bases for C(sp²)-sulfoxide bonds formation reaction, Cs₂CO₃ was demonstrated to be more suitable base than others such as NaOH, Na₂CO₃ and K₂CO₃ (entries 11-14). The experiment result shows proper solvent was critical for this reaction, when the reactions were conducted in apolar solvent such as CH₃CN, or weak coordination solvent DMF, trace product was detected (entry 14, 15). In addition, replacing DMF with DMSO, gave a better yield, this control experiment suggested that the DMSO was critical for successful for this transformation. Reducing yield was obtained in the reaction operated in 100°C and 120 °C. Remarkably, no desired product was obtained under O_2 atmosphere (entry 15), indicating that N_2 was essential for present reaction. Finally determine the optimal reaction conditions were AgOAc as the catalyst, L4 as the best ligand, Cs₂CO₃ as the base, the ratio of 1:2:3a 1:1.5:1, under N₂, in 110 °C, preparation for 24 hours.

Scheme 1. Optimization of the reaction conditions.^a

C	$\mathbf{L}_{OH}^{NH_2}$	+ HCHO	+ HS	Ag salt, Base, S	Ligand Solvent	
1	I	2	3a			4a 🛀
	Entry	Ligand	Ag salt	Base	Ratio	Yield (%) ^b
					1:2:3a	
	1	L1	Ag ₂ O	Cs_2CO_3	1:1:1	0
	2	L1	AgNO ₃	Cs ₂ CO ₃	1:1:1	14
	3	L1	AgBF ₄	Cs ₂ CO ₃	1:1:1	17
	4	L1	AgOAc	Cs ₂ CO ₃	1:1:1	44
	5	L2	AgOAc	Cs ₂ CO ₃	1:1:1	31
	6	L3	AgOAc	Cs ₂ CO ₃	1:1:1	38
	7	L4	AgOAc	Cs_2CO_3	1:1:1	73

^{*a*} Unless otherwise noted, reactions conditions were **1** (10 mmol), **2** (10 mmol), **3a** (10 mmol), Ag salt (10 mol%), ligand (10 mol%), base (2 equiv), solvent (15 mL), 110 °C for 24 h, under N₂. ^{*b*} Isolated yield. ^{*d*} 100 °C. ^{*c*} 120 °C. ^{*f*} in CH₃CN. ^{*g*} In DMF. ^{*h*}Under O₂.

General procedures for preparation of 4, 7 and 9

A mixture of 2-aminophenol 1 (1.09 g, 10 mmol), formaldehyde 2 (0.45 g, 15 mmol) and benzenethiol **3a** (2.43 g, 10 mmol), AgOAc (167 mg, 10 mol%), L4 (22 mg, 10 mol%), Cs₂CO₃ (6.52 g, 2 equiv), DMSO (15 mL). The tube was evacuated and refilled with N₂ three times. The reaction is carried out under nitrogen protection. The reaction mixture was stirred at 110 °C for 24 h. After it was cooled, the reaction mixture was diluted with 20 mL of ethyl ether for 3 times. The filtrate was washed with water (3×15 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated under

reduced pressure. and filtered through a pad of silica gel, followed by washing the pad of silica gel with the same solvent (20 mL). The residue was then purified by flash chromatography on silica gel to provide the corresponding product. The pure product 2-(phenylsulfinyl)benzo[d]oxazole (4a) was obtained 1.92 g, 79% yield.

Scheme 2. Synthesis of 2-(phenylsulfinyl)benzo[d]oxazole 3a.

- A. React via standard conditions for 24 hours under nitrogen protection at 110 °C.
- **B.** After cooled, the reaction mixture was diluted with 20 mL of ethyl ether for 3 times.
- **C.** Silica gel column chromatography with gradient elution consisting of ethyl acetate and petroleum ethe mixture solvent.
- **D.** The product obtained by rotary evaporation of solvent.

Preliminary Mechanism Investigation.

I 1a, 3a (10 mmol), 2 (15 mmol), L4, AgOAc (10 mol%), Cs₂CO₃ (2 equiv), DMSO (15 mL).
II 3a (10 mmol), 10 (10 mmol), L4, AgOAc (10 mol%), Cs₂CO₃ (2 equiv), DMSO (15 mL), 4a (71%).
III 1a, 3a (10 mmol), 2 (15 mmol), L4, AgOAc (10 mol%), Cs₂CO₃ (2 equiv), DMSO (15 mL), 4a (0).
IV 11 (10 mmol), AgOAc (10 mol%), L4, Cs₂CO₃ (2 equiv), DMSO (15 mL), 4a (58%).

Scheme 3. Preliminary mechanism investigation.

To obtain the preliminary results of the reaction mechanism, some additional reactions were been done, Scheme 2. At first, the model reaction (Scheme 2I) **1a** (10 mmol), **3a** (10 mmol), **2** (15 mmol), **L4** (10 mol%), AgOAc (10 mol%), Cs₂CO₃ (2 equiv), DMSO (15 mL). After it was cooled, the reaction mixture was diluted with 10 mL of ethyl ether, and filtered through a pad of silica gel, followed by washing the pad of silica gel with the same solvent (20 mL). The filtrate was washed with water (3×15 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

Other reactions were conducted in other three parallel reactions, Scheme 2II, Scheme 2III and Scheme 2IV). However, scheme 2II, results show that benzo[d]oxazole **10** reacted with **3a** promoted by hydrogen peroxide under our standard conditions, successfully obtained the target product **4a** in 71% yield, **3a** (10 mmol), **10** (10 mmol), **L4** (10 mol%), AgOAc (10 mol%), Cs_2CO_3 (2 equiv), DMSO (15 mL). After it was cooled, the reaction mixture was diluted with 10 mL of ethyl ether, and filtered through a pad of silica gel, followed by washing the pad of silica gel with the same solvent (20 mL). The filtrate was washed with water (3×15 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

Forthermore, Scheme 2IV, **11** reacted promoted under our standard conditions, successfully obtained the target product **4a** in 58% yield, **11** (10 mmol), AgOAc (10 mol%), **L4**, Cs_2CO_3 (2 equiv), DMSO (15 mL), which indicated that the reaction first undergoes a condensation reaction process. And those results also indicated that DMSO was the necessary solvent for this reaction. After it was cooled, the reaction mixture was diluted with 10 mL of ethyl ether, and filtered through a pad of silica gel, followed by washing the pad of silica gel with the same solvent (20 mL). The filtrate was washed with water (3×15 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was then purified by flash

chromatography on silica gel to provide the corresponding product.

Analytical Data

2-(phenylsulfinyl)benzo[d]oxazole (**4a**). Yellow solid, 1.92 g, 79% yield, mp 141-142 °C;

¹HNMR (500 MHz, DMSO-*d*₆): δ 7.94 (d, *J*=8.0 Hz, 1H), 7.88 (d, *J*=8.0 Hz, 1H), 7.58 (m, 2H), 7.57-7.51 (m, 3H), 7.43 (m, 1H), 7.33 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.24, 154.02, 136.22, 135.89, 130.25, 130.18, 126.26, 124.51, 121.61, 121.40;

ESI HRMS *m/z*: Calcd for C₁₃H₁₀NO₂S⁺ [M+H]⁺: 244.0432; Found 244.0328.

2-(o-tolylsulfinyl)benzo[d]oxazole (**4b**). Yellow oil liquid, 2.11 g, 82% yield; ¹HNMR (500 MHz, DMSO-*d*₆): δ 7.92 (d, *J*=8.0 Hz, 1H), 7.85 (d, *J*=8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.44-7.39 (m, 3H), 7.27-7.22 (m, 2H), 2.55 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.95, 154.78, 143.04, 138.25, 136.60, 130.95, 130.90, 127.67, 127.34, 125.99, 124.21, 121.87, 120.76, 23.15;

ESI HRMS *m/z*: Calcd for C₁₄H₁₂NO₂S⁺ [M+H]⁺: 258.0589; Found 258.0593.

2-(m-tolylsulfinyl)benzo[d]oxazole (4c). Yellow oil liquid, 2.24 g, 87% yield;

¹H NMR(500 MHz, DMSO-*d*₆): δ 7.95 (d, *J*=8.0 Hz, 1H), 7.89 (d, *J*=8.0 Hz, 1H), 7.66 (s, 1H), 7.64 (d, *J*=7.5 Hz, 1H), 7.47-7.33 (m, 4H), 2.36 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.53, 154.01, 139.78, 136.61, 135.88, 133.32, 130.97, 129.95, 126.21, 125.73, 124.42, 121.62, 121.35, 20.73;

ESI HRMS *m/z*: Calcd for C₁₄H₁₂NO₂S⁺ [M+H]⁺: 258.0589; Found 258.0593.

2-(p-tolylsulfinyl)benzo[d]oxazole (**4d**). Yellow solid, 2.34 g, 91% yield, mp 112-114°C;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.90 (d, *J*=8.0 Hz, 1H), 7.71 (d, *J*=7.5 Hz, 2H), 7.65 (d, *J*=7.5 Hz, 1H), 7.38 (m, 1H), 7.26-7.13 (m, 3H), 2.42 (s, 3H); ¹³C NMR (125MHz, DMSO-*d*₆): δ 163.71, 154.69, 140.58, 136.76, 136.55, 130.77, 125.96, 124.20, 122.91, 121.96, 120.73, 21.41;

ESI HRMS *m/z*: Calcd for C₁₄H₁₂NO₂S⁺ [M+H]⁺: 258.0589; Found 258.0593.

2-((3-methoxyphenyl)sulfinyl)benzo[d]oxazole (**4e**). Yellow oil liquid, 2.05 g, 75% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.97-7.89 (m, 2H), 7.45-7.42 (m, 5H), 7.34 (s, 1H), 3.81 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.19, 159.94, 154.00, 135.88, 131.07, 128.15, 126.72, 126.26, 124.51, 121.69, 121.39, 121.19, 116.14, 55.44; ESI HRMS *m/z*: Calcd for C₁₄H₁₂NO₃S⁺ [M+H]⁺: 274.0538; Found 274.0534.

2-((4-methoxyphenyl)sulfinyl)benzo[d]oxazole (**4f**). Yellow oil liquid, 2.46 g, 90% yield;

¹H NMR(500 MHz, DMSO-*d*₆): δ 7.94 (d, *J*=8.0 Hz, 1H), 7.87 (d, *J*=8.0 Hz, 1H), 7.78 (m, 2H), 7.45 (m, 1H), 7.32 (m, 1H), 7.08 (d, 2H), 3.84 (s, 3H); ¹³CNMR (125 MHz, DMSO-*d*₆): δ 164.47, 161.08, 154.28, 138.57, 135.73, 126.19, 124.26, 121.19, 115.92, 115.89, 55.40;

ESI HRMS *m/z*: Calcd for C₁₄H₁₂NO₃S⁺ [M+H]⁺: 274.0538; Found 274.0534.

3-(benzo[d]oxazol-2-ylsulfinyl)aniline (**4g**). Yellow oil liquid. 2.20 g, 85% yield; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.96 (d, *J*=8.0 Hz, 1H), 7.87 (d, *J*=8.0 Hz, 1H), 7.42 (m, 1H), 7.33 (m, 1H), 7.17 (m, 1H), 7.07 (s, 1H), 6.94 (d, *J*=7.5 Hz, 1H), 6.75 (m, 1H), 5.45 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 163.14, 154.11, 150.29, 135.95, 130.50, 126.16, 125.93, 124.35, 122.83, 121.60, 121.28, 120.82, 115.58; ESI HRMS *m/z*: Calcd for C₁₃H₁₁N₂O₂S⁺[M+H]⁺: 259.0541; Found 259.0537.

4-(benzo[d]oxazol-2-ylsulfinyl)aniline (**4h**). Yellow oil liquid, 2.38 g, 92% yield; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.92 (d, *J*=8.0 Hz, 1H), 7.84 (d, *J*=8.5 Hz, 1H), 7.46 (m, 2H), 7.41 (t, 1H), 7.8 (m, 1H), 6.68 (d, *J*=8.0 Hz, 2H), 5.72 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 166.94, 154.58, 151.20, 138.29, 135.79, 126.02, 123.98, 121.52, 121.01, 115.10, 108.83;

ESI HRMS *m/z*: Calcd for C₁₃H₁₁N₂O₂S⁺ [M+H]⁺: 259.0541; Found 259.0537.

2-((4-fluorophenyl)sulfinyl)benzo[d]oxazole (**4i**). Yellow oil liquid, 1.93 g, 74% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.97 (m, 4H), 7.47 (m, 1H), 7.40-7.34 (m, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 164.39, 162.59, 162.41, 154.05, 139.11, 135.81, 126.28, 124.49, 121.67, 121.37, 121.29, 117.49, 117.31; ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ -110.15 (s, 1F);

ESI HRMS *m/z*: Calcd for C₁₃H₉FNO₂S⁺ [M+H]⁺: 262.0338; Found 262.0334.

2-((4-chlorophenyl)sulfinyl)benzo[d]oxazole (**4j**). Yellow oil liquid, 2,17 g, 78% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.98 (d, *J*=8.0 Hz, 1H), 7.91 (d, *J*= 8.5Hz, 1H), 7.86 (d, *J*=8.5 Hz, 2H), 7.57 (d, *J*=8.5 Hz, 2H), 7.48 (m, 1H), 7.38 (m, 1H); ¹³C NMR(125 MHz, DMSO-*d*₆): δ 161.63, 153.95, 137.96, 135.91, 135.43, 130.15, 126.33, 124.89, 124.62, 121.71, 121.47;

ESI HRMS *m/z*: Calcd for C₁₃H₉ClNO₂S⁺[M+H]⁺: 278.0043; Found 278.0047.

2-((4-bromophenyl)sulfinyl)benzo[d]oxazole (4k). Yellow oil liquid, 2.45 g, 76% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.96 (d, *J*=8.0 Hz, 1H), 7.88 (d, *J*=8.0 Hz, 1H), 7.77 (m, 4H), 7.45 (m, 1H), 7.35 (m, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 161.42, 153.93, 138.09, 135.93, 133.09, 126.31, 125.44, 124.62, 124.16, 121.69, 121.48; ESI HRMS *m/z*: Calcd for C₁₃H₉BrNO₂S⁺[M+H]⁺: 321.9537; Found 321.9533.

2-((4-iodophenyl)sulfinyl)benzo[d]oxazole (**4l**). White solid, 2.66 g, 72% yield, mp 146-147 °C;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.97 (d, *J*=7.5 Hz, 1H), 7.90-7.85 (m, 2H), 7.76 (m, 1H), 7.61 (d, *J*=7.5 Hz, 1H), 7.47-7.44 (m, 2H), 7.37-7.32 (m, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 161.34, 153.93, 138.92, 138.58, 137.94, 137.02, 135.80, 132.78, 126.31, 124.61, 121.48;

ESI HRMS *m/z*: Calcd for C₁₃H₉INO₂S⁺ [M+H]⁺: 369.9399; Found 369.9395.

4-(benzo[d]oxazol-2-ylsulfinyl)benzonitrile (**4m**). Yellow solid, 1.88 g, 70% yield, mp 125-126 °C;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.97-7.95 (m, 4H), 7.81 (d, *J*=8.5 Hz, 1H), 7.64 (d, *J*=8.5Hz, 1H), 7.51(m, 1H), 7.43(m, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 158.57, 153.66, 136.34, 135.17, 134.00, 133.31, 133.14, 126.51, 125.14, 121.90, 111.95, 110.05;

ESI HRMS *m/z*: Calcd for C₁₄H₉N₂O₂S⁺ [M+H]⁺: 269.0385; Found 269.0387.

3-(benzo[d]oxazol-2-ylsulfinyl)benzaldehyde (**4n**). Yellow oil liquid, 1.99 g, 73% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 10.08 (s, 1H), 8.35 (s, 1H), 8.18 (d, *J*=7.5 Hz, 1H), 8.09 (d, *J*=8.0 Hz, 1H), 7.97 (d, *J*=8.0 Hz, 1H), 7.91 (d, *J*=8.5 Hz, 1H), 7.76 (m, 1H), 7.49 (m, 1H), 7.39 (m, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 192.38, 160.95, 153.88, 141.61, 137.52, 136.66, 135.98, 130.65, 127.59, 126.38, 124.74, 121.75; ESI HRMS *m/z*: Calcd for C₁₄H₁₀NO₃S⁺ [M+H]⁺: 272.0381; Found 272.0385.

2-((4-(trifluoromethyl)phenyl)sulfinyl)benzo[d]oxazole (4o). Yellow solid, 2.40 g,
77% yield, mp 105-106 °C;

¹H NMR (500 MHz, DMSO-*d*₆): δ 8.05 (m, 3H), 7.96 (d, *J*=8.5 Hz, 1H), 7.84 (m, 2H), 7.51 (m, 1H), 7.41 (m, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 159.62, 153.76, 136.17,

135.93, 132.23, 129.80, 126.65, 126.43, 124.93, 122.78, 121.82, 121.73; ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ 61.40 (s, 3F);

ESI HRMS *m/z*: Calcd for C₁₄H₉F₃NO₂S⁺ [M+H]⁺: 312.0306; Found 312.0302.

2-((3-nitrophenyl)sulfinyl)benzo[d]oxazole (**4p**). Yellow oil liquid, 1.70 g, 59% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 8.27-8.18 (m, 2H), 8.07-7.99 (m, 4H), 7.53 (m, 1H), 7.45 (d, *J*=7.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 157.87, 153.60, 147.74, 136.63, 136.49, 135.05, 133.38, 126.58, 125.30, 124.48, 122.04, 121.95, 121.93; ESI HRMS *m/z*: Calcd for C₁₃H₉N₂O₄S⁺ [M+H]⁺: 289.0283; Found 289.0279.

2-(mesitylsulfinyl)benzo[d]oxazole (**4q**). Yellow solid, 2.54 g, 88% yield, mp 90-91 °C;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.89 (d, *J*=8.0 Hz, 1H), 7.85 (d, *J*=8.0 Hz, 1H), 7.42 (m, 1H), 7.31 (m, 1H), 7.15 (s, 2H), 2.46 (s, 6H), 2.32 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*6): δ 163.43, 154.48, 143.30, 140.70, 135.65, 129.27, 126.11, 125.42, 124.06, 121.60, 121.02, 23.78, 20.67;

ESI HRMS *m/z*: Calcd for C₁₆H₁₆NO₂S⁺ [M+H]⁺: 286.0902; Found 286.0900.

2-(benzo[d][1,3]dioxol-4-ylsulfinyl)benzo[d]oxazole (4r). Yellow oil liquid, 2.36 g, 82% yield;

¹H NMR (500MHz, DMSO-*d*₆): δ 7.96 (d, *J*=8.0 Hz, 1H), 7.86 (d, *J*=8.0 Hz, 1H), 7.46-7.43 (m, 2H), 7.37 (d, *J*=8.0 Hz, 1H), 7.34 (d, *J*=8.0 Hz, 1H), 7.09 (d, *J*=8.0 Hz, 1H), 6.16 (s, 2H); ¹³C NMR (125MHz, DMSO-*d*₆): δ 163.94, 154.19, 149.46, 148.42, 135.77, 131.47, 126.21, 124.33, 121.65, 121.25, 116.81,116.38, 109.92, 101.95; ESI HRMS *m/z*: Calcd for C₁₄H₁₀NO₄S⁺ [M+H]⁺: 288.0331; Found 2888.0327.

5-methyl-2-(phenylsulfinyl)benzo[d]oxazole (7a). Yellow oil liquid, 2.14 g, 83% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.84 (d, *J*=7.5 Hz, 2H), 7.76 (d, *J*=8.5 Hz, 1H), 7.72 (s, 1H), 7.58-7.50 (m, 3H), 7.27 (d, *J*=8.5 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 165.56, 157.43, 141.35, 141.30, 139.52, 135.39, 132.86, 132.86, 131.49, 126.43, 126.25, 26.15;

ESI HRMS *m/z*: Calcd for C₁₄H₁₂NO₂S⁺ [M+H]⁺: 258.0589; Found 258.0584.

3-methyl-2-(phenylsulfinyl)benzo[d]oxazole (7b). Yellow oil liquid, 2.22 g, 86% yield;

¹H NMR (500MHz, DMSO-*d*₆): δ 7.86 (d, *J*=7.5 Hz, 2H), 7.74 (d, *J*=7.5 Hz, 1H), 7.58-7.51 (m, 3H), 7.27-7.21 (m, 2H), 2.62 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 160.76, 153.29, 136.10, 135.74, 130.97, 130.16, 126.67, 126.30, 124.48, 118.97, 17.89; ESI HRMS *m/z*: Calcd for C₁₄H₁₂NO₂S⁺ [M+H]⁺: 258.0589; Found 258.0584.

5-methoxy-2-(phenylsulfinyl)benzo[d]oxazole (7c). Yellow oil liquid, 2.16 g, 79% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 7.82-7.81 (m, 3H), 7.54-7.48 (m, 4H), 7.07 (d, *J*=8.5 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 157.50, 156.84, 148.52, 137.58, 135.73, 130.07, 129.91, 126.60, 122.05, 115.15, 104.69, 55.65;

ESI HRMS *m/z*: Calcd for C₁₄H₁₃NO₃S⁺ [M+H]⁺: 274.0538; Found 274.0534.

2-(phenylsulfinyl)-1H-benzo[d]imidazole (9a). Yellow oil liquid, 2.08 g, 86% yield; ¹H NMR (500 MHz, DMSO-*d*₆): δ 12.77 (s, 1H), 7.59 (d, *J*=8.0 Hz, 3H), 7.44 (d, *J*=8.0 Hz, 1H), 7.36 (s, 3H), 7.17 (m, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 141.14, 132.73, 129.61, 128.03, 127.94, 122.42, 121.42, 118.26, 110.93;

ESI HRMS *m/z*: Calcd for C₁₃H₁₁N₂OS⁺ [M+H]⁺: 243.0592; Found 243.0588.

6-methyl-2-(phenylsulfinyl)-1H-benzo[d]imidazole (9b). Yellow oil liquid, 2.18 g, 85% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.69 (s, 1H), 7.57-7.55 (m, 2H), 7.35-7.34 (m, 5H), 7.01 (m, 1H), 2.39 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 173.11, 169.94, 139.95, 134.69, 132.38, 129.56, 128.34, 127.85, 123.12, 117.57, 110.65, 21.17; ESI HRMS *m/z*: Calcd for C₁₄H₁₀N₂OS⁺ [M+H]⁺: 257.0749; Found 257.0745.

6-chloro-2-(phenylsulfinyl)-1H-benzo[d]imidazole (9c). Yellow oil liquid, 2.24 g, 81% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.91 (s, 1H), 7.62 (m, 3H), 7.38 (m, 4H), 7.19 (d, *J*=7.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 133.23, 130.10, 130.06, 129.66, 128.31, 127.29, 123.74, 123.74, 117.62, 112.19, 110.57;

ESI HRMS *m/z*: Calcd for C₁₃H₁₀ClN₂OS⁺ [M+H]⁺: 277.0202; Found 277.0118.

6-bromo-2-(phenylsulfinyl)-1H-benzo[d]imidazole (9d) Yellow oil liquid, 2.63 g, 82% yield;

¹H NMR (500 MHz, DMSO-d₆): δ 12.90 (s, 1H), 7.62 (m, 3H), 7.39 (m, 4H), 7.31 (d, *J*=8.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆): δ 133.23, 130.13, 130.12, 130.07, 129.67, 129.43, 129.37, 128.32, 127.26, 123.88, 123.75;

ESI HRMS *m*/*z*: Calcd for C₁₃H₁₀BrN₂OS⁺ [M+H]⁺: 320.9697; Found 320.9693.

2-((3-methoxyphenyl)sulfinyl)-5,6-dimethyl-1H-benzo[d]imidazole (9e). oil liquid,
2.68 g, 89% yield;

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.59 (s, 1H), 7.53 (m, 2H), 7.38-7.34 (m, 4H), 7.22 (s, 1H), 2.29 (s, 6H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 142.93, 139.10, 132.04, 129.83, 129.54, 128.74, 127.70, 118.37, 111.01, 99.49, 19.86;

ESI HRMS *m/z*: Calcd for C₁₆H₁₆N₂O₂S⁺ [M+H]⁺: 301.1011; Found 301.1014.

Spectrums

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Figure 2. 4a ¹³C NMR

Figure 4. 4b ¹³C NMR

Figure 6. 4c¹³C NMR

Figure 8. 4d ¹³C NMR

Figure 10. 4e¹³C NMR

Figure 12. **3f** ¹³C NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

Figure 14. 4g¹³C NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Figure 16. 4h¹³C NMR

Figure 18. 4i ¹³C NMR

Figure 20. 4j¹H NMR

Figure 24. 4l¹H NMR

Figure 28. 4n ¹H NMR

Figure 30. 40¹H NMR

Figure 34. 4p ¹³C NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Figure 36. 4q ¹³C NMR

Figure 38. 4r¹³C NMR

Figure 40. 7a¹³C NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Figure 42. **7b** ¹³C NMR

Figure 44. 7c¹³C NMR

Figure 48. 9a ¹³C NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Figure 50. 9b ¹³C NMR

Figure 52. 9c¹³C NMR

Figure 54. 9d ¹³C NMR

Figure 56. 9e¹³C NMR