Supporting Information for

Iron-loaded Pure Silica -SVR Zeolite for the Hydroxylation of Phenol

Authors:

Wenwen Song^a, Haodong Xie^a, Li Liu^a, Xiang Ni^a, Yuan Xue^a, Yan Liu^a, Junwen Chen^b,

Lei Wang^{a*}, and Hongjun Zhu^{a*}

Affiliations:

^aSchool of Chemistry and Molecular Engineering, Nanjing Tech University, South

Puzhu Rd. 30, Nanjing, 211816, P. R. China.

^bResearch Institute of Petroleum Processing, SINOPEC, Beijing 100083, People's

Republic of China.

*Corresponding Authors:

I_wang19@njtech.edu.cn (L. Wang)

zhuhj@njtech.edu.cn (H. Zhu)

Table	of	Contents

1 Figures	3
Fig. S1 Liquid ¹ H NMR spectra of hexamethylene-1,6-bis-(N-methyl-N-pyrro	olidinyl) bromide in
D ₂ O	3
Fig. S2 Liquid ¹³ C NMR spectra of hexamethylene-1,6-bis-(N-methyl-N-py	rrolidinyl) bromide
in D ₂ O	4
Fig. S3 Calibrated internal standard curves	5
Fig. S4 Pawley fitting profiles	6
Fig. S5 Vacuum FT-IR spectra pattern	7
Fig. S6 Typical high-resolution TEM images	8
Fig. S7 The online gas chromatogram analysis	9
Fig. S8 TG-DTA-DSC profiles	
Fig. S9 Reaction kinetic curves of phenol hydroxylation	
Fig. S10 EPR spectra	
2 List of tables	13
Table S1 Standard linear equations and correction factors	
Table S2 The textural pore properties	
Table S3 The elemental content of Fe/SVR-x catalysts.	
Table S4 Direct hydroxylation of different arene substrates with Fe/SVR-x	
Table S5 Direct hydroxylation of phenol with the different amount of acetic	acid17
Table S6 Direct hydroxylation of phenol with different type of solvents	
Table S7 Comparison of direct hydroxylation of phenol with H ₂ O ₂ with diffe	erent catalysts 19

1 Figures

Fig. S1 Liquid ¹H NMR spectra of hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinyl) bromide in D₂O.

Fig. S2 Liquid 13 C NMR spectra of hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinyl) bromide in D₂O.

Fig. S3 Calibrated internal standard curves of (a) phenol (b) catechol (c) hydroquinone (d) benzoquinone by GC.

Fig. S4 Pawley fitting profiles of calcined -**SVR** zeolite (Radiation source: Cu K α_{12} , wavelength: 1.5418 Å), R_{exp} : 2.26%, R_{wp} : 2.22%, GOF: 0.98.

Fig. S5 Vacuum FT-IR spectra pattern of zeolite SVR-calc. and Fe/SVR-777 collected at 303 K.

Fig. S6 Typical high-resolution TEM images and element mapping of the calcined -**SVR** zeolite. (a) High-magnification TEM images of the encircled area, inset: low magnification TEM morphology (top), and electron diffraction pattern (down), (b) element mapping composition elements, respectively.

Fig. S7 The online gas chromatogram analysis of phenol hydroxylation products as converted by the Fe/SVR-*x*.

Fig. S8 TG-DTA-DSC profiles of fresh (a) Fe/SVR-777 and the spent (b) Fe/SVR-777.

Fig. S9 Reaction kinetic curves of phenol hydroxylation. a) Relationship between initial rate of phenol hydroxylation and phenol concentration (mol/L), b) relationship between initial rate of phenol hydroxylation and H₂O₂ concentration (mol/L), c) yield of dihydroxybenzene with different amount of Fe/SVR-777, d) relationship between initial rate of phenol hydroxylation and catalyst concentration (g/L). Reaction condition: Phenol: 5 mmol, CH₃CN: H₂O: 2 mL: 1.21 mL, CH₃COOH: 0.4 mL, H₂O₂: 1 mL, Fe/SVR-777: 0.1 g, temperature: 353 K. The obtained products were analyzed by GC.

Fig. S10 EPR spectra of DMPO trapped the reacted solution of the Fe/SVR-777 at 40 minutes.

2 List of tables

Table S1 Standard linear equations and correction factors of phenol, catechol, hydroquinone, and benzoquinone.

Entry	Linear equation	R ²	\mathbf{f}_{is}
Phenol	y = 0.92229x - 0.04671	0.9996	1.0842
Catechol	y = 0.58695x - 0.10847	0.9991	1.7037
Hydroquinone	y = 0.42931x - 0.25765	0.9997	2.3293
Benzoquinone	y = 0.58000x - 0.15006	0.9992	1.7421

Catalyst	BET surface area (m ² /g) ^a	Langmuir surface area (m ² /g)	Total volume (cm ³ /g) ^b	Micropore volume (cm ³ /g) ^b
SVR-calc.	457	621	0.23	0.15
Fe/SVR-777	415	567	0.21	0.13
Fe/SVR-483	396	543	0.20	0.12
Fe/SVR-356	394	542	0.20	0.12
Fe/SVR-350	396	551	0.20	0.12
Fe/SVR-341	396	553	0.20	0.12

Table S2 The textural pore properties of -SVR zeolites evaluated by N_2 sorption at 77 K.

Note: ^aCalculated by the BET method, ^bCalculated by the *t*-plot method.

Entry	Si/wt%	Fe/wt%
SVR-calc.	45.90	0
Fe/SVR-777	46.61	0.12
Fe/SVR-483	45.92	0.19
Fe/SVR-356	46.28	0.26
Fe/SVR-350	45.51	0.26
Fe/SVR-341	46.08	0.27
Fe/SVR-777 ^a	46.40	0.07

Table S3 The elemental content of Fe/SVR-*x* catalysts.

Note: The elemental content of samples was determined using ICP-OES. ^a The elemental content data of the sample was obtained after the phenol hydroxylation reaction.

Entry	Substrate	Catalyst	X (%) ^a	Y (%) ^b	S (%) ^c
1	anisole	SVR-calc.	/	/	/
2	anisole	Fe/SVR-777	18	16	88.9
3	anisole	Fe/SVR-350	4	4	99
4	phenol	/	/	/	/
5	phenol	SVR-calc.	5	/	/
6	phenol	Fe/SVR-777	37	37	99
7	phenol	Fe/SVR-483	32	32	96.9
8	phenol	Fe/SVR-356	23.6	23	97.5
9	phenol	Fe/SVR-350	22.8	22	96.5
10	phenol	Fe/SVR-341	21.7	21	96.8

Table S4 Direct hydroxylation of different arene substrates with Fe/SVR-x.

Note: Reaction condition: substrates: 5 mmol, CH_3CN : H_2O : 2 mL: 1.21 mL, CH_3COOH : 0.4 mL, H_2O_2 : 1 mL, catalyst: 0.1 g, time: 2 h, temperature: 353 K, the obtained products were analyzed by GC. ^aThe conversion of anisole or phenol, ^bthe yield of 4-methoxyphenol $\$ 2-methoxyphenol or dihydroxybenzene, ^cthe selectivity of 4-methoxyphenol $\$ 2-methoxyphenol or dihydroxybenzene.

Entry	Additive (mL)	X_{Ph} (%) ^a	Y _{Cat} (%) ^b	Y_{Hy} (%) ^c	S (%) ^d
1	/	12	5	/	41.7
2	0.2	22.6	15	4	84
3	0.3	20.6	14	6	97
4	0.4	37	23	14	99
5	0.5	31	21	9	96.8
6	0.6	27	17	9	96.3
7	0.7	19.7	13	б	96.4

Table S5 Direct hydroxylation of phenol with the different amount of acetic acid.

Note: Reaction condition: phenol: 5 mmol, CH₃CN: H₂O: 2 mL: 1.21 mL, additive: CH₃COOH, H₂O₂: 1 mL, Fe/SVR-777: 0.1 g, time: 2 h, temperature: 353 K, the obtained products were analyzed by GC. ^aThe conversion of phenol, ^bthe yield of catechol, ^cthe yield of hydroquinone, ^dthe selectivity of catechol and hydroquinone.

	5 -5F		51		
Entry	Solvent	$\mathrm{X}_{\mathrm{Ph}}(\%)^{\mathrm{a}}$	Y _{Cat} (%) ^b	Y _{Hy} (%) ^c	S (%) ^d
1	CH ₃ CH ₂ OH	/	/	/	/
2	DMF	/	/	/	/
3	DMSO	/	/	/	/
4	CH ₃ COOCH ₂ CH ₃	16	13	3	93
5	CH ₃ CN	20	14	6	93
6	H ₂ O	27	19	8	97.5
7	CH3COOCH2CH3 / H2O	4	4	/	47.6
8	CH ₃ CN / H ₂ O	37	23	14	99

 Table S6 Direct hydroxylation of phenol with different type of solvents.

Note: Reaction condition: phenol: 5 mmol, solvent: 3.21 mL, CH₃COOH: 0.4 mL, H₂O₂: 1 mL, Fe/SVR-777: 0.1 g, time: 2 h, temperature: 353 K, the obtained products were analyzed by GC. ^aThe conversion of phenol, ^bthe yield of catechol, ^cthe yield of hydroquinone, ^dthe selectivity of catechol and hydroquinone.

Entry	Catalyst	Туре	Time / h	X (%) ^a	Y (%) ^b	S (%) ^c	Ref.
1	Fe/HY	Zeolite	1	48	33.6	70	1
2	MSCu	Porous	5	52	29	58	2
		material					
3	Fe-MCM-41	Zeolite	4	53	31.8	60	3
4	Cu-SBA-15	Zeolite	3.5	50	27.5	55	4
5	Fe/AC	Catalyst	1	41.3	36	87	5
6	HPB-TS-1	Zeolite	4	21.3	20	94.5	6
7	TS-1	Zeolite	0.5	27.3	27	99	7
8	TS-1	Zeolite	6	31.6	31.6	99	8
9	Cu-SCPN	Polymeric	1	30	15.6	51.4	9
		Nanoparticles					
10	Au / ZnO	photocatalysis	3	50	20	40	10
11	Fe/FSM-16	Zeolite	6	29	27	94.5	11
12	Fe-ZSM-5	Zeolite	4	40	34	86	12
13	Fe/SAC	Monatomic	0.5	53	47	88	13
		catalyst					
14	Fe-NW-	Zeolite	12	26	26	99	14
	ZSM-5						
15	NiV-LDH-	electrocatalys	9	72	56	78	15
	NS	is					
16	CMS-F(P)	Zeolite	2	29.6	25	85.1	16
17	ZrAPO-41/2	Zeolite	20	18.2	14.4	79.1	17
18	Fe/SVR- <i>x</i>	Zeolite	2	37	37	99	This
							work

Table S7 Comparison of direct hydroxylation of phenol with H_2O_2 with different catalysts.

Note: ^aThe conversion of phenol, ^bthe yield of dihydroxybenzene, ^cthe selectivity of dihydroxybenzene.

References:

- 1. J. Long, X. Wang, Z. Ding, Z. Zhang, H. Lin, W. Dai and X. Fu, J. Catal., 2009, 264, 163-174.
- 2. J. Tang, H. Xin, W. Su, J. Liu, C. Li and Q. Yang, Chinese J. Catal., 2010, 31, 386-393.
- 3. S. V. Sirotin, I. F. Moskovskaya and B. V. Romanovsky, Catal. Sci. Technol., 2011, 1, 971-980.
- H. Zhang, C. Tang, Y. Lv, C. Sun, F. Gao, L. Dong and Y. Chen, J. Colloid Interf. Sci., 2012, 380, 16-24.
- 5. M. Jin, R. Yang, M. Zhao, G. Li and C. Hu, Ind. Eng. Chem. Res., 2014, 53, 2932-2939.
- 6. W. Cheng, Y. Jiang, X. Xu, Y. Wang, K. Lin and P. P. Pescarmona, J. Catal., 2016, 333, 139-148.
- 7. B. Wang, M. Lin, X. Peng, B. Zhu and X. Shu, RSC Adv., 2016, 6, 44963-44971.
- 8. Y. Zuo, M. Liu, M. Ma, Y. Wang, X. Guo and C. Song, ChemistrySelect, 2016, 1, 6160-6166.
- S. Thanneeru, S. S. Duay, L. Jin, Y. Fu, A. M. Angeles-Boza and J. He, *ACS Macro Lett.*, 2017, 6, 652-656.
- F. Lin, B. E. Cojocaru, L. S. Williams, C. A. Cadigan, C. Tian, M. N. Grecu, H. L. Xin, S. Vyas,
 V. I. Parvulescu and R. M. Richards, *Nanoscale*, 2017, 9, 9359-9364.
- 11. G. Luo, Y. Jiao, X. Lv, X. Zhang and X. Gao, Chem. Intermediat., 2018, 44, 5377-5387.
- 12. Z. Han, F. Zhang and X. Zhao, Microporous Mesoporous Mat., 2019, 290, 109679.
- 13.M.-X. Gu, X.-Q. Zheng, S.-S. Peng, S.-C. Qi, X.-Q. Liu and L.-B. Sun, ACS Sustain. Chem. Eng., 2023, 11, 7844-7850.
- 14. Y. Shen, H. Li, X. Zhang, X. Wang and G. Lv, Nanoscale, 2020, 12, 5824-5828.
- 15. G. Li, Y. Xu, H. Pan, X. Xie, R. Chen, D. Wu and L. Wang, *J. Mater. Chem. A*, 2022, **10**, 6748-6761.
- 16.S. Li, G. Li, G. Li, G. Wu and C. Hu, Microporous Mesoporous Mat., 2011, 143, 22-29.
- D. Chakrabortty, J. N. Ganguli and C. V. V. Satyanarayana, *Microporous Mesoporous Mat.*, 2011, 137, 65-71.