Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2025

## **Electronic Supplementary Information (ESI) for**

## Synergistic engineering of ultraviolet metal-free crystals with exceptional birefringence via pyridine-derived dimers

Jiachen Lu and Kang Min Ok\*

Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea

E-mail: kmok@sogang.ac.kr

| Empirical formula                           | C <sub>15</sub> H <sub>15</sub> N <sub>3</sub> O <sub>5</sub> S ( <b>1</b> ) | C <sub>10</sub> H <sub>11</sub> N <sub>3</sub> O <sub>3</sub> S ( <b>2</b> ) |
|---------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Formula weight                              | 349.36                                                                       | 253.28                                                                       |
| Temperature/K                               | 303.00                                                                       | 303.00                                                                       |
| CCDC number                                 | 2393748                                                                      | 2393642                                                                      |
| Crystal system                              | monoclinic                                                                   | orthorhombic                                                                 |
| Space group                                 | P21/c                                                                        | Pbcn                                                                         |
| a/Å                                         | 17.5972(5)                                                                   | 7.2257(4)                                                                    |
| b/Å                                         | 7.0455(2)                                                                    | 13.4248(8)                                                                   |
| c/Å                                         | 12.8268(3)                                                                   | 24.3820(14)                                                                  |
| α/°                                         | 90                                                                           | 90                                                                           |
| в/°                                         | 90.8810(10)                                                                  | 90                                                                           |
| γ/°                                         | 90                                                                           | 90                                                                           |
| Volume/Å <sup>3</sup>                       | 1590.09(7)                                                                   | 2365.1(2)                                                                    |
| Ζ                                           | 4                                                                            | 8                                                                            |
| $ ho_{calc}$ g/cm <sup>3</sup>              | 1.459                                                                        | 1.423                                                                        |
| µ/mm⁻¹                                      | 0.235                                                                        | 0.274                                                                        |
| F(000)                                      | 728.0                                                                        | 1056                                                                         |
| Radiation                                   | ΜοΚα (λ = 0.71073)                                                           | ΜοΚα (λ = 0.71073)                                                           |
| 2∂ range/°                                  | 4.63 to 56.61                                                                | 6.07 to 56.766                                                               |
| Index ranges                                | $-23 \le h \le 23, -9 \le k \le 9,$                                          | $-9 \le h \le 9, -17 \le k \le 17,$                                          |
| index ranges                                | -17 ≤ <i>l</i> ≤ 17                                                          | -32 ≤ <i>l</i> ≤ 32                                                          |
| Reflections collected                       | 35676                                                                        | 27477                                                                        |
| Independent reflections                     | 3957 [ <i>R</i> <sub>int</sub> = 0.0581, <i>R</i> <sub>sigma</sub> = 0.0305] | 2963 [R <sub>int</sub> = 0.0786, R <sub>sigma</sub> = 0.0460]                |
| Data/restraints/parameters                  | 3957/0/217                                                                   | 2963/0/198                                                                   |
| Goodness-of-fit on F <sup>2</sup>           | 1.136                                                                        | 1.209                                                                        |
| Final <i>R</i> indexes [/≥2σ (/)]           | $R_1 = 0.0524, wR_2 = 0.1062$                                                | $R_1 = 0.0779, wR_2 = 0.1283$                                                |
| Final R indexes [all data]                  | $R_1 = 0.0762, wR_2 = 0.1195$                                                | $R_1 = 0.1243, wR_2 = 0.1474$                                                |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.22/-0.33                                                                   | 0.23/-0.31                                                                   |

 Table S1. Crystallographic data for 1 and 2.

 $R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ and } wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma wF_{o}^{4}]^{1/2} \text{ for } F_{o}^{2} > 2\sigma(F_{o}^{2})$ 

| Atom | x           | у         | Z          | U <sub>(eq)</sub> |
|------|-------------|-----------|------------|-------------------|
| S1   | 3484.7(3)   | 1218.5(8) | 4363.5(4)  | 38.54(15)         |
| 05   | 3425.2(9)   | 1404(3)   | 5488.2(12) | 54.2(4)           |
| 03   | 3762.0(9)   | -620(2)   | 4046.8(15) | 57.4(5)           |
| 02   | 9337.9(8)   | 3264(3)   | 3598.3(13) | 57.5(5)           |
| O4   | 2795.5(8)   | 1786(3)   | 3822.0(14) | 58.5(5)           |
| N3   | 5494.3(9)   | 3831(3)   | 4053.9(14) | 40.3(4)           |
| 01   | 9645.3(9)   | 3285(3)   | 1749.6(13) | 68.3(6)           |
| N2   | 7085.5(10)  | 3431(3)   | 4204.6(15) | 46.5(5)           |
| N1   | 11884.0(10) | 3354(3)   | 1067.4(16) | 48.6(5)           |
| C14  | 4190.7(10)  | 2870(3)   | 3983.2(15) | 33.5(4)           |
| C15  | 4940.2(11)  | 2630(3)   | 4306.1(16) | 36.7(4)           |
| C11  | 5308.7(13)  | 5330(3)   | 3474.4(17) | 45.8(5)           |
| C13  | 4012.3(13)  | 4426(4)   | 3372.5(18) | 47.5(5)           |
| C6   | 8617.5(11)  | 3337(3)   | 3774.6(17) | 40.8(5)           |
| C8   | 7314.3(12)  | 3632(4)   | 3218.5(19) | 47.9(5)           |
| C7   | 8064.5(12)  | 3598(3)   | 2978.6(18) | 44.8(5)           |
| C10  | 8353.0(12)  | 3155(3)   | 4800.1(17) | 45.0(5)           |
| C4   | 10930.9(12) | 3438(4)   | 2326.7(18) | 51.3(6)           |
| C2   | 10610.8(13) | 3183(4)   | 508.6(19)  | 52.2(6)           |
| C9   | 7593.1(13)  | 3199(4)   | 4985.7(18) | 48.6(6)           |
| C3   | 10365.5(12) | 3299(4)   | 1543.8(18) | 48.0(6)           |
| C5   | 11677.8(13) | 3447(4)   | 2062(2)    | 53.2(6)           |
| C12  | 4579.7(14)  | 5679(4)   | 3119.2(19) | 54.4(6)           |
| C1   | 11361.4(13) | 3230(4)   | 298(2)     | 51.4(6)           |

**Table S2.** Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for compound **1**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalized  $U_{ij}$  tensor.

| Atom | x          | У          | Z          | U <sub>(eq)</sub> |
|------|------------|------------|------------|-------------------|
| S1   | 8764.5(13) | 5435.5(6)  | 6033.0(3)  | 44.9(2)           |
| 03   | 8662(4)    | 4360.0(16) | 5992.4(10) | 55.1(7)           |
| 01   | 10584(4)   | 5818(2)    | 5902.7(10) | 67.5(8)           |
| 02   | 8032(5)    | 5805(2)    | 6548.1(9)  | 71.6(9)           |
| N3   | 6800(4)    | 6384(2)    | 4584.7(11) | 50.0(7)           |
| N1   | 7627(5)    | 7094(3)    | 1807.5(12) | 57.8(9)           |
| N2   | 7392(5)    | 6584(3)    | 3456.5(13) | 57.8(9)           |
| C9   | 7257(5)    | 5898(2)    | 5517.4(12) | 39.3(7)           |
| C10  | 7899(5)    | 6075(3)    | 4993.2(13) | 43.0(8)           |
| C3   | 7531(5)    | 6924(3)    | 2347.5(12) | 44.3(8)           |
| C4   | 7673(6)    | 5956(3)    | 2561.5(15) | 52.6(9)           |
| C8   | 5395(6)    | 6041(3)    | 5623.4(16) | 54.2(10)          |
| C2   | 7269(6)    | 7704(3)    | 2720.9(14) | 52.3(9)           |
| C5   | 7615(6)    | 5812(3)    | 3110.5(16) | 59.0(10)          |
| C6   | 5018(6)    | 6525(3)    | 4698.2(17) | 57.1(10)          |
| C1   | 7200(6)    | 7507(3)    | 3266.9(15) | 57.9(10)          |
| C7   | 4262(6)    | 6361(3)    | 5207.0(19) | 62.9(11)          |

**Table S3.** Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) of nonhydrogen atoms for compound **2**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$  tensor.

| Bond   | Length/Å   | Bond    | Length/Å |
|--------|------------|---------|----------|
|        | 1          |         |          |
| S1-05  | 1.4539(16) | C14-C15 | 1.387(3) |
| S1-O3  | 1.4447(17) | C14-C13 | 1.381(3) |
| S1-O4  | 1.4448(16) | C11-C12 | 1.377(3) |
| S1-C14 | 1.776(2)   | C13-C12 | 1.376(3) |
| O2-C6  | 1.292(2)   | C6-C7   | 1.412(3) |
| N3-C15 | 1.335(3)   | C6-C10  | 1.408(3) |
| N3-C11 | 1.330(3)   | C8-C7   | 1.360(3) |
| O1-C3  | 1.298(3)   | C10-C9  | 1.362(3) |
| N2-C8  | 1.341(3)   | C4-C3   | 1.406(3) |
| N2-C9  | 1.342(3)   | C4-C5   | 1.362(3) |
| N1-C5  | 1.334(3)   | C2-C3   | 1.405(3) |
| N1-C1  | 1.341(3)   | C2-C1   | 1.353(3) |
|        | 2          |         |          |
| S1-O3  | 1.449(2)   | C9-C10  | 1.381(4) |
| S1-01  | 1.447(3)   | C9-C8   | 1.383(5) |
| S1-O2  | 1.450(2)   | C3-C4   | 1.405(5) |
| S1-C9  | 1.776(3)   | C3-C2   | 1.400(5) |
| N3-C10 | 1.340(4)   | C4-C5   | 1.353(5) |
| N3-C6  | 1.330(5)   | C8-C7   | 1.373(6) |
| N1-C3  | 1.338(4)   | C2-C1   | 1.358(5) |
| N2-C5  | 1.347(5)   | C6-C7   | 1.374(6) |
| N2-C1  | 1.329(5)   |         |          |

Table S4. Bond lengths for compound 1 and 2.

**Table S5.** Bond angles for compound 1 and 2.

| Bond        | Angle/°    | Bond        | Angle/°    |  |  |
|-------------|------------|-------------|------------|--|--|
| 1           |            |             |            |  |  |
| O5-S1-C14   | 105.96(9)  | O2-C6-C7    | 123.1(2)   |  |  |
| 03-S1-05    | 112.92(11) | O2-C6-C10   | 119.9(2)   |  |  |
| 03-S1-O4    | 113.43(11) | C10-C6-C7   | 116.97(19) |  |  |
| O3-S1-C14   | 105.64(9)  | N2-C8-C7    | 121.2(2)   |  |  |
| 04-S1-O5    | 112.30(10) | C8-C7-C6    | 119.9(2)   |  |  |
| O4-S1-C14   | 105.80(10) | C9-C10-C6   | 120.1(2)   |  |  |
| C11-N3-C15  | 117.73(18) | C5-C4-C3    | 119.8(2)   |  |  |
| C8-N2-C9    | 120.74(18) | C1-C2-C3    | 120.2(2)   |  |  |
| C5-N1-C1    | 120.90(19) | N2-C9-C10   | 121.1(2)   |  |  |
| C15-C14-S1  | 120.26(16) | 01-C3-C4    | 122.5(2)   |  |  |
| C13-C14-S1  | 121.47(16) | 01-C3-C2    | 120.4(2)   |  |  |
| C13-C14-C15 | 118.27(19) | C2-C3-C4    | 117.0(2)   |  |  |
| N3-C15-C14  | 123.03(19) | N1-C5-C4    | 121.0(2)   |  |  |
| N3-C11-C12  | 123.1(2)   | C13-C12-C11 | 118.9(2)   |  |  |
| C12-C13-C14 | 119.0(2)   | N1-C1-C2    | 121.0(2)   |  |  |
| 2           |            |             |            |  |  |
| 03-51-02    | 112.41(16) | N3-C10-C9   | 122.9(3)   |  |  |
| O3-S1-C9    | 105.59(15) | N1-C3-C4    | 121.3(3)   |  |  |
| 01-51-03    | 112.66(17) | N1-C3-C2    | 121.3(3)   |  |  |
| 01-51-02    | 113.59(18) | C2-C3-C4    | 117.4(3)   |  |  |
| 01-S1-C9    | 106.13(15) | C5-C4-C3    | 119.8(4)   |  |  |
| O2-S1-C9    | 105.65(16) | C7-C8-C9    | 119.0(4)   |  |  |
| C6-N3-C10   | 117.6(3)   | C1-C2-C3    | 119.8(4)   |  |  |
| C1-N2-C5    | 120.8(3)   | N2-C5-C4    | 120.9(4)   |  |  |
| C10-C9-S1   | 120.6(3)   | N3-C6-C7    | 123.4(4)   |  |  |
| C10-C9-C8   | 118.4(3)   | N2-C1-C2    | 121.2(4)   |  |  |
| C8-C9-S1    | 120.9(3)   | C8-C7-C6    | 118.7(4)   |  |  |

| D-H···A                | d(D-A)/Å | D-H…A/° |
|------------------------|----------|---------|
|                        | 1        |         |
| O2-H2…O1               | 2.440(2) | 166.5   |
| N2-H2A…N3              | 2.818(2) | 157.0   |
| N1-H1…O5 <sup>1</sup>  | 2.828(2) | 175.1   |
|                        | 2        |         |
| N1-H1A…O3 <sup>2</sup> | 2.884(4) | 168(4)  |
| N1-H1B…O2 <sup>3</sup> | 2.930(5) | 167(3)  |
| N2-H2···N3             | 2.797(4) | 167(4)  |
|                        |          |         |

Table S6. Hydrogen bonds for compound 1 and 2.

Symmetry codes: 11+X,1/2-Y,-1/2+Z; 2+X,1-Y,-1/2+Z; 33/2-X,3/2-Y,-1/2+Z

**Table S7.** Comparison of experimental birefringence among metal-free compounds containing single sixmembered rings in short-wave ultraviolet region.

| Number | Compound                                                                                                | UV cutoff edge      | Birefringence         | Reference |
|--------|---------------------------------------------------------------------------------------------------------|---------------------|-----------------------|-----------|
| 1      | [(4-HP)(4-H <sub>2</sub> P)][3-pySO <sub>3</sub> ]                                                      | 279 nm <sup>b</sup> | 0.443 @546 nm         | This work |
| 2      | (C <sub>6</sub> H <sub>6</sub> NO <sub>2</sub> )Cl                                                      | 262 nm <sup>b</sup> | 0.363 @550 nm         | 1         |
| 3      | (C7H4NO4)(IO3)                                                                                          | 269 nm <sup>b</sup> | 0.350 @546 nm         | 2         |
| 4      | (C <sub>3</sub> H <sub>7</sub> N <sub>6</sub> )F·H <sub>2</sub> O                                       | 220 nm <sup>b</sup> | 0.337@550 nm          | 3         |
| 5      | $(C_3N_6H_7)BF_4$ ·H <sub>2</sub> O                                                                     | 244 nmª             | 0.310 @546 nm         | 4         |
| 6      | $\beta$ -(C <sub>3</sub> H <sub>7</sub> N <sub>6</sub> ) <sub>2</sub> Cl <sub>2</sub> ·H <sub>2</sub> O | 230 nm <sup>b</sup> | 0.299 @550 nm         | 3         |
| 7      | (3CP)(H <sub>2</sub> PO <sub>4</sub> )                                                                  | 270 nm <sup>b</sup> | 0.284 @546 nm         | 5         |
| 8      | $2(C_3H_7N_6)\cdot 2CI\cdot H_2O$                                                                       | 245 nm <sup>b</sup> | 0.248 @546 nm         | 6         |
| 9      | $C_3N_6H_7SO_3NH_2\\$                                                                                   | 206 nm <sup>b</sup> | 0.240 @546 nm         | 7         |
| 10     | (C₅H <sub>6</sub> NO)(CH <sub>3</sub> SO <sub>3</sub> )                                                 | 252 nm <sup>b</sup> | 0.216 @546 nm         | 8         |
| 11     | $(C_3N_6H_7)SO_3CH_3 \cdot H_2O$                                                                        | 233 nm <sup>b</sup> | 0.200 @546 nm         | 4         |
| 12     | (3AP)(H <sub>2</sub> PO <sub>4</sub> )                                                                  | 265 nm <sup>b</sup> | 0.196 @546 nm         | 5         |
| 13     | BC <sub>2</sub> N <sub>5</sub> H <sub>6</sub> (OH) <sub>2</sub> ·H <sub>2</sub> O                       | 240 nm <sup>a</sup> | <b>0.181 @</b> 546 nm | 9         |
| 14     | $(C_5H_6N)_2B_2O(HPO_4)_2$                                                                              | <b>270</b> nm⁵      | 0.156 @546 nm         | 10        |
| 15     | $(C_3N_2H_5)B_3O_3F_2(OH)_2$                                                                            | 214 nm <sup>a</sup> | 0.150 @546 nm         | 11        |

<sup>a</sup>Transmittance spectrum; <sup>b</sup>Diffuse reflectance spectrum.

| Number | Compound                                                         | UV cutoff edge      | Birefringence | Reference |
|--------|------------------------------------------------------------------|---------------------|---------------|-----------|
| 1      | [(4-HP)(4-H <sub>2</sub> P)][3-pySO <sub>3</sub> ]               | 279 nm <sup>b</sup> | 0.443 @546 nm | This work |
| 2      | $C_3N_6H_7SO_3NH_2$                                              | 206 nm <sup>b</sup> | 0.240 @546 nm | 7         |
| 3      | $(C_5H_6NO)(CH_3SO_3)$                                           | 252 nm⁵             | 0.216 @546 nm | 8         |
| 4      | Bi(SeO <sub>3</sub> )(CH <sub>3</sub> SO <sub>3</sub> )          | 277 nm⁵             | 0.160 @546 nm | 12        |
| 5      | Bi(TeO <sub>3</sub> )(CH <sub>3</sub> SO <sub>3</sub> )          | 274 nm⁵             | 0.145 @546 nm | 12        |
| 6      | [C(NH <sub>2</sub> ) <sub>3</sub> ]S <sub>3</sub> O <sub>6</sub> | 218 nm <sup>b</sup> | 0.097 @546 nm | 13        |
| 7      | $KNO_3SO_3NH_3$                                                  | 216 nm <sup>b</sup> | 0.095 @546 nm | 14        |
| 8      | $[C(NH_2)_3]_2S_2O_8$                                            | 222 nm⁵             | 0.081 @546 nm | 15        |
| 9      | $[C(NH_2)_3]_2SO_3S$                                             | 254 nm <sup>a</sup> | 0.073 @546 nm | 16        |
| 10     | RbNO <sub>3</sub> SO <sub>3</sub> NH <sub>3</sub>                | 208 nm⁵             | 0.070 @546 nm | 17        |
| 11     | $Sr(NO_3)(NH_2SO_3)\cdot H_2O$                                   | 290 nm <sup>a</sup> | 0.067 @532 nm | 18        |
| 12     | $Na_{10}Zn(NO_3)_4(SO_3S)_4$                                     | 240 nm <sup>b</sup> | 0.013 @550 nm | 19        |

 Table S8. Comparison of experimental birefringence among UV sulfate derivatives that incorporate an additional birefringence-active group (BAG).

<sup>a</sup>Transmittance spectrum, <sup>b</sup>diffuse reflectance spectrum.

| Number | Compound          | Birefringence | Reference |
|--------|-------------------|---------------|-----------|
| 1      | TiO <sub>2</sub>  | 0.305 @546 nm | 20        |
| 2      | YVO <sub>4</sub>  | 0.225 @633 nm | 21        |
| 3      | CaCO <sub>3</sub> | 0.172 @589 nm | 22        |
| 4      | LiNbO₃            | 0.074 @546 nm | 23        |

Table S9. Birefringence values for selected commercial birefringent crystals.



Fig. S1 One-dimensional (1D)  $[(4-HP)(4-H_2P)][3-pySO_3]_{\infty}$  chains in compound 1.



Fig. S2 The two-dimensional (2D)  $[4-AP(3-pySO_3)]_{\infty}$  layers in compound 2.



**Fig. S3**  $\pi$ - $\pi$  interactions in (a) compound **1** and (b) compound **2**.



Fig. S4 Simulated and experimental PXRD patterns of compound 2.



Fig. S5 IR spectra of (a) compound 1 and (b) compound 2.



Fig. S6 TGA diagrams of (a) compound 1 and (b) compound 2.



Fig. S7 Experimental band gaps for (a) compound 1 and (b) compound 2.



Fig. S8 Calculated band gaps for (a) compound 1 and (b) compound 2.



**Fig. S9** ELF diagrams of (a)  $[4-AP]^+$  and (b)  $[3-pySO_3]^-$  groups in compound **2**.



Fig. S10 Thickness of compound 1 crystal for birefringence measurement.



Fig. S11 Thickness of compound 2 crystal for birefringence measurement.



**Fig. S12** Dihedral angle between  $[3-pySO_3]^-$  groups in (a) Li(3-pySO<sub>3</sub>)·H<sub>2</sub>O and (b) compound **1**.



**Fig. S13** (a) Dihedral angle between  $[3-pySO_3]^-$  and  $[4-HP/4-H_2P]^+$  in compound **1**; (b) Dihedral angle between  $[3-pySO_3]^-$  and  $[4-AP]^+$  in compound **2**.

## References

- 1 J. Chen, M. B. Xu, H. Y. Wu, J. Y. Wu and K. Z. Du, *Angew. Chem.-Int. Edit.*, 2024, **63**, e202411503.
- 2 M.-B. Xu, Q.-Q. Chen, B.-X. Li, K.-Z. Du and J. Chen, *Chin. Chem. Lett.*, 2024, DOI: 10.1016/j.cclet.2024.110513.
- 3 Y. Shen, L. Ma, G. Dong, H. Yu and J. Luo, *Inorg. Chem. Front.*, 2023, **10**, 2022-2029.
- 4 H. Jia, D. Xu, Z. Li, M. Arif, Y. Jiang and X. Hou, *Inorg. Chem. Front.*, 2024, **11**, 8331-8338.
- 5 M.-B. Xu, J. Chen, H.-Y. Wu, J.-J. Li, N. Yu, M.-F. Zhuo, F.-F. Mao and K.-Z. Du, *Inorg. Chem. Front.*, 2024, **11**, 4307-4317.
- 6 L. Liu, C. L. Hu, Z. Bai, F. Yuan, Y. Huang, L. Zhang and Z. Lin, Chem. Commun., 2020, 56, 14657-14660.
- 7 D. Dou, Q. Shi, Y. Bai, C. Chen, B. Zhang and Y. Wang, *Mat. Chem. Front.*, 2023, **7**, 5924-5931.
- 8 Z. P. Zhang, X. Liu, R. X. Wang, S. Zhao, W. J. He, H. Y. Chen, X. B. Deng, L. M. Wu, Z. Zhou and L. Chen, *Angew. Chem.-Int. Edit.*, 2024, **63**, e202408551.
- 9 H. Fan, C. Lin, F. Liang, H. Tian, S. Huang, Y. Zhou, S. Ke, B. Li, N. Ye and M. Luo, *ACS Appl. Mater. Interfaces*, 2022, **14**, 32270-32278.
- 10 H. L. Zhang, D. X. Jiao, X. F. Li, C. He, X. M. Dong, K. Huang, J. H. Li, X. T. An, Q. Wei and G. M. Wang, *Small*, 2024, **20**, e2401464.
- 11 C. Hu, C. Shen, H. Zhou, J. Han, Z. Yang, K. R. Poeppelmeier, F. Zhang and S. Pan, *Small Struct.*, 2024, 5, 2400296.
- 12 M. Liang, Y. Zhang, E. Izvarin, M. J. Waters, J. M. Rondinelli and P. S. Halasyamani, *Chem. Mat.*, 2024, **36**, 2113-2123.
- 13 H. Sha, D. Yang, Y. Shang, Z. Wang, R. Su, C. He, X. Yang and X. Long, *Chin. Chem. Lett.*, 2024, DOI: 10.1016/j.cclet.2024.109730.
- 14 H. Tian, C. Lin, X. Zhao, S. Fang, H. Li, C. Wang, N. Ye and M. Luo, *Mater. Today Phys.*, 2022, 28, 100849.
- 15 M. Zhang, B. Zhang, D. Yang and Y. Wang, Inorg. Chem. Front., 2022, 9, 6067-6074.
- 16 Y. Liu, X. Liu, Z. Xiong, B. Liu, J. Xu, L. Li, S. Zhao, Z. Lin, M. Hong and J. Luo, *Inorg. Chem.*, 2021, **60**, 14544-14549.
- 17 Y. Song, C. Lin, X. Zhao, T. Yan, N. Ye, H. Tian and M. Luo, Inorg. Chem. Front., 2024, 11, 4329-4335.
- X. Wang, Y. Li, Z. Chen, J. Lee, F. Zhang, K. R. Poeppelmeier, S. Pan and K. M. Ok, *Small Struct.*, 2023, 4, 2300274.
- 19 Z. Yu, Q. Ding, Y. Jiang, W. Huang, C. Yang, S. Zhao and J. Luo, Inorg. Chem. Front., 2024, 11, 107-113.
- 20 J. R. DeVore, J. Opt. Soc. Am., 1951, 41, 416-419.
- 21 H. Luo, T. Tkaczyka, R. Sampsonb and E. L. Dereniaka, *Semicond. Photodetectors III*, 2006, **6119**, 136-142.
- 22 G. Ghosh, Opt. Commun., 1999, 163, 95-102.
- 23 D. E. Zelmon and D. L. Small, J. Opt. Soc. Am. B, 1997, 14, 3319-3322.