Supporting Information

Asymmetric synthesis of metallocenes with planar and central chirality by rhodium-catalyzed desymmetrization reactions

Nan-Nan Hang,^{a,b} En-Guang Tong,^{a,b} Ting Qi,^c Chao Sun,^a and Jialin Ming^{*a}

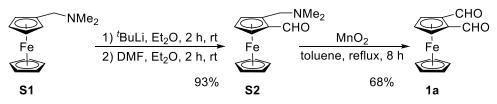
^aNatural Products Chem-Bio Innovation Center, College of Food and Biological Enginering, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu 610016, China ^bInner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021 ^cSchool of Pharmacy, Chengdu University, Chengdu 610106, China

*Email: mingjialin@imu.edu.cn

Contents

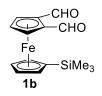
1.	General method				
2.	Materials4				
3.	Preparation of 1,2-diformylmetallocenes				
4.	A typical procedure for Rh-catalyzed desymmetric addition of organoboronic				
acids	to 1,2-diformylmetallocenes (Table 1, entry 1)7				
5.	A typical procedure for kinetic resolution of 2-substituted 1-formylferrocenes				
(Sche	me 4)				
6.	Optimization of the reaction conditions9				
7.	Synthetic transformations11				
7.1	Synthesis of Josiphos-type ligands11				
7.2	Synthesis of Josiphos without central chirality12				
7.3	Synthesis of Josiphos, PPFA, and other phosphorous ligands13				
7.4	Palladium-catalyzed asymmetric allylic alkylation16				
8.	Characterization of the products				
9.	Single crystal x-ray diffraction date for compound 3ah(CCDC 2403094) 38				
10.	References				
11.	Chiral HPLC charts and NMR spectra 41				

1. <u>General method</u>

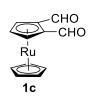

All air-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or argon. NMR spectra were recorded on Bruker spectrometer AV 600MHz, QNP probe (600 MHz for ¹H, 150 MHz for ¹³C, and 243 MHz for ³¹P). Chemical shifts are reported in δ (ppm) referenced to the residual solvent peak of CHCl₃ (δ 7.26) for ¹H NMR spectroscopy and CDCl₃ (δ 77.0) for ¹³C NMR spectroscopy. The following abbreviations are used to describe the multiplicities; s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, m: multiplet, br: broad. Coupling constants are reported in Hertz (Hz). Optical rotations were measured on an Anton Paar MCP-4100. High resolution mass spectra (HRMS) (ESI) were obtained on a Bruker microTOF II spectrometer. Matrix-Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectra were measured on an AXIMA Performance spectrometer. For thin layer chromatography (NUO TAI precoated TLC plates (SHF254) were used, and compounds were visualized with a UV light at 254 nm TLC). Further visualization was achieved by staining with KMnO₄ followed by heating. Flash column chromatography was performed with Silica gel (SANPONT). Enantiomeric excesses (ee) were determined by HPLC analysis on Shimadzu (LC-40) HPLC and Shimazu (LC-16) HPLC with Daicel chiral columns.

2. <u>Materials</u>

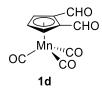
N,N-dimethylaminomethylferrocene, N,N-dimethylaminomethylruthenocene, 1dimethylaminomethyl-1'-trimethylsilylferrocene, tetrabutylammonium fluoride, tricarbonyl[(1,2,3,4,5- η)-1-[(dimethylamino)methyl]-2,4-cyclopentadien-1-yl]manganese, chlorotrimethylsilane, chlorodiphenylphosphine, hydrogen peroxide (30 wt.% in H₂O), methylmagnesium bromide, phenylmagnesium bromide, sodium borohydride, diphenylphosphine, sodium iodide, triethoxysilane, titanium tetraisopropanolate, 4dimethylaminopyridine, dicyclohexylphosphine, dimethylamine, tetrabutylammonium fluoride, organoboronic acids **2a**–**2t** were purchased and used as received. Tetrahydrofuran, ethyl ether, methylene chloride, isopropanol, *tert*-butanol and toluene were distilled over benzophenone ketyl under Ar.


 $[RhCl(coe)_2]_2$,¹ $[RhCl((R,R)-Fc-tfb)]_2$,² 1e (CAS No. 146291-53-4),³ 1f (CAS No. 854497-34-0),⁴ 1g (CAS No. 934276-76-3),⁵ and 21⁶ were prepared according to the reported procedures.

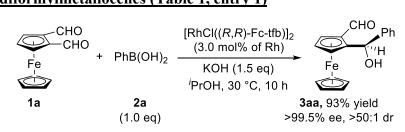
3. <u>Preparation of 1,2-diformylmetallocenes</u>



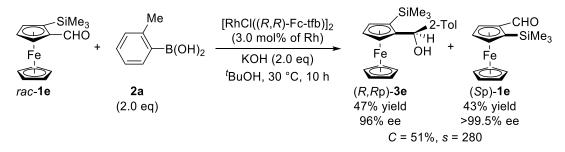
Under argon, to a solution of *N*,*N*-dimethylaminomethylferrocene (**S1**, 452.2 mg, 1.86 mmol, 1.0 equiv) in Et₂O (25 mL), 'BuLi (1.3 M in heptane, 2.2 mL, 2.79 mmol, 1.5 equiv) was added dropwise at 0 °C, and the mixture was stirred at room temperature for 2 h. DMF (271.9 mg, 3.72 mmol, 2.0 equiv) was added to the mixture. The mixture was stirred at room temperature for 2 h, quenched with H₂O (5.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl ether/triethylamine = 10:1:1) to give compound **S2** (93% yield, 469.1 mg, 1.73 mmol) as a red oil. ¹**H NMR** (600 MHz, CDCl₃): δ 10.10 (s, 1H), 4.78 (s, 1H), 4.61 (s, 1H), 4.55 (s, 1H), 4.22 (s, 5H), 3.83 (d, *J* = 13.0 Hz, 1H), 3.34 (d, *J* = 13.0 Hz, 1H), 2.21 (s, 6H). The experimental data are in agreement with the literature report.⁷


Under argon, a solution of compound S2 (317.2 mg, 1.17 mmol, 1.0 equiv) in toluene (30 mL) was added to activated MnO₂ (2.101 g, 23.4 mmol, 20.0 equiv). The mixture was stirred at reflux for 8 h and then filtered over Celite 545. The organic layers were concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl ether = 5:1) to give compound **1a** (68% yield, 193.6 mg, 0.80 mmol) as a red solid. ¹H NMR (600 MHz, CDCl₃): δ 10.4 (s, 2H), 5.21 (s, 2H), 4.94 (s, 1H), 4.40 (s, 5H). The experimental data are in agreement with the literature report.⁷

Compound 1b: (66% yield, 103.7 mg, 0.33 mmol, a red solid, $R_f = 0.3$. (eluent: hexane/ethyl acetate = 5:1)). It was synthesized from compound 1-dimethylaminomethyl-1'-trimethylsilylferrocene according to the procedure for compound **1a** in 0.50 mmol scale. **¹H NMR** (600 MHz, CDCl₃): δ 10.4 (s, 2H), 5.16 (d, *J* = 2.8 Hz, 2H), 4.88 (s, 1H), 4.60 (s, 2H), 4.29 (s, 2H), 0.22 (s, 9H). The experimental data are in agreement with the literature report.⁷



Compound 1c: (58% yield, 83.3 mg, 0.29 mmol, a yellow solid, $R_f = 0.3$. (eluent: hexane/ethyl acetate = 5:1)). It was synthesized from compound *N*,*N*-dimethylaminomethylruthenocene according to the procedure for compound **1a** in 0.50 mmol scale. ¹**H NMR** (600 MHz, CDCl₃): δ 10.1 (s, 2H), 5.39 (d, *J* = 2.7 Hz, 2H), 5.10 (t, *J* = 2.7 Hz, 1H), 4.77 (s, 5H). The experimental data are in agreement with the literature report.⁷


Compound 1d: (48% yield, 62.4 mg, 0.24 mmol, a dark green solid, $R_f = 0.4$. (eluent: hexane/ethyl acetate = 5:1)). It was synthesized from compound tricarbonyl[(1,2,3,4,5- η)-1-[(dimethylamino)methyl]-2,4-cyclopentadien-1-yl]-manganese according to the procedure for compound **1a** in 0.50 mmol scale. ¹H NMR (600 MHz, CDCl₃): δ 10.0 (s, 2H), 5.66 (s, 2H), 4.95 (s, 1H). The experimental data are in agreement with the literature report.⁷

4. <u>A typical procedure for Rh-catalyzed desymmetric addition of organoboronic</u> <u>acids to 1,2-diformylmetallocenes (Table 1, entry 1)</u>

An oven-dried Schlenk tube was charged with **1a** (24.2 mg, 0.10 mmol, 1.0 equiv), $[RhCl((R,R)-Fc-tfb)]_2$ (2.19 mg, 1.5 µmol, 3.0 mol% of Rh), PhB(OH)₂ (12.2 mg, 0.10 mmol, 1.0 equiv), KOH (8.40 mg, 0.15 mmol, 1.5 equiv), and isopropanol (1.0 mL) under argon. The tube was placed in a preheated oil bath at 30 °C. The mixture was stirred at 30 °C for 10 h before extracted with ethyl acetate. The organic layers were concentrated under vacuum. The residue was subjected to column chromatography on silica gel to give compound (*R*,*R*p)-**3aa** (93% yield, 29.8 mg, 0.093 mmol) as a red solid, $R_f = 0.4$ (hexane/ethyl acetate (5/1)).

5. <u>A typical procedure for kinetic resolution of 2-substituted 1-formylferrocenes</u> (Scheme 4)

An oven-dried Schlenk tube was charged with compound *rac*-1e (28.6 mg, 0.10 mmol, 1.0 equiv), $[RhCl((R,R)-Fc-tfb)]_2$ (2.19 mg, 1.5 µmol, 3.0 mol% Rh), 2methyphenylboronic acid (27.2 mg, 0.20 mmol, 2.0 equiv), KOH (11.2 mg, 0.20 mmol, 2.0 equiv), and *tert*-butanol (1.0 mL) under argon. The tube was placed in a preheated oil bath at 30 °C. The mixture was stirred at 30 °C for 10 h before extracted with ethyl acetate. The organic layers were concentrated under vacuum. The residue was subjected to column chromatography on silica gel to give compound (*R*,*R*p)-**3e** (47% yield, 17.8 mg, 0.047 mmol) as a yellow solid, $R_f = 0.60$ (hexane/ethyl acetate (20/1)), and the recovered compound (*S*p)-**1e** (43% yield, 12.3 mg, 0.043 mmol) as a red solid, $R_f = 0.40$ (hexane/ethyl acetate (20/1)). (Calculated conversion, *C*. = ee₁/(ee₁+ee₃), selectivity factor, *s* = ln[(1-*C*)(1-ee₁)]/ln[(1-*C*)(1+ee₁)]).

6. **Optimization of the reaction conditions**

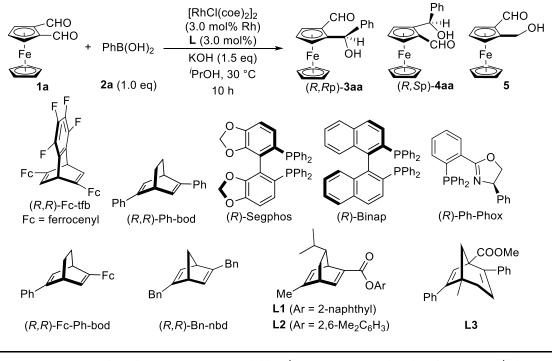


Table S1 Rh-catalyzed addition to metallocene dicarbaldehydes 1a: evaluation of ligands^a.

entry	Rh catalyst	yield (%) ^b $3aa + 4aa$	ratio ^c of 3aa/4aa	ee ^d of 3aa
1	$[RhCl(coe)_2]_2 + (R,R)$ -Fc-tfb	93	>50:1	>99.5
2	$[RhCl(coe)_2]_2 + (R,R)-Ph-bod$	44	67:33	51
3	$[RhCl(coe)_2]_2 + (R)$ -Segphos	<5		
4	$[RhCl(coe)_2]_2 + (R)$ -Binap	11	63:37	24
5	$[RhCl(coe)_2]_2 + (R)$ -Ph-Phox	10	80:20	0
6	$[RhCl(coe)_2]_2 + (R,R)$ -Fc-Ph-bod	<5		
7	[RhCl(coe) ₂] ₂ +Bn-nbd	19	79:21	21
8	$[RhCl(coe)_2]_2 + L1$	6	85:15	40
9	$[RhCl(coe)_2]_2 + L2$	6	88:12	9
10	$[RhCl(coe)_2]_2 + L3$	<5		
11	PhZnCl	<5		

^aReaction conditions: **1a** (0.10 mmol), **2a** (0.10 mmol), [RhCl(coe)₂]₂ (1.5 mol% dimer, 3 mol% Rh), ligand (3.0 mol%), KOH (0.15 mmol), and 2-Propanol (1.0 mL) at 30 °C (oil bath) for 10 h. ^bIsolated yield. ^cDetermined by ¹H NMR spectroscopy. ^d % ee was determined by HPLC on a chiral stationary phase column.

CHO CHO Fe 1a	 PhB(OH)₂ 2a (1.0 eq) 	[RhCl((<i>R</i> , <i>R</i>)-Fc-tfb)] ₂ (3.0 mol% of Rh) KOH (1.5 eq) ^{<i>i</i>} PrOH, T °C 10 h	(R,Rp)-3aa	Ph OH CHO Fe 5
entry	T (°C)	conv ^{<i>b</i>} of 1a (%)	yield (%) ^c 3aa + 4aa	ratio ^b of 3aa/4aa
1	0	85	80	>50:1
2	30	100	93	>50:1
3	60	100	<5	

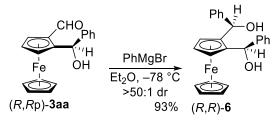
Table S2 Rh-catalyzed addition to metallocene dicarbaldehydes 1a: screening of temperatures^a.

^aReaction conditions: **1a** (0.10 mmol), **2a** (0.10 mmol), $[RhCl((R,R)-Fc-tfb)]_2$ (3.0 mol% Rh), KOH (0.15 mmol), and 2-propanol (1.0 mL) at T (°C) (oil bath) for 10 h. ^bDetermined by ¹H NMR spectroscopy. ^cIsolated yield.

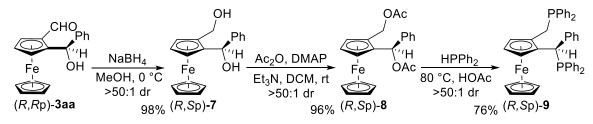
Fe 1a	PhB(OH) ₂ 2a (1.0 eq)	[RhCl((<i>R</i> , <i>R</i>)-Fc-tfb)] ₂ (3.0 mol% of Rh) base (1.5 eq) ^{<i>i</i>} PrOH, 30 °C 10 h	CHO Ph Fe OH (<i>R</i> , <i>R</i> p)-3aa	Pn OH CHO Fe (<i>R</i> , Sp)-4aa	
entry	base	conv^b of $\mathbf{1a}$ (%) yield (%) ^c 3a a	a + 4aa ra	atio ^b of 3aa/4aa
1	KOH	100	93		>50:1
2	K ₂ CO ₃	37	33		>50:1
3	Et ₃ N	<5			

 Table S3 Rh-catalyzed addition to metallocene dicarbaldehydes 1a: screening of bases^a.

^aReaction conditions: **1a** (0.10 mmol), **2a** (0.10 mmol), $[RhCl((R,R)-Fc-tfb)]_2$ (3.0 mol% Rh), base (0.15 mmol), and 2-Propanol (1.0 mL) at 30 °C (oil bath) for 10 h. ^bDetermined by ¹H NMR spectroscopy. ^cIsolated yield.


Table S4 Rh-catalyzed addition to metallocene dicarbaldehydes 1a: solvents ^a	screening of
solvents _	Ph

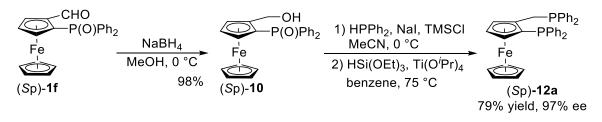
	O HO + PhB(OH) ₂ 2a (1.0 eq)	[RhCl((<i>R</i> , <i>R</i>)-Fc-tfb)] ₂ (3.0 mol% of Rh) KOH (1.5 eq) solvent 30 °C, 10 h	CHO P 	h Fe (<i>R</i> ,Sp)-4aa	сно он Fe 5
entry	solvent	conv^{b} of $\mathbf{1a}$ (%)	yield (%)° 3aa +	ratio ^b of 3aa/4aa	ee ^d of 3aa
1	ⁱ PrOH	100	93	>50:1	>99.5
2	'BuOH	100	94	>50:1	96
3	MeOH	22	20	>50:1	79
4	dioxane/H ₂ O (10/1)	92	90	>50:1	79


^aReaction conditions: **1a** (0.10 mmol), **2a** (0.10 mmol), [RhCl((R,R)-Fc-tfb)]₂ (3.0 mol% Rh), KOH (0.15 mmol), and solvent (1.0 mL) at 30 °C (oil bath) for 10 h. ^bDetermined by ¹H NMR spectroscopy. ^cIsolated yield. ^{d%} ee was determined by HPLC on a chiral stationary phase column.

7. <u>Synthetic transformations</u>

7.1 Synthesis of Josiphos-type ligands

Under argon, to a solution of compound (R,Rp)-3aa (160.1 mg, 0.50 mmol, 1.0 equiv, >99.5% ee) in Et₂O (5.0 mL), phenymagnesium bromide (0.77 M in THF, 1.3 mL, 2.0 equiv) was added dropwise at -78 °C, and the mixture was stirred at -78 °C for 2 h. The mixture was allowed to warm to room temperature slowly and stirred at room temperature for 8 h, quenched with H₂O (5.0 mL), and extracted with dichloromethane. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue purified flash column chromatography was by on silica gel (hexane/dichloromethane = 20:1) to give compound (R,R)-6 (93% yield, 185.2 mg, 0.46 mmol) as a brown solid.

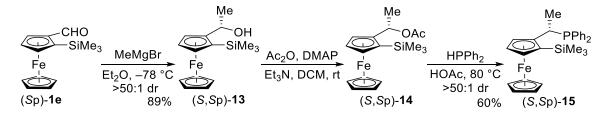

Under argon, to a solution of compound (R,Rp)-**3aa** (121.7 mg, 0.38 mmol, 1.0 equiv) in MeOH (10 mL), NaBH₄ (21.6 mg, 0.57 mmol, 1.5 equiv) was added in several portions. The mixture was stirred at 0 °C for 1 h, quenched with H₂O (2.0 mL), and extracted with dichloromethane. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/dichloromethane = 5:1) to give compound (R,Sp)-7 (98% yield, 120.1 mg, 0.37 mmol) as an orange solid.

An oven-dried Schlenk tube was charged with compound (*R*,*S*p)-7 (96.6 mg, 0.30 mmol, 1.0 equiv), DMAP (29.8 mg, 0.24 mmol, 0.8 equiv), Et₃N (242.9 mg, 2.4 mmol, 8.0 equiv), and DCM (5.0 mL) under argon. Ac₂O (245.2 mg, 2.4 mmol, 8.0 equiv) was slowly

added to the Schlenk tube at room temperature. The mixture was stirred for 8 h, quenched with H₂O (3.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 5:1) to give compound (*R*,*S*p)-**8** (96% yield, 117.2 mg, 0.29 mmol) as a yellow oil.

Under argon, to a solution of compound (*R*,*S*p)-**8** (101.6 mg, 0.25 mmol, 1.0 equiv) in HOAc (2.0 mL), HPPh₂ (465.5 mg, 2.5 mmol, 10 equiv) was added dropwise. The mixture was stirred at 80 °C for 12 h, quenched with saturated NaHCO₃ solution (3.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 5:1) to give compound (*R*,*S*p)-**9** (76% yield, 125.1 mg, 0.19 mmol) as a yellow solid.

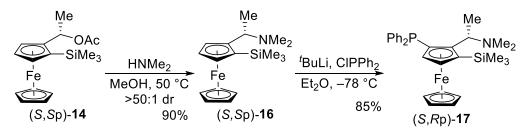
7.2 Synthesis of Josiphos without central chirality



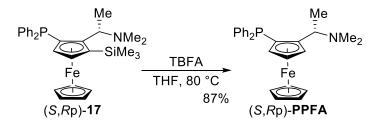
Under argon, to a solution of compound (*Sp*)-**1f** (83.0 mg, 0.20 mmol, 1.0 equiv) in MeOH (5.0 mL), NaBH₄ (15.2 mg, 0.40 mmol, 2.0 equiv) was added in several portions. The mixture was stirred at 0 °C for 2 h, quenched with H₂O (1.0 mL), and extracted with dichloromethane. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/dichloromethane = 2:1) to give compound (*Sp*)-**10** (98% yield, 79.1 mg, 0.19 mmol) as a yellow solid.

An oven-dried Schlenk tube was charged with compound (*Sp*)-**10** (62.4 mg, 0.15 mmol, 1.0 equiv), NaI (45.0 mg, 0.30 mmol, 2.0 equiv), and MeCN (5.0 mL) under argon. Chlorotrimethylsilane (40.8 mg, 0.38 mmol, 2.5 equiv) was added. After stirring for 10 min, HPPh₂ (56.0 mg, 0.30 mmol, 2.0 equiv) was added dropwise at 0 °C. The mixture was stirred at room temperature for 8 h, quenched with saturated NaHCO₃ solution (2.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄,

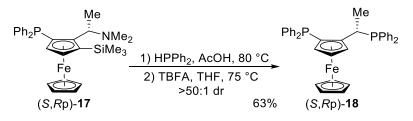
filtered, and concentrated under vacuum without further purification. Under argon, to a solution of the residue in benzene (5.0 mL), titanium tetraisopropanolate (42.6 mg, 0.15 mmol 1.0 equiv) and triethoxysilane (266.1 mg, 1.62 mmol, 10.8 equiv) was added dropwise. The mixture was stirred at 75 °C for 12 h, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 20:1) to give compound (*Sp*)-**12a** (79% yield, 67.4 mg, 0.12 mmol) as a red solid. The compounds (*Sp*)-**12b** and compound (*Sp*)-**12c** were synthesized using the same procedure.


7.3 Synthesis of Josiphos, PPFA, and other phosphorous ligands

Under argon, to a solution of compound (*S*p)-1e (57.2 mg, 0.20 mmol, 1.0 equiv, >99.5% ee) in Et₂O (5.0 mL), MeMgBr (3.0 M in THF, 0.20 mL, 3.0 equiv) was added dropwise at -78 °C. The mixture was slowly warmed to room temperature and stirred at room temperature for 8 h. The mixture was quenched with H₂O (5.0 mL) and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 20:1) to give compound (*S*,*S*p)-13 (89% yield, 53.8 mg, 0.18 mmol) as a yellow solid.


An oven-dried Schlenk tube was charged with compound (*S*,*S*p)-**13** (45.3 mg, 0.15 mmol, 1.0 equiv), DMAP (14.7 mg, 0.12 mmol, 0.8 equiv), Et₃N (121 mg, 1.2 mmol, 8.0 equiv), and DCM (5.0 mL) under argon. Ac₂O (30.6 mg, 0.30 mmol, 2.0 equiv) was slowly added to the mixture at room temperature. The mixture was stirred at room temperature for 8 h, quenched with H₂O (2.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. Compound (*S*,*S*p)-**14** was obtained as a red oil, which was used for the next step without further purification.

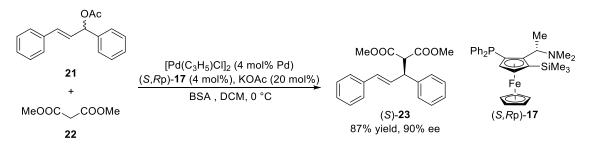
Under argon, to a solution of compound (*S*,*S*p)-14 (34.4 mg, 0.10 mmol, 1.0 equiv) in HOAc (2.0 mL), HPPh₂ (37.2 mg, 0.20 mmol, 2.0 equiv) was added dropwise. The mixture was stirred at 80 °C for 12 h, quenched with saturated NaHCO₃ solution (1.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 20:1) to give compound (*S*,*S*p)-15 (60% yield, 28.2 mg, 0.060 mmol) as an orange solid.



Under argon, to a solution of compound (*S*,*S*p)-14 (68.9 mg, 0.20 mmol, 1.0 equiv) in MeOH (5.0 mL), HNMe₂ (40 wt.% in H₂O, 0.20 mL, 10 equiv) was added. The mixture was stirred at 50 °C for 6 h, quenched with phosphoric acid (1.0 M, 0.10 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ ethyl acetate/ triethylamine = 20:1:1%) to give compound (*S*,*S*p)-16 (90% yield, 59.2 mg, 0.18 mmol) as an orange oil.

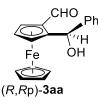
Under argon, to a solution of compound (*S*,*S*p)-16 (49.5 mg, 0.15 mmol, 1.0 equiv) in Et₂O (5.0 mL), 'BuLi (3.0 M in hexane, 76.7 μ L, 0.23 mmol, 1.5 equiv) was added dropwise at -78 °C, and the mixture was stirred at room temperature for 2 h. ClPPh₂ (66.2 mg, 0.30 mmol, 2.0 equiv) was added to the mixture. The mixture was stirred at room temperature for 4 h, quenched with H₂O (1.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate/triethylamine = 10:1:1%) to give compound (*S*,*R*p)-17 (85% yield, 65.4 mg, 0.13 mmol) as a red solid.

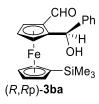
To a solution of (S,Rp)-17 (51.3 mg, 0.10 mmol, 1.0 equiv) in THF (2.0 mL), TBFA (1.0 M in THF, 0.50 mL, 5.0 equiv) was added. The mixture was stirred at 80 °C for 8 h, quenched with H₂O (2.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 20:1) to give compound (*S*,*R*p)-**PPFA** (87% yield, 38.4 mg, 0.087 mmol) as a red solid.



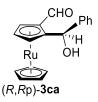
Under argon, to a solution of compound (*S*,*S*p)-**17** (25.7 mg, 0.05 mmol, 1.0 equiv) in HOAc (2.0 mL), HPPh₂ (18.6 mg, 0.10 mmol, 2.0 equiv) was added dropwise. The mixture was stirred at 80 °C for 12 h, quenched with saturated NaHCO₃ solution (2.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. To a solution of the residue in THF (4.0 mL), TBFA (1.0 M in THF, 0.25 mL, 5.0 equiv) was added. The mixture was stirred at 75 °C for 8 h, quenched with H₂O (1.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum) was added. The mixture was stirred at 75 °C for 8 h, quenched with H₂O (1.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 20:1) to give compound (*S*,*R*p)-**18** (63% yield, 18.3 mg, 0.031 mmol) as a yellow solid.

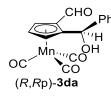
Under argon, to a solution of compound (*S*,*S*p)-**17** (25.9 mg, 0.05 mmol, 1.0 equiv) in HOAc (2.0 mL), HPCy₂ (19.9 mg, 0.10 mmol, 2.0 equiv) was added dropwise. The mixture was stirred at 80 °C for 12 h, quenched with saturated NaHCO₃ solution (2.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. To a solution of the residue in THF (4.0 mL), TBFA (1.0 M in THF, 0.25 mL, 5.0 equiv) was added. The mixture was stirred at 80 °C for 8 h, quenched with H₂O (1.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum) was added. The mixture was stirred at 80 °C for 8 h, quenched with H₂O (1.0 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 20:1) to give compound (*S*,*R*p)-**19** (75% yield, 21.9 mg, 0.038 mmol) as a red solid.

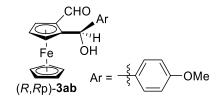

7.4 Palladium-catalyzed asymmetric allylic alkylation


An oven-dried Schlenk tube was charged with compound ligand (*S*,*R*p)-**17** (2.1 mg, 0.004 mmol, 4 mol%), $[Pd(C_3H_5)Cl]_2$ (1.4 mg, 0.004 mmol, 4 mol%), and DCM (1.0 mL) under argon. The mixture was stirred at room temperature for 20 min. Compound **21** (25.2 mg, 0.10 mmol, 1.0 equiv) was added. After an additional 20 min, dimethyl malonate **22** (39.6 mg, 0.30 mmol, 3.0 equiv), BSA (40.7 mg, 0.20 mmol, 2.0 equiv), and KOAc (1.90 mg, 0.02 mmol, 20 mol%) were added. The mixture was stirred at 0 °C for 6 h, quenched with saturated NH₄Cl solution, and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was

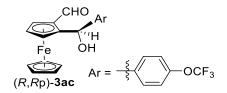
purified by flash column chromatography on silica gel (hexane/ethyl acetate = 10:1) to give compound (*S*)-**23** (87% yield, 28.2 mg, 0.087 mmol) as a colorless solid.


8. <u>Characterization of the products</u>

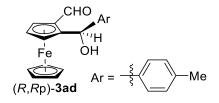

Compound (*R*,*R***p**)-3aa. (Table 2, entry 1, 29.8 mg, 93% yield, 0.093 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IB N-5 column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 16.7$ min, $t_{minor} = 14.9$ min); $[\alpha]^{25}_{D} -7.4 \times 10^2$ (*c* 0.38, CHCl₃) for >99.5% ee. ¹H NMR (600 MHz, CDCl₃) δ 9.96 (s, 1H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 5.80 (s, 1H), 4.71–4.70 (m, 1H), 4.50 (d, *J* = 2.3 Hz, 1H), 4.48 (t, *J* = 2.7 Hz, 1H), 4.39 (s, 5H), 4.25 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 195.8, 142.3, 128.1, 127.6, 126.7, 97.4, 74.9, 73.1, 71.5, 70.4, 69.5, 69.1; HRMS (ESI) calcd for C₁₈H₁₆FeO₂Na [M+Na]⁺ 343.0392, found 343.0396.


Compound (*R*,*R***p**)-3ba. (Table 2, entry 2, 34.5 mg, 88% yield, 0.088 mmol, a red solid, eluent: hexane /ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 9.2$ min, $t_{minor} = 8.1$ min); $[\alpha]^{25}_D - 6.6 \times 10^2$ (*c* 0.12, CHCl₃) for 94% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.96 (s, 1H), 7.49 (d, J = 7.0 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 5.81 (s, 1H), 4.77 (s, 1H), 4.65 (s, 1H), 4.60 (s, 1H), 4.43 (t, J = 2.6 Hz, 1H), 4.35–4.34 (m, 2H), 4.29 (s, 1H), 4.12 (s, 1H), 0.19 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): δ 195.6, 142.4, 128.2, 127.6, 126.7, 97.0, 75.1, 74.8, 74.5, 74.1, 73.5, 73.4, 71.8, 69.6, -0.4; HRMS (ESI) calcd for C₂₁H₂₄FeO₂SiNa [M+Na]⁺ 415.0787, found 415.0780.

Compound (*R*,*R***p**)-3ca. (Table 2, entry 3, 28.1 mg, 77% yield, 0.077 mmol, a yellow solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IJ column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 31.1$ min, $t_{minor} = 38.5$ min); $[\alpha]^{25}D - 3.4 \times 10^2$ (*c* 0.20, CHCl₃) for 86% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.82 (s, 1H), 7.45 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.28 (t, J = 7.3 Hz, 1H), 5.74 (s, 1H), 4.98 (s, 1H), 4.75 (s, 5H), 4.72 (t, J = 2.6 Hz, 1H), 4.50 (s, 1H), 3.83 (d, J = 2.3 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 192.0, 142.0, 128.1, 127.6, 126.6, 100.7, 81.4, 76.0, 74.1, 73.1, 72.9, 68.4; HRMS (ESI) calcd for C₁₈H₁₆O₂RuNa [M+Na]⁺ 389.0086, found 389.0095.

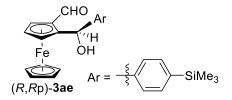


Compound (*R*,*R***p**)-3da. (Table 2, entry 4, 24.7 mg, 73% yield, 0.073 mmol, a deep green solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IJ column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 32.2$ min, $t_{minor} = 38.0$ min); $[\alpha]^{25}_{D} = -1.9 \times 10^2$ (*c* 0.17, CHCl₃) for 89% ee. ¹H NMR (600 MHz, CDCl₃) δ 9.61 (s, 1H), 7.48 (d, *J* =7.5 Hz, 2H), 7.38 (t, *J* =7.5 Hz, 2H), 7.33 (t, *J* =7.5 Hz, 1H), 5.93 (s, 1H), 5.38 (s, 1H), 4.89 (s, 1H), 4.70 (s, 1H), 3.51 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 222.2, 188.4, 141.4, 128.7, 128.5, 126.7, 114.8, 90.0, 87.9, 86.0, 80.0, 68.8; HRMS (ESI) calcd for C₁₆H₁₁MnO₅Na [M+Na]⁺ 360.9879, found 360.9882.

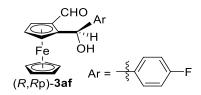


Compound (*R*,*R***p**)-3ab. (Table 2, entry 5, 30.1 mg, 86% yield, 0.086 mmol, a deep green solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC

(Chiralpak IB N-5 column, hexane/2-propanol = 90/10, 0.5 mL/min, 230 nm, t_{major} = 39.8 min, t_{minor} = 37.2 min); $[\alpha]^{25}_{D}$ -7.9×10² (*c* 0.12, CHCl₃) for >99.5% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.95 (s, 1H), 7.41 (d, *J* = 8.2 Hz, 2H), 6.90 (d, *J* = 8.2 Hz, 2H), 5.77 (s, 1H), 4.70 (s, 1H), 4.48 (t, *J* = 2.9 Hz, 1H), 4.38 (s, 5H), 4.32 (s, 1H), 4.30 (s, 1H), 3.82 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 195.7, 159.1, 134.7, 127.9, 113.6, 97.6, 75.0, 74.7, 73.1, 71.4, 70.4, 69.2, 55.3; HRMS (ESI) calcd for C₁₉H₁₈FeO₃Na [M+Na]+ 373.0497, found 373.0503.

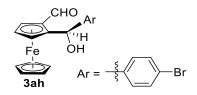


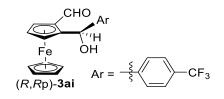
Compound (*R*,*R***p**)-3ac. (Table 2, entry 6, 33.1 mg, 82% yield, 0.082 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IC column, hexane/2-propanol = 80/20, 1.0 mL/min, 230 nm, $t_{major} = 6.8$ min, $t_{minor} = 5.7$ min); $[\alpha]^{25}D - 5.8 \times 10^2$ (*c* 0.070, CHCl₃) for 92% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.95 (s, 1H), 7.54 (d, *J* = 8.6 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 5.81 (s, 1H), 4.73–4.70 (m, 1H), 4.58 (d, *J* = 2.2 Hz, 1H), 4.50 (t, *J* = 2.7 Hz, 1H), 4.39 (s, 5H), 4.23 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 195.8, 148.6, 141.0, 128.2, 120.6, 120.5 (q, *J*_C, ¹⁹_F = 255.2 Hz), 96.9, 75.0, 74.6, 73.5, 71.6, 70.4, 68.9; HRMS (ESI) calcd for C₁₉H₁₅F₃FeO₃Na [M+Na]⁺ 427.0215, found 427.0218.



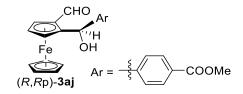
Compound (*R*,*R***p**)-3ad. (Table 2, entry 7, 28.4 mg, 85% yield, 0.085 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 16.2$ min, $t_{minor} = 14.6$ min); $[\alpha]^{25}_{D} - 6.0 \times 10^2$ (*c* 0.13, CHCl₃) for 99% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.96 (s, 1H), 7.38 (d, J = 7.6 Hz, 2H), 7.18 (d, J = 7.6 Hz, 2H), 5.77 (s, 1H), 4.70 (s, 1H), 4.48 (s, 1H), 4.38 (s, 5+1H), 4.28 (s, 1H), 2.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ


195.8, 139.4, 137.2, 128.9, 126.7, 97.5, 74.90, 74.88, 73.1, 71.5, 70.4, 69.4, 21.2. **HRMS** (ESI) calcd for C₁₉H₁₈FeO₂Na [M+Na]⁺ 357.0548, found 357.0551.

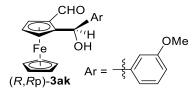

Compound (*R*,*R***p**)-3ae. (Table 2, entry 8, 34.1 mg, 87% yield, 0.087 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IJ column, hexane/2-propanol = 95/5, 0.8 mL/min, 230 nm, $t_{major} = 21.7$ min, $t_{minor} = 25.2$ min); $[\alpha]^{25}_{D} -6.3 \times 10^2$ (*c* 0.29, CHCl₃) for >99.5% ee. ¹H NMR (600 MHz, CDCl₃) δ 9.97 (s, 1H), 7.52 (d, *J* = 7.4 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 2H), 5.80 (s, 1H), 4.70 (s, 1H), 4.49 (s, 1H), 4.39 (s, 5H), 4.33 (s, 1+1H), -0.27 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 195.6, 142.9, 139.7, 133.2, 126.1, 97.2, 75.1, 74.7, 73.0, 71.5, 70.4, 69.6, -1.1. HRMS (ESI) calcd for C₂₁H₂₄FeO₂SiNa [M+Na]⁺ 415.0787, found 415.0791.


Compound (*R*,*R***p**)-3af. (Table 2, entry 9, 27.7 mg, 82% yield, 0.082 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 15.9$ min, $t_{minor} = 15.0$ min); $[\alpha]^{25}_D - 7.4 \times 10^2$ (*c* 0.18, CHCl₃) for 95% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.94 (s, 1H), 7.48 (dd, J = 8.5 Hz, 5.5 Hz, 2H), 7.06 (dd, J = 8.6 Hz, 8.5 Hz, 2H), 5.78 (s, 1H), 4.71 (s, 1H), 4.57 (s, 1H), 4.49 (t, J = 2.8 Hz, 1H), 4.38 (s, 5H), 4.22 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 195.8, 162.2 (d, J_C , ¹⁹_F = 244.0 Hz), 138.2 (d, J_C , ¹⁹_F = 3.2 Hz), 128.4 (d, J_C , ¹⁹_F = 8.0 Hz), 115.0 (d, J_C , ¹⁹_F = 21.2 Hz), 97.2, 74.9, 74.7, 73.4, 71.5, 70.4, 68.9; HRMS (ESI) calcd for C₁₈H₁₅FFeO₂Na [M+Na]⁺ 361.0298, found 361.0301.

Compound (*R*,*R***p**)-3ag. (Table 2, entry 10, 28.4 mg, 80% yield, 0.080 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 0.6 mL/min, 230 nm, $t_{major} = 36.5$ min, $t_{minor} = 30.8$ min); $[\alpha]^{25}_{D} - 6.9 \times 10^2$ (*c* 0.19, CHCl₃) for 96% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.94 (s, 1H), 7.45 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 5.78 (s, 1H), 4.71 (s, 1H), 4.63 (s, 1H), 4.49 (t, J = 2.6 Hz, 1H), 4.38 (s, 5H), 4.21 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 196.0, 140.8, 133.2, 128.3, 128.2, 97.0, 74.9, 73.5, 71.6, 71.2, 70.4, 68.9; HRMS (ESI) calcd for C₁₈H₁₅ClFeO₂Na [M+Na]⁺ 377.0002, found 377.0005.

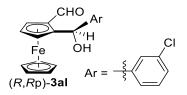


Compound (*R*,*R***p**)-3ah. (Table 2, entry 11, 31.1 mg, 78% yield, 0.078 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 19.7$ min, $t_{minor} = 16.8$ min); $[\alpha]^{25}D - 8.9 \times 10^2$ (*c* 0.15, CHCl₃) for 98% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.94 (s, 1H), 7.51 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 5.75 (s, 1H), 4.71 (s, 1H), 4.65 (s, 1H), 4.49 (t, J = 2.7 Hz, 1H), 4.38 (s, 5H), 4.20 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 196.0, 141.3, 131.3, 128.5, 121.4, 96.9, 74.9, 74.8, 73.6, 71.6, 70.4, 68.9; HRMS (ESI) calcd for C₁₈H₁₅BrFeO₂Na [M+Na]⁺ 420.9497, found 420.9508. The absolute configuration was determined by X–ray analysis (CCDC 2403094).

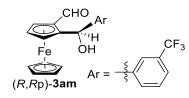


Compound (*R*,*R***p**)-3ai. (Table 2, entry 12, 29.5 mg, 76% yield, 0.076 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 13.5$ min,

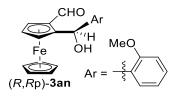
t_{minor} = 12.5 min); [α]²⁵_D –7.4×10² (*c* 0.14, CHCl₃) for 84% ee. ¹**H** NMR (600 MHz, CDCl₃): δ 9.96 (s, 1H), 7.64 (s, 2+2H), 5.86 (s, 1H), 4.73–4.71 (m, 1H), 4.69 (d, J = 2.2 Hz, 1H), 4.50 (t, J = 2.6 Hz, 1H), 4.39 (s, 5H), 4.19 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 195.9, 146.3, 129.8 (q, J_C ,¹⁹_F = 32.1 Hz), 127.1, 125.1 (q, J_C ,¹⁹_F = 3.8 Hz), 124.2 (q, J_C ,¹⁹_F = 270.3 Hz), 96.6, 75.0, 74.6, 73.6, 71.7, 70.5, 69.0; **HRMS (ESI)** calcd for C₁₉H₁₅F₃FeO₂Na [M+Na]⁺ 411.0266, found 411.0270.

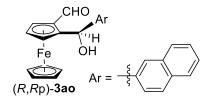


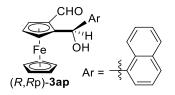
Compound (*R*,*R***p**)-3aj. (Table 2, entry 13, 30.3 mg, 80% yield, 0.080 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IC column, hexane/2-propanol = 80/20, 1.0 mL/min, 230 nm, $t_{major} = 22.6$ min, $t_{minor} = 18.9$ min); $[\alpha]^{25}_{D} - 7.6 \times 10^2$ (*c* 0.11, CHCl₃) for 89% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.95 (s, 1H), 8.06 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 5.83 (s, 1H), 4.82 (d, J = 2.2 Hz, 1H), 4.71 (dd, J = 2.6 Hz, 1.6 Hz, 1H), 4.48 (t, J = 2.7 Hz, 1H), 4.38 (s, 5H), 4.15 (s, 1H), 3.93 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 196.1, 167.0, 147.3, 129.5, 129.4, 126.8, 96.8, 75.0, 73.6, 71.6, 70.9, 70.5, 69.1, 52.1; HRMS (ESI) calcd for C₂₀H₁₈FeO₄Na [M+Na]⁺ 401.0447, found 401.0454.

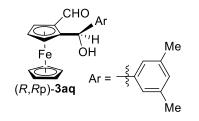


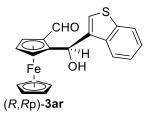
Compound (*R*,*R***p**)-3ak. (Table 2, entry 14, 27.3 mg, 78% yield, 0.078 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IB N-5 column, hexane/2-propanol = 90/10, 0.8 mL/min, 230 nm, $t_{major} = 34.9$ min, $t_{minor} = 41.7$ min); $[\alpha]^{25}_{D} -6.2 \times 10^2$ (*c* 0.19, CHCl₃) for 89% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.96 (s, 1H), 7.28 (t, *J* = 7.9 Hz, 1H), 7.09 (s, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 6.85 (dd, *J* = 8.2 Hz, 2.6 Hz, 1H), 5.77 (s, 1H), 4.71-4.69 (m, 1H), 4.52 (s, 1H), 4.49 (t, *J* = 2.6 Hz, 1H), 4.39 (s, 5H), 4.29 (s, 1H), 3.83 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 195.8,

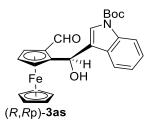

159.6, 143.9, 129.1, 119.2, 113.2, 112.2, 97.3, 74.9, 73.1, 71.5, 71.2, 70.4, 69.4, 55.2. **HRMS (ESI)** calcd for C₁₉H₁₈FeO₃Na [M+Na]⁺ 373.0497, found 373.0502.

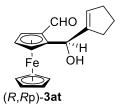

Compound (*R*,*R***p**)-3al. (Table 2, entry 15, 28.7 mg, 81% yield, 0.081 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 19.2$ min, $t_{minor} = 14.0$ min); $[\alpha]^{25}D - 8.3 \times 10^2$ (*c* 0.25, CHCl₃) for 89% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.94 (s, 1H), 7.54 (s, 1H), 7.36 (d, *J* = 6.9 Hz, 1H), 7.31–7.27 (m, 2H), 5.75 (s, 1H), 4.71 (s, 1H), 4.68 (s, 1H), 4.50 (t, *J* = 2.8 Hz, 1H), 4.39 (s, 5H), 4.22 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 195.9, 144.3, 134.1, 129.4, 127.7, 127.0, 125.1, 96.8, 74.9, 73.5, 71.6, 71.2, 70.4, 69.0. HRMS (ESI) calcd for C₁₈H₁₅ClFeO₂Na [M+Na]⁺ 377.0002, found 377.0007.


Compound (*R*,*R***p**)-3am. (Table 2, entry 16, 30.7 mg, 79% yield, 0.079 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 12.4$ min, $t_{minor} = 10.0$ min); $[\alpha]^{25}_D - 7.4 \times 10^2$ (*c* 0.14, CHCl₃) for 90% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.95 (s, 1H), 7.86 (s, 1H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 5.82 (s, 1H), 4.91 (s, 1H), 4.72 (s, 1H), 4.50 (t, *J* = 2.8 Hz, 1H), 4.39 (s, 5H), 4.10 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 196.1, 143.3, 130.6 (q, *J*_C,¹⁹_F = 32.0 Hz), 130.3, 128.5, 124.4 (q, *J*_C,¹⁹_F = 3.8 Hz), 124.2 (q, *J*_C,¹⁹_F = 270.7 Hz), 123.7 (q, *J*_C,¹⁹_F = 3.8 Hz), 96.9, 75.0, 74.8, 73.7, 71.7, 70.4, 69.0; HRMS (ESI) calcd for C₁₉H₁₅F₃FeO₂Na [M+Na]⁺ 411.0266, found 411.0271.

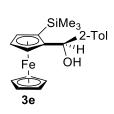

Compound (*R*,*R***p**)-3an. (Table 2, entry 17, 29.1 mg, 83% yield, 0.083 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IB N-5 column, hexane/2-propanol = 90/10, 0.5 mL/min, 230 nm, $t_{major} = 26.8$ min, $t_{minor} = 31.6$ min); $[\alpha]^{25}_{D} -6.5 \times 10^2$ (*c* 0.18, CHCl₃) for >99.5% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.99 (s, 1H), 7.58 (dd, J = 7.4 Hz, 1.7 Hz, 1H), 7.29–7.26 (m, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.07 (d, J = 3.1 Hz, 1H), 4.73–4.70 (m, 1H), 4.58 (d, J = 3.1 Hz, 1H), 4.50 (t, J = 2.7 Hz, 1H), 4.36 (s, 5H), 4.32 (s, 1H), 3.80 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 195.5, 156.1, 131.1, 128.5, 127.2, 120.7, 110.2, 96.4, 75.2, 74.8, 71.9, 71.4, 70.3, 64.1, 55.3; HRMS (ESI) calcd for C₁₉H₁₈FeO₃Na [M+Na]⁺ 373.0497, found 373.0503.


Compound (*R*,*R***p**)-3ao. (Table 2, entry 18, 29.6 mg, 80% yield, 0.080 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IB N-5 column, hexane/2-propanol = 80/20, 0.8 mL/min, 230 nm, $t_{major} = 17.0$ min, $t_{minor} = 16.0$ min); $[\alpha]^{25}_{D} -7.9 \times 10^2$ (*c* 0.14, CHCl₃) for 91% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.99 (s, 1H), 7.98 (s, 1H), 7.89–7.83 (m, 3H), 7.62 (dd, J = 8.4 Hz, 1.7 Hz, 1H), 7.51–7.45 (m, 2H), 5.97 (s, 1H), 4.72–4.70 (m, 1H), 4.66 (d, J = 2.2 Hz, 1H), 4.47 (t, J = 2.7 Hz, 1H), 4.40 (s, 5H), 4.25 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 195.8, 139.8, 133.3, 133.1, 128.1, 127.8, 127.7, 126.0, 125.8, 125.5, 125.1, 97.4, 75.1, 73.2, 71.5, 70.5, 69.6; HRMS (ESI) calcd for C₂₂H₁₈FeO₂Na [M+Na]⁺ 393.0548, found 393.0553.

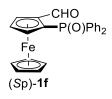

Compound (*R*,*R***p**)-3ap. (Table 2, entry 19, 28.9 mg, 78% yield, 0.078 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IF column, hexane/2-propanol = 85/15, 1.0 mL/min, 230 nm, $t_{major} = 44.8$ min, $t_{minor} = 13.9$ min); $[\alpha]^{25}_{D} -1.0 \times 10^3$ (*c* 0.24, CHCl₃) for >99.5% ee. ¹H NMR (600 MHz, CDCl₃): δ 10.0 (s, 1H), 7.98 (d, J = 7.2 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 6.46 (s, 1H), 5.25 (s, 1H), 4.71 (s, 1H), 4.40–4.39 (m, 1+5H), 3.91 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 196.6, 137.9, 133.4, 130.9, 128.7, 128.0, 126.0, 125.6, 125.4, 124.1, 123.6, 97.0, 74.7, 73.2, 71.6, 71.5, 70.5, 65.4; HRMS (ESI) calcd for $C_{22}H_{18}FeO_2Na$ [M+Na]⁺ 393.0548, found 393.0552.


Compound (*R*,*R***p**)-3aq. (Table 2, entry 20, 29.6 mg, 85% yield, 0.085 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 0.5 mL/min, 230 nm, $t_{major} = 30.6$ min, $t_{minor} = 25.8$ min); $[\alpha]^{25}_{D} - 6.2 \times 10^2$ (*c* 0.19, CHCl₃) for 92% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.97 (s, 1H), 7.10 (s, 2H), 6.93 (s, 1H), 5.73 (d, *J* = 2.2 Hz, 1H), 4.72–4.68 (m, 1H), 4.49 (t, *J* = 2.7 Hz, 1H), 4.38 (s, 5H), 4.33 (s, 1H), 4.28 (d, *J* = 2.3 Hz, 1H), 2.33 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 195.6, 142.3, 137.6, 129.2, 124.6, 97.5, 75.1, 74.8, 72.9, 71.5, 70.4, 69.6, 21.4; HRMS (ESI) calcd for C₂₀H₂₀FeO₂Na [M+Na]⁺ 371.0705, found 371.0708.

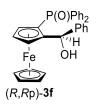
Compound (*R*,*R***p**)-3ar. (Table 2, entry 21, 21.8 mg, 58% yield, 0.058 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IJ column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 75.0$ min, $t_{minor} = 53.1$ min); $[\alpha]^{25}D - 5.0 \times 10^2$ (*c* 0.11, CHCl₃) for 85% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.97 (s, 1H), 7.88 (d, J = 7.4 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.63 (s, 1H), 7.36–7.31 (m, 2H), 6.16 (s, 1H), 4.96 (s, 1H), 4.71 (s, 1H), 4.46 (s, 1H), 4.38 (s, 5H), 4.24 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 196.1, 140.5, 137.7, 137.6, 124.3, 124.0, 123.5, 122.8, 122.3, 96.0, 75.8, 74.9, 73.2, 71.6, 70.5, 65.0; HRMS (ESI) calcd for C₂₀H₁₆FeO₂SNa [M+Na]⁺ 399.0112, found 399.0116.


Compound (*R*,*R***p**)-3as. (Table 2, entry 22, 26.2 mg, 57% yield, 0.057 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IB N-5 column, hexane/2-propanol = 90/10, 0.8 mL/min, 230 nm, $t_{major} = 16.4$ min, $t_{minor} = 18.4$ min); $[\alpha]^{25}_{D} -5.9 \times 10^2$ (*c* 0.31, CHCl₃) for 97% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.98 (s, 1H), 8.17 (d, J = 7.9 Hz, 1H), 7.70 (s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 6.10 (s, 1H), 4.72 (s, 1H), 4.55–4.45 (m, 3H), 4.40 (s, 5H), 1.67 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 195.8, 149.7, 135.5, 129.0, 124.4, 123.7, 122.8, 122.6, 119.7, 115.3, 96.0, 83.7, 75.2, 75.0, 73.1, 71.6, 70.4, 63.5, 28.2; HRMS (ESI) calcd for C₂₅H₂₅FeNO₄Na [M+Na]⁺ 482.1025, found 482.1026.

Compound (*R*,*R***p**)-3at. (Table 2, entry 23, 24.2 mg, 78% yield, 0.078 mmol, a red solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IC column, hexane/2-propanol = 80/20, 1.0 mL/min, 230 nm, $t_{major} = 10.9$ min, $t_{minor} = 9.6$ min); $[\alpha]^{25}_{D} - 4.6 \times 10^2$ (*c* 0.15, CHCl₃) for 94% ee. ¹H NMR (600 MHz, CDCl₃): δ 9.96 (s, 1H), 5.67 (s, 1H), 5.45 (s, 1H), 4.72 (s, 1H), 4.65 (s, 1H), 4.55 (s, 1H), 4.35 (s, 5H), 3.39 (s, 1H), 2.44–2.32 (m, 4H), 1.92–1.87 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 194.7, 145.3, 127.1, 95.4, 73.0, 71.8, 71.4, 71.0, 70.3, 66.8, 32.2, 31.9, 23.2; HRMS (ESI) calcd for C₁₇H₁₈FeO₂Na [M+Na]⁺ 333.0548, found 333.0552.



Compound (*S***p**)-1e [32648-55-8]. (Scheme 2, 12.3 mg, 43% yield, 0.043 mmol, a red solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.6$). The ee was measured by HPLC (Chiralpak IC column, hexane/2-propanol = 95/5, 1.0 mL/min, 230 nm, $t_{major} = 8.7$ min, $t_{minor} = 8.0$ min); $[\alpha]^{25}_{D} - 1.5 \times 10^2$ (*c* 0.25, EtOH) for >99.5% ee. Reported value⁸ for 99.8% ee (*S***p**)-1e is $[\alpha]^{20}_{D} - 2.0 \times 10^2$ (c 0.24, EtOH). ¹H NMR (600 MHz, CDCl₃): δ 10.0 (s, 1H), 4.96 (s, 1H), 4.70 (s, 1H), 4.51 (s, 1H), 4.24 (s, 5H), 0.31 (s, 9H). The spectral data are in agreement with reported literature values.⁸

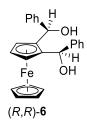


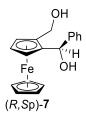
Compound (*R*,*R***p**)-3e. (Scheme 2, 17.8 mg, 47% yield, 0.047 mmol, a yellow solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IC column, hexane/2-propanol = 95/5, 1.0 mL/min, 230 nm, $t_{major} = 6.7$ min, $t_{minor} = 5.2$ min); $[\alpha]^{25}_{D} - 17$ (*c* 0.43, CHCl₃) for 96% ee. ¹H NMR (600 MHz, CDCl₃): δ 7.16–7.13

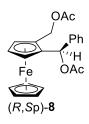
(m, 3H), 7.09 (t, J = 7.3 Hz, 1H), 5.64 (s, 1H), 4.47 (s, 1H), 4.43 (s, 1H), 4.32 (s, 5H), 4.26 (s, 1H), 2.39 (s, 3H), 2.26 (s, 1H), 0.08 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 141.1, 136.1, 130.2, 127.6, 127.0, 125.7, 99.0, 75.2, 71.2, 70.7, 69.9, 69.0, 68.7, 19.1, 0.1. HRMS (MALDI-TOF) m/z: [M]⁺⁺ Calcd for C₂₁H₂₆FeSiO⁺⁺ 378.1097; Found 378.1106.

Compound (Sp)-1f. (Scheme 2, 18.6 mg, 45% yield, 0.045 mmol, an orange solid, eluent: dichloromethane/ethyl acetate (4/1), $R_f = 0.2$). The ee of (*Sp*)-**1f** was determined by its derivative (*Sp*)-**12**; $[\alpha]^{25}_D$ +3.5×10² (*c* 0.21, CHCl₃) for 97% ee. Reported value⁴ for (*R*p)-**1f** is $[\alpha]^{25}_D$ -5.1×10² (*c* 0.13, CHCl₃). **1H NMR** (600 MHz, CDCl₃): δ 10.4 (s, 1H), 7.80 (dd, *J* = 11.9 Hz, 7.4 Hz, 2H), 7.60–7.48 (m, 6H), 7.40 (td, *J* = 7.7 Hz, 2.8 Hz, 2H), 5.23 (s, 1H), 4.76 (s, 1H), 4.40 (s, 5H), 4.24 (s, 1H); ³¹P NMR (243 MHz, CDCl₃): δ 27.7. The spectral data are in agreement with reported literature values.^[4]

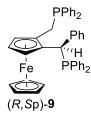
Compound (*R*,*R***p**)-3f. (Scheme 2, 23.1 mg, 47% yield, 0.047 mmol, a yellow solid, eluent: dichloromethane/ethyl acetate (5/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 80/20, 1.0 mL/min, 230 nm, $t_{major} = 31.8$ min, $t_{minor} = 14.7$ min); [α]²⁵_D -17 (*c* 0.43, CHCl₃) for 94% ee. ¹H NMR (600 MHz, CDCl₃): δ 7.82 (dd, J = 12.2 Hz, 7.6 Hz, 2H), 7.60–7.52 (m, 5H), 7.50 (t, J = 7.5 Hz, 1H), 7.42–7.41 (m, 4H), 7.31 (t, J = 7.4 Hz, 2H), 7.25 (t, J = 7.3 Hz, 1H), 6.26 (s, 1H), 5.43 (s, 1H), 4.37 (s, 5H), 4.20 (s, 1H), 3.91 (s, 1H), 3.84 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 142.1, 134.2, 133.5, 132.7, 132.0 (d, $J_{C-P} = 3.3$ Hz), 131.8 (d, $J_{C-P} = 2.7$ Hz), 131.7 (d, $J_{C-P} = 9.9$ Hz), 131.5 (d, $J_{C-P} = 10.1$ Hz), 128.5 (d, $J_{C-P} = 12.1$ Hz), 128.3 (d, $J_{C-P} = 12.1$ Hz), 127.9, 127.2, 127.0, 101.1 (d, $J_{C-P} = 10.8$ Hz), 74.7 (d, $J_{C-P} = 9.4$ Hz), 73.3 (d, $J_{C-P} = 15.0$ Hz), 70.2, 70.0 (d, $J_{C-P} = 20.5$ Hz), 69.1 (d, $J_{C-P} = 11.1$ Hz), 68.8; ³¹P NMR (243 MHz, CDCl₃):


δ 33.2. HRMS (MALDI-TOF) m/z: [M]^{•+} Calcd for C₂₉H₂₅FeO₂P^{•+} 492.0936; Found 492.0932.

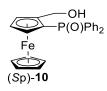

Compound (Sp)-1g [934276-76-3]. (Scheme 2, 16.8 mg, 47% yield, 0.047 mmol, a red solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.6$). The ee was measured by HPLC (Chiralpak ID column, hexane/2-propanol = 98/2, 0.5 mL/min, 230 nm, $t_{major} = 11.0$ min, $t_{minor} = 10.5$ min); $[\alpha]^{25}_{D} + 1.6 \times 10^2$ (*c* 0.15, CHCl₃) for >99.5% ee. ¹H NMR (600 MHz, CDCl₃): δ 10.0 (s, 1H), 4.93 (s, 1H), 4.67 (s, 1H), 4.49 (s, 2H), 4.41 (s, 1H), 4.24 (s, 1H), 4.10 (s, 1H), 0.32 (s, 9H), 0.22 (s, 9H). The spectral data are in agreement with reported literature values.⁵


Compound (*R*,*R***p**)-3**g**. (Scheme 2, 21.6 mg, 48% yield, 0.048 mmol, a yellow solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak ID column, hexane/2-propanol = 95/5, 1.0 mL/min, 230 nm, $t_{major} = 5.5$ min, $t_{minor} = 4.4$ min); $[\alpha]^{25}_{D} -5.1$ (*c* 0.079, CHCl₃) for >99.5% ee. ¹H NMR (600 MHz, CDCl₃): δ 7.17–7.13 (m, 3H), 7.10 (t, J = 7.3 Hz, 1H), 5.59 (s, 1H), 4.53–4.26 (m, 7H), 2.38 (s, 3H), 2.22 (s, 1H), 0.19 (s, 9H), 0.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 141.1, 136.1, 130.2, 127.6, 127.0, 125.7, 98.6, 75.1, 73.7, 73.2, 71.8, 71.0, 70.7, 70.3, 68.7, 19.1, 0.1, -0.2. HRMS (MALDI-TOF) m/z: [M]⁺⁺ Calcd for C₂₄H₃₄FeOSi₂⁺⁺ 450.1492; Found 450.1496.

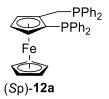
Compound (*R*,*R*)-6 [417710-62-4]. (Scheme 3, 185.2 mg, 93% yield, 0.46 mmol, a brown solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃): δ 7.39 (d, *J* = 7.6 Hz, 2H), 7.35–7.28 (m, 6H), 7.27–7.25 (m, 2H), 5.64–5.63 (m, 1H), 5.43 (s, 1H), 4.29 (s, 5H), 4.17 (t, *J* = 2.0 Hz, 1H), 4.07 (t, *J* = 2.6 Hz, 1H), 3.80 (t, *J* = 2.0 Hz, 1H), 3.26 (s, 1H), 3.21 (s, 1H); HRMS (ESI) calcd for C₂₄H₂₂FeO₂Na [M+Na]⁺ 421.0861, found 421.0866. The experimental data are in agreement with the literature report.⁹



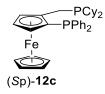
Compound (*R*,*S***p**)-7. (Scheme 3, 120.1 mg, 98% yield, 0.37 mmol, an orange solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.5$); ¹**H NMR** (600 MHz, CDCl₃): δ 7.41 (d, J =7.1 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.28–7.27 (m, 1H), 5.61 (s, 1H), 4.41 (d, J = 12.2 Hz, 1H), 4.35 (d, J = 12.3 Hz, 1H), 4.30 (s, 5+1H), 4.22 (s, 1H), 4.16 (s, 1H), 2.66 (brs., 1H), 1.63 (brs., 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 143.3, 128.3, 127.6, 126.3, 93.0, 85.9, 70.4, 69.5, 68.9, 67.2, 66.5, 59.1; **HRMS (ESI)** calcd for C₁₈H₁₈FeO₂ [M+Na]⁺ 345.0548, found 345.0554.

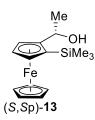


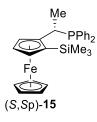
Compound (*R*,*S***p**)-8. (Scheme 3, 117.2 mg, 96% yield, 0.29 mmol, an orange solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃): δ 7.33–7.27 (m, 5H), 6.88 (s, 1H), 4.99 (d, *J* = 12.4 Hz, 1H), 4.82 (d, *J* = 12.1 Hz, 1H), 4.41 (s, 1H), 4.30 (s, 1H), 4.24 (s, 1H), 4.21 (s, 5H), 2.22 (s, 3H), 1.76 (s, 3H); ¹³C NMR (150 MHz, CDCl₃):

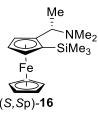

δ 170.5, 169.7, 140.5, 128.2, 128.0, 127.4, 88.7, 79.1, 72.2, 70.5, 69.4, 67.5, 67.4, 61.2, 21.2, 20.5; **HRMS (ESI)** calcd for C₂₂H₂₂FeO₄ [M+Na]⁺ 429.0760, found 429.0762.

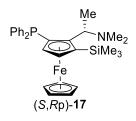
Compound (*R*,*S***p**)-9. (Scheme 3, 125.1 mg, 76% yield, 0.19 mmol, a yellow solid, eluent: hexane/ethyl acetate (5/1), $R_f = 0.6$); ¹**H NMR** (600 MHz, CDCl₃): δ 7.70 (s, 2H), 7.95–6.46 (m, 21H), 6.71 (s, 2H), 4.88 (s, 1H), 4.42 (s, 1H), 4.03 (s, 1H), 3.98 (s, 5H), 3.88 (s, 1H), 3.03 (d, J = 15.2 Hz, 1H), 2.79 (d, J = 15.4 Hz, 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 141.6, 139.5 (d, $J_{C-P} = 15.1$ Hz), 139.2 (d, $J_{C-P} = 15.7$ Hz,), 135.5 (d, $J_{C-P} = 22.2$ Hz,), 133.3 (d, $J_{C-P} = 20.0$ Hz,), 133.2 (d, $J_{C-P} = 19.0$ Hz,), 132.1 (d, $J_{C-P} = 18.0$ Hz,), 131.2 , 130.3, 128.9 (d, $J_{C-P} = 3.7$ Hz), 128.8 (d, $J_{C-P} = 21.9$ Hz), 128.5 (d, $J_{C-P} = 5.1$ Hz), 128.4 (d, $J_{C-P} = 8.9$ Hz), 128.3 (d, $J_{C-P} = 11.7$ Hz), 128.1 (d, $J_{C-P} = 24.0$ Hz), 127.6 (d, $J_{C-P} = 8.0$ Hz), 127.5, 125.7, 124.4, 113.0, 89.9 (dd, $J_{C-P} = 20.6$, 3.8 Hz), 83.4 (dd, $J_{C-P} = 14.8$ 6.9 Hz), 69.9, 69.2 (d, $J_{C-P} = 9.8$ Hz), 65.5, 57.3, 45.6 (d, $J_{C-P} = 21.9$ Hz), 28.0 (d, $J_{C-P} = 14.8$ Hz); ³¹**P NMR** (243 MHz, CDCl₃): δ 1.9, -19.1; **HRMS (ESI)** calcd for C₄₂H₃₇FeP₂ [M+H]⁺ 659.1715, found 659.1711.

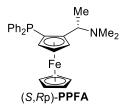

Compound (Sp)-10 [494205-49-1]. (Scheme 3, 79.1 mg, 98% yield, 0.19 mmol, a yellow solid, eluent: dichloromethane/ethyl acetate (4/1), $R_f = 0.6$). ¹H NMR (600 MHz, CDCl₃): δ 7.83–7.80 (m, 2H), 7.60 (td, J = 7.4 Hz, 1.5 Hz, 1H), 7.56–7.52 (m, 4H), 7.49–7.46 (m, 1H), 7.41–7.37 (m, 2H), 5.47 (dd, J = 10.5 Hz, 2.8 Hz, 1H), 4.54 (s, 1H), 4.34–4.32 (m, 2H), 4.26 (s, 5H), 4.17 (dd, J = 13.1 Hz, 10.5 Hz, 1H), 3.93 (s, 1H). ³¹P NMR (243 MHz, CDCl₃): δ 33.4. The spectral data are in agreement with reported literature values.¹⁰

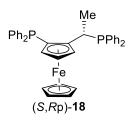

Compound (Sp)-12a [395080-13-4]. (Scheme 3, 67.4 mg, 79% yield, 0.12 mmol, a red solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.6$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 95/5, 1.0 mL/min, 230 nm, $t_{major} = 4.8$ min (major), $t_{minor} = 4.4$ min); $[\alpha]^{25}_{D} - 1.5 \times 10^2$ (*c* 0.12, CHCl₃) for 97% ee. Reported value¹¹ for (*R*p)-**12a** is $[\alpha]^{25}_{D} + 1.8 \times 10^2$ (*c* 0.44, CHCl₃). ¹**H** NMR (600 MHz, CDCl₃): δ 7.61–7.58 (m, 2H), 7.45–7.42 (m, 2H), 7.40–7.39 (m, 3H), 7.35–7.34 (m, 3H), 7.32 (td, *J* = 6.2 Hz, 2.2 Hz, 2H), 7.27–7.25 (m, 6H), 7.20 (td, *J* = 7.0 Hz, 2.8 Hz, 2H), 4.15 (s, 1H), 4.08 (s, 1H), 3.97 (s, 5H), 3.76 (s, 1H), 3.36 (s, 2H); ³¹**P** NMR (243 MHz, CDCl₃): δ –15.0, –23.5. The spectral data are in agreement with reported literature values.¹¹

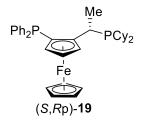

Compound (Sp)-12b [950982-86-2]. (Scheme 3, 50.2 mg, 63% yield, 0.095 mmol, a yellow solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$); $[\alpha]^{25}{}_{\rm D} - 1.6 \times 10^2$ (*c* 0.12, CHCl₃). Reported value¹¹ for (*S*p)-**12b** is $[\alpha]^{20}{}_{\rm D} - 1.6 \times 10^2$ (*c* 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 7.61–7.58 (m, 2H), 7.38–7.37 (m, 3H), 7.25–7.23 (m, 5H), 4.76 (s, 1H), 4.21(s, 1H), 3.99 (s, 5H), 3.77 (s, 1H), 2.81 (d, *J* = 16.4 Hz, 1H), 2.62 (dd, *J* = 16.4 Hz, 5.0 Hz, 1H), 1.19 (d, *J* = 11.0 Hz, 9H), 0.89 (d, *J* = 10.9 Hz, 9H); ³¹P NMR (243 MHz, CDCl₃): δ 26.9, –23.6. The spectral data are in agreement with reported literature values.¹¹


Compound (Sp)-12c [395080-11-2]. (Scheme 3, 58.3 mg, 67% yield, 0.10 mmol, a yellow solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$); $[\alpha]^{25}_{D} - 1.5 \times 10^2$ (*c* 0.12, CHCl₃). Reported value¹¹ for (*Sp*)-**12c** is $[\alpha]^{20}_{D} - 1.6 \times 10^2$ (*c* 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 7.59–7.56 (m, 2H), 7.38–7.37 (m, 3H), 7.23–7.18 (m, 5H), 4.55 (s, 1H), 4.22 (s, 1H), 3.97 (s, 5H), 3.74 (s, 1H), 2.71 (d, *J* = 15.4 Hz, 1H), 2.63 (d, *J* = 15.6 Hz, 1H), 1.81–1.79 (m, 4H), 1.71 (s, 1H), 1.63–1.56 (m, 3H), 1.51–1.47 (m, 2H), 1.35–1.22 (m, 7H), 1.07–1.02 (m, 5H); ³¹P NMR (243 MHz, CDCl₃): δ –2.1, –23.6. The spectral data are in agreement with reported literature values.¹¹

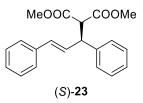

Compound (*S*,*S***p**)-13. (Scheme 3, 53.8 mg, 89% yield, 0.18 mmol, a yellow solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$); $[\alpha]^{25}_D + 38$ (*c* 0.080, CHCl₃). Reported value¹² for (*R*,*R***p**)-13 is $[\alpha]^{20}_D - 45$ (*c* 0.83, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 4.54–4.51 (m, 2H), 4.38 (s, 1H), 4.27 (s, 5H), 4.21 (s, 1H), 1.96 (s, 1H), 1.34 (d, *J* = 6.1 Hz, 3H), 0.23 (s, 9H). The spectral data are in agreement with reported literature values.¹²


Compound (*S*,*S***p**)-15. (Scheme 3, 28.2 mg, 60% yield, 0.060 mmol, an orange solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$); $[\alpha]^{25}_D + 1.3 \times 10^2$ (*c* 0.093 CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 7.65–7.62 (m, 2H), 7.51 (t, J = 7.2 Hz, 2H), 7.40–7.38 (m, 5H), 7.33 (dd, J = 7.5 Hz, 7.2 Hz, 1H), 4.24 (s, 1H), 4.21 (s, 1H), 4.12 (s, 5H), 4.07 (s, 1H), 3.42 (qd, J = 7.8 Hz, 3.1 Hz, 1H), 1.19 (dd, J = 7.7 Hz, 7.6 Hz, 3H), 0.38 (s, 9H); ³¹P NMR (243 MHz, CDCl₃): δ 0.2. The spectral data are in agreement with reported literature values.¹³


Compound (*S*,*S***p**)-16 [62960-90-1]. (Scheme 3, 59.2 mg, 90% yield, 0.18 mmol, an orange oil, eluent: hexane/ethyl acetate/triethylamine (20/1/1%), $R_f = 0.4$); $[\alpha]^{25}_D$ -67 (*c* 0.042, CHCl₃). Reported value¹² for (*R*,*R***p**)-16 is $[\alpha]^{20}_D$ +46 (*c* 1.32, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 4.33 (s, 1H), 4.26 (t, *J* = 2.5 Hz, 1H), 4.12 (s, 5H), 4.02 (s, 1H), 3.33 (q, *J* = 6.9 Hz, 1H), 2.36 (s, 6H), 1.18 (d, *J* = 6.9 Hz, 3H), 0.30 (s, 9H). The spectral data are in agreement with reported literature values.¹²


Compound (S,Rp)-17. (Scheme 3, 65.4 mg, 85% yield, 0.13 mmol, a red solid, eluent: hexane/ethyl acetate/triethylamine (10/1/1%), $R_f = 0.4$); $[\alpha]^{25}_D + 1.6 \times 10^2$ (*c* 0.12, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 7.59–7.56 (m, 2H), 7.39–7.37 (m, 3H), 7.24–7.22 (m, 5H), 4.20 (d, J = 2.4 Hz, 1H), 3.96 (s, 5H), 3.93 (d, J = 2.4 Hz, 1H), 3.17 (qd, J = 7.1 Hz, 3.1 Hz, 1H), 1.82 (s, 6H), 1.63 (d, J = 7.0 Hz, 3H), 0.29 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 139.8 (d, $J_{C-P} = 9.1$ Hz), 138.5 (d, $J_{C-P} = 10.2$ Hz), 135.3 (d, $J_{C-P} = 21.7$ Hz), 132.7 (d, $J_{C-P} = 18.6$ Hz), 128.9, 128.0 (d, $J_{C-P} = 7.7$ Hz), 127.7 (d, $J_{C-P} = 6.4$ Hz), 127.7, 107.4 (d, $J_{C-P} = 20.2$ Hz), 78.1, 75.4, 73.5 (d, $J_{C-P} = 2.7$ Hz), 72.4 (d, $J_{C-P} = 4.4$ Hz), 69.8, 59.5 (d, $J_{C-P} = 10.1$ Hz), 43.6, 22.6, 1.6; ³¹P NMR (243 MHz, CDCl₃): δ –23.8; HRMS (MALDI-TOF) m/z: [M]⁺⁺ Calcd for C₂₉H₃₆FeNPSi⁺⁺ 513.1699; Found 513.1704.

Compound (*S*,*R***p**)-**PPFA** [55650-58-3]. (Scheme 3, 38.4 mg, 87% yield, 0.087 mmol, a red solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$); $[\alpha]^{25}_D + 3.5 \times 10^2$ (*c* 0.12, CHCl₃). Reported value¹⁴ for (*R*,*S***p**)-**PPFA** is $[\alpha]^{25}_D - 3.5 \times 10^2$ (*c* 0.25, CHCl₃). ¹**H NMR** (600 MHz, CDCl₃): δ 7.61–7.58 (m, 2H), 7.36–7.35 (m, 3H), 7.22–7.15 (m, 5H), 4.37 (s, 1H), 4.25 (s, 1H), 4.16 (qd, *J* = 6.6 Hz, 2.7 Hz, 1H), 3.94 (s, 5H), 3.86 (s, 1H), 1.78 (s, 6H), 1.26 (d, *J* = 6.7 Hz, 3H); ³¹**P NMR** (243 MHz, CDCl₃): δ –22.8. The spectral data are in agreement with reported literature values.¹⁴



Compound (*S*,*R***p**)-18 [155941-31-4]. (Scheme 3, 18.3 mg, 0.031 mmol, 63% yield, a yellow solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$; $[\alpha]^{25}_D + 3.2 \times 10^2$ (*c* 0.12, CHCl₃). Reported value¹⁵ for (*S*,*R***p**)-18 is $[\alpha]^{22}_D + 3.6 \times 10^2$ (*c* 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 7.68–7.65 (m, 2H), 7.40–7.38 (m, 3H), 7.34–7.30 (m, 3H), 7.29–7.26 (m, 4H), 7.25–7.22 (m, 2H), 7.22–7.17 (m, 6H), 4.24 (t, *J* = 2.6 Hz, 1H), 4.05 (s, 1H), 4.01 (s, 1H), 3.86 (s, 5H), 3.77 (qd, *J*=7.0 Hz, 3.7 Hz, 1H), 1.46 (dd, *J*=7.3 Hz, 7.3 Hz, 3H); ³¹P NMR (243 MHz, CDCl₃): δ 6.34 (d, *J* = 20.5 Hz), -25.5 (d, *J* = 20.5 Hz). The spectral data are in agreement with reported literature values.¹⁵

Compound (S,Rp)-19 [162291-02-3]. (Scheme 3, 22.6 mg, 75% yield, 0.038 mmol, a red solid, eluent: hexane/ethyl acetate (20/1), $R_f = 0.4$); $[\alpha]^{25}_D + 2.9 \times 10^2$ (*c* 0.12, CHCl₃).

Reported value¹⁵ for (*R*,*S*p)-**19** is $[\alpha]^{25}_{D}$ –3.5×10² (*c* 0.60, CHCl₃). ¹**H NMR** (600 MHz, CDCl₃): δ 7.70–7.67 (m, 2H), 7.38 (t, *J* = 7.0 Hz, 2H), 7.08–7.05 (m, 5H), 6.99–6.98 (m, 1H), 4.21 (s, 1H), 4.12 (s, 1H), 4.08 (s, 1H), 3.78 (s, 5H), 3.51 (qd, *J* = 7.0 Hz, 3.1 Hz, 1H), 1.83 (d, *J* = 12.9 Hz, 1H), 1.76 (d, *J* = 10.9 Hz, 2H), 1.70–1.67 (m, 3H), 1.65–1.63 (m, 3H), 1.61–1.58 (m, 5H), 1.41–1.35 (m, 1H), 1.26–1.11 (m, 10H); ³¹**P NMR** (243 MHz, CDCl₃): δ 14.8 (d, *J* = 36.7 Hz), -25.8 (d, *J* = 36.5 Hz). The spectral data are in agreement with reported literature values.¹⁵

Compound (*S*)-23[96482-64-3]. (Scheme 3, 28.2 mg, 87% yield, 0.087 mmol, a colorless solid, eluent: hexane/ethyl acetate (10/1), $R_f = 0.4$). The ee was measured by HPLC (Chiralpak IA column, hexane/2-propanol = 90/10, 1.0 mL/min, 230 nm, $t_{major} = 10.3 \text{ min}$ (major), $t_{minor} = 8.4 \text{ min}$); $[\alpha]^{25}_{D} - 14$ (*c* 0.27, CHCl₃) for 90% ee. Reported value⁶ for 93% ee (*R*)-23 is $[\alpha]^{22}_{D}$ +4.7 (*c* 1.8, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ 7.35–7.32 (m, 6H), 7.29 (t, *J* = 7.3 Hz, 2H), 7.26–7.25 (m, 1H), 7.22 (t, *J* = 7.4 Hz, 1H), 6.52 (d, *J* = 15.7 Hz, 1H), 6.38 (dd, *J* = 15.8 Hz, 8.6 Hz, 1H), 4.31 (dd, *J* = 9.9 Hz, 9.7 Hz, 1H), 4.00 (d, *J* = 10.9 Hz, 1H), 3.72 (s, 3H), 3.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 168.2, 167.8, 140.3, 136.9, 131.9, 129.2, 128.8, 128.5, 127.9, 127.6, 127.2, 126.4, 57.7, 52.6, 52.4, 49.2. The spectral data are in agreement with reported literature values.⁶

9. <u>Single crystal x-ray diffraction date for compound 3ah(CCDC 2403094)</u>

Suitable crystals of compound **3ah** were obtained by slowly evaporating a mixture of dichloromethane and hexane solution at ambient temperature. red crystal of **3ah** was mounted on a glass fiber at a random orientation. The data were collected by Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using CuK_a radiation (1.54178 Å) by using a w scan mode. The structures were solved by direct methods using Olex2 software, and the nonhydrogen atoms were located from the trial structure and then refined anisotropically with XL using a full-matrix least squares procedure based on F^2 . The weighted R factor, wR and goodness-of-fit S values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on the parent atoms.

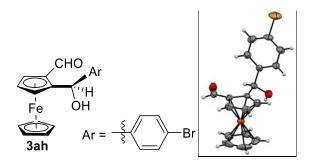
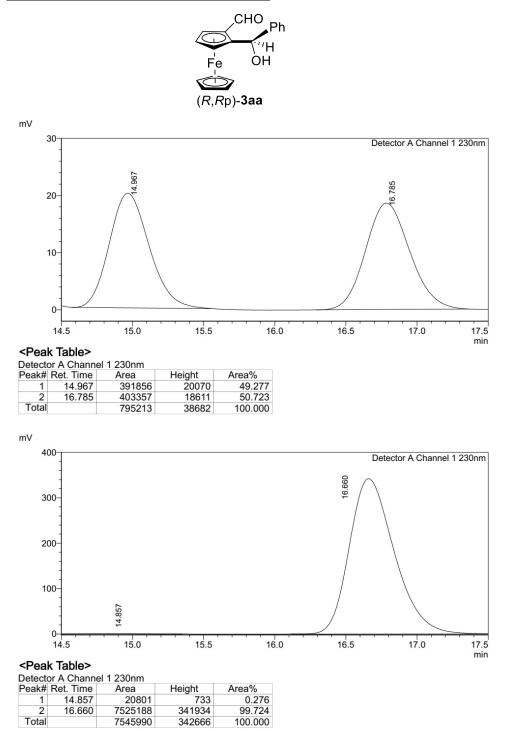
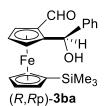
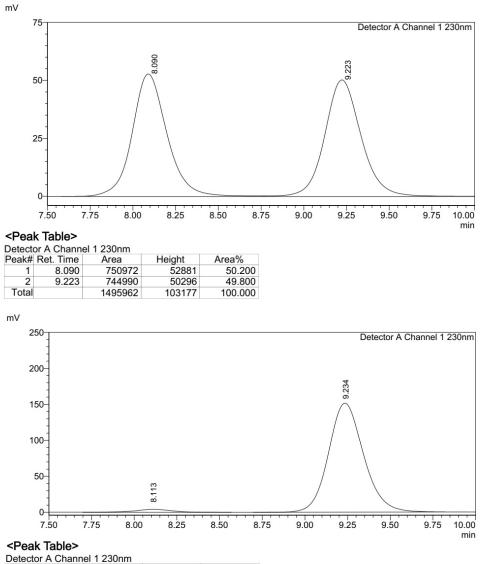


Figure S1. ORTEP illustration of compound **3ha** with thermal ellipsoids drawn at 50% probability level.

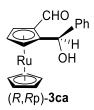
 Table S5 Crystal data and structure refinement for 3ah.

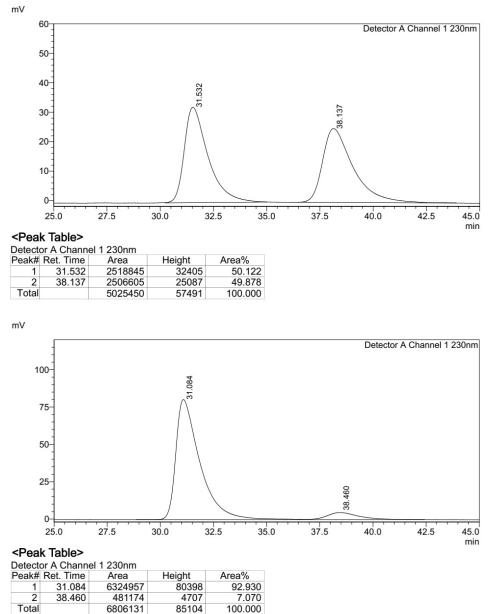

Identification code	Febr
Empirical formula	$C_{18}H_{15}BrFeO_2$
Formula weight	399.06
Temperature/K	219.99(10)
Crystal system	triclinic
Space group	P1
a/Å	7.6130(5)
b/Å	8.5829(4)
c/Å	12.8193(7)
α/°	80.360(4)
β/°	73.628(5)
$\gamma/^{\circ}$	82.082(5)

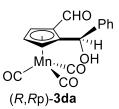

Volume/Å ³	788.68(8)
Z	2
$\rho_{calc}g/cm^3$	1.680
μ/mm ⁻¹	10.660
F(000)	400.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.254 to 148.02
Index ranges	$-9 \le h \le 9, -10 \le k \le 10, -15 \le l \le 15$
Reflections collected	12506
Independent reflections	$5856 \; [R_{int} = 0.0551, R_{sigma} = 0.0644]$
Data/restraints/parameters	5856/3/399
Goodness-of-fit on F ²	1.080
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0445, wR_2 = 0.1133$
Final R indexes [all data]	$R_1 = 0.0507, wR_2 = 0.1195$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.52
Flack/Hooft parameter	-0.006(5)/-0.004(4)

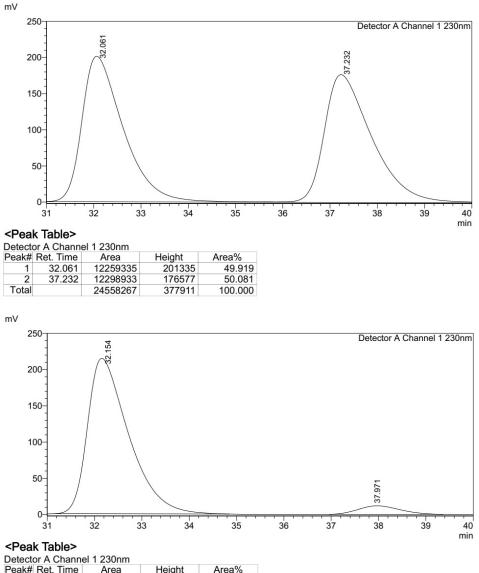

10. <u>References</u>

- 1. A. van der Ent and A. L. Onderdelinden, *Inorg. Synth.*, 1990, 28, 90–92.
- T. Nishimura, H. Kumamoto, M. Nagaosa and T. Hayashi, *Chem. Commun.*, 2009, 5713–5715.
- 3. A. Sadeer, T. Kojima, J. S. Ng, K. Gan, R. J. Chew, Y. Li and S. A. Pullarkat, *Tetrahedron*, 2020, **76**, 131259.
- 4. S.-i. Fukuzawa, I. Oura, K. Shimizu, M. Kato and K.-i. Ogata, *Eur. J. Org. Chem.*, 2009, **2009**, 716–720.
- 5. H. Li, H.-S. Cheng, A.-H. Seow and T.-P. Loh, *Tetrahedron. Lett.*, 2007, **48**, 2209–2211.
- 6. C.-X. Liu, F. Zhao, Q. Gu and S.-L. You, ACS Cent. Sci., 2023, 9, 2036–2043.
- Y. Yang, N.-N. Hang, H.-Y. Liu, S. Chen and J. Ming, ACS Catal., 2023, 13, 12464– 12471.
- O. Riant, O. Samuel, T. Flessner, S. Taudien and H. B. Kagan, J. Org. Chem., 1997, 62, 6733–6745.
- S.-i. Fukuzawa, K. Fujimoto, Y. Komuro and H. Matsuzawa, Org. Lett., 2002, 4, 707– 709.
- 10. P. Štěpnička and I. Císařová, New J. Chem., 2002, 26, 1389–1396.
- 11. G. Argouarch, O. Samuel and H. B. Kagan, Eur. J. Org. Chem., 2000, 2000, 2885–2891.
- 12. V. Bariak, A. Malastová, A. Almássy and R. Šebesta, *Chem. Eur. J.*, 2015, **21**,13445–13453.
- 13. M. Murakami, R. Minamida, K. Itami, M. Sawamura and Y. Ito, *Chem. Commun.*, 2000, 2293–2294.
- 14. H. Nie, L. Yao, B. Li, S. Zhang and W. Chen, Organometallics, 2014, 33, 2109–2114.
- 15. A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert and A. Tijani, *J. Am. Chem. Soc.*, 1994, **116**, 4062–4066.

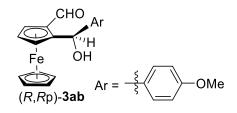

11. Chiral HPLC charts and NMR spectra

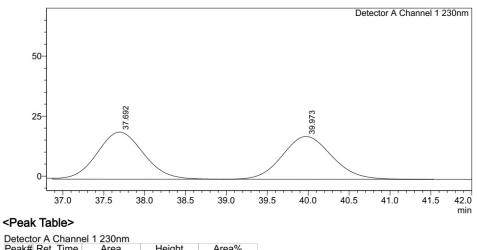


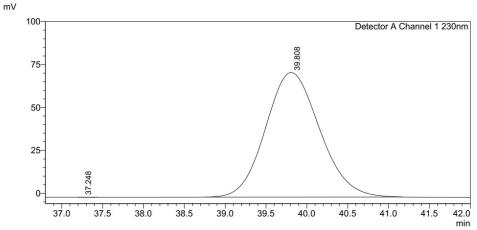




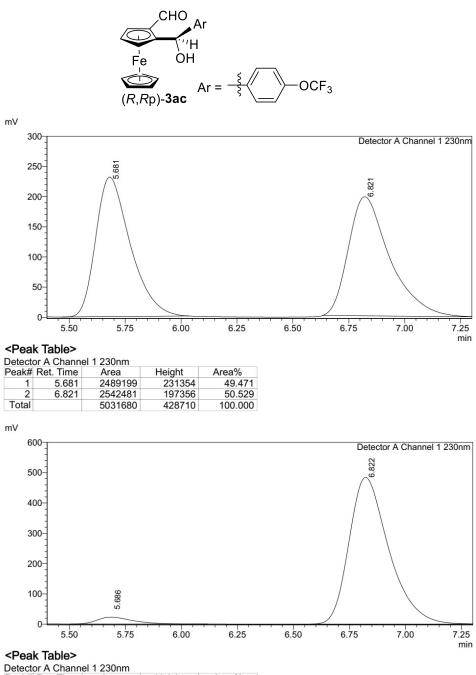
Peak#	Ret. Time	Area	Height	Area%
1	8.113	67035	4148	2.989
2	9.234	2176047	151591	97.011
Total		2243082	155739	100.000



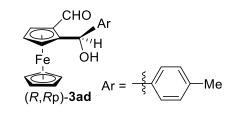


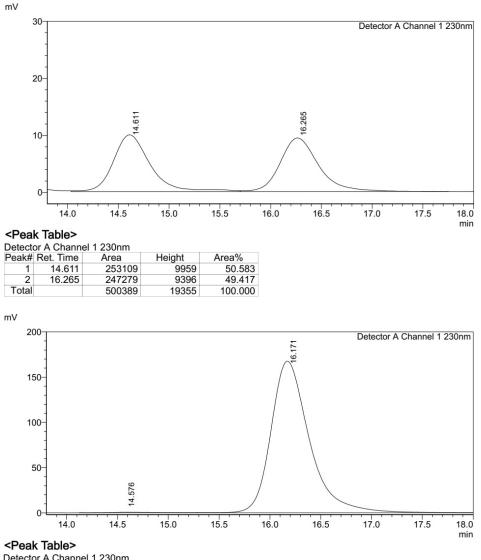


Delecti				
Peak#	Ret. Time	Area	Height	Area%
1	32.154	12977772	214474	94.675
2	37.971	729925	11804	5.325
Total		13707697	226278	100.000

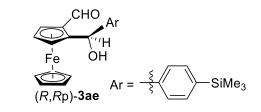


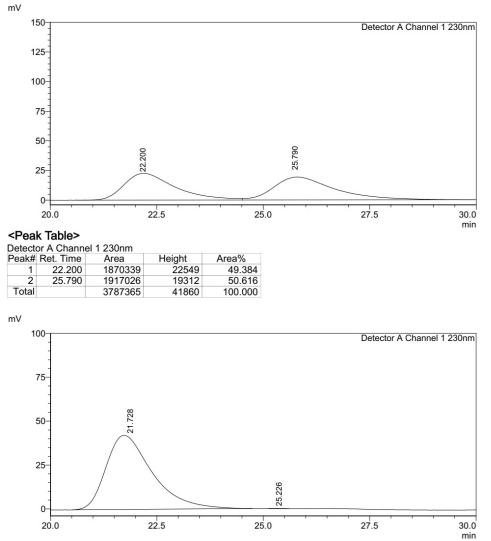
Height Area%
19629 50.798
17849 49.202
37478 100.000

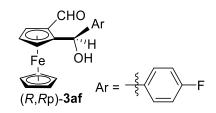


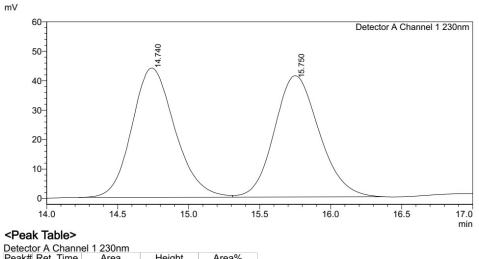

mV

Detect	or A Channe	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	37.248	39	4	0.001
2	39.808	3341730	72569	99.999
Total		3341769	72573	100.000

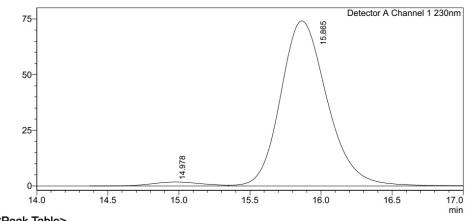


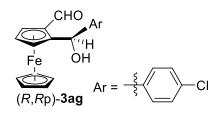

Peak#	Ret. Time	Area	Height	Area%
1	5.686	243481	22662	3.906
2	6.822	5989673	483793	96.094
Total		6233154	506455	100.000

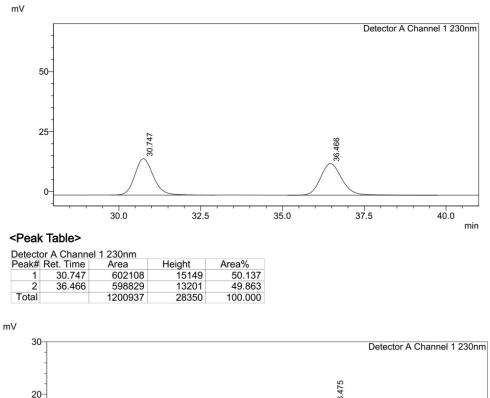

Peak#	Ret. Time	Area	Height	Area%
1	14.576	18565	600	0.418
2	16.171	4418180	167531	99.582
Total		4436745	168130	100.000

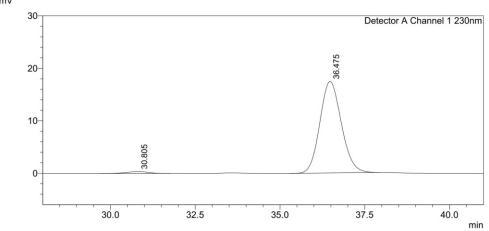


20.0

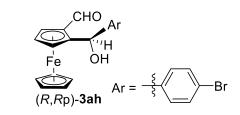

Detecte	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	21.728	3190991	42209	99.969
2	25.226	986	50	0.031
Total		3191977	42259	100.000

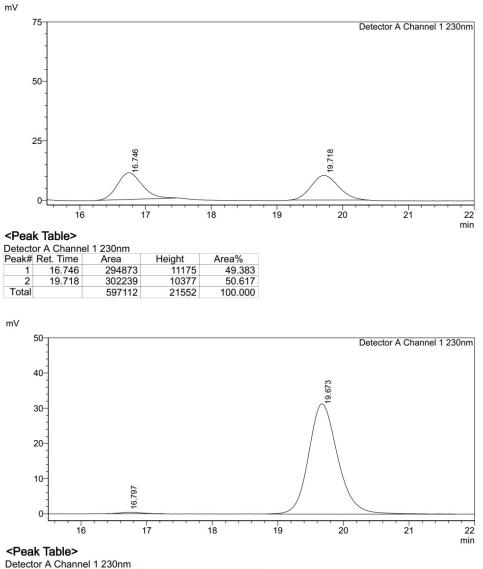

or A Chann	el 1 230nm		
Ret. Time	Area	Height	Area%
14.740	926682	43913	50.549
15.750	906560	41212	49.451
	1833242	85125	100.000
	Ret. Time 14.740	14.74092668215.750906560	Ret. Time Area Height 14.740 926682 43913 15.750 906560 41212



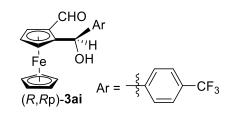

<Peak Table>

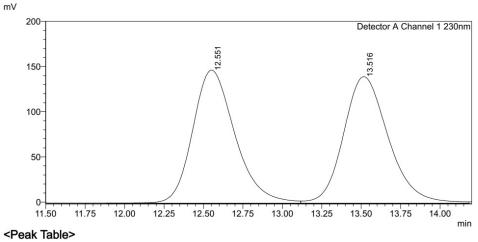
1 00	K Tuble			
Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	14.978	43369	1782	2.493
2	15.865	1696011	74190	97.507
Total		1739380	75973	100.000




Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	30.747	602108	15149	50.137
2	36.466	598829	13201	49.863
Total		1200937	28350	100.000

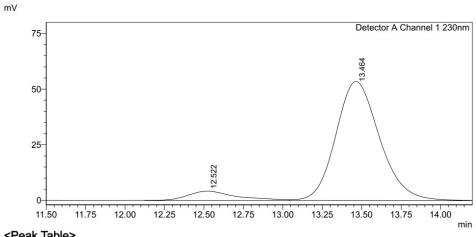
<Peak Table>


Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	30.805	15156	358	1.933
2	36.475	768728	17446	98.067
Total		783884	17804	100.000

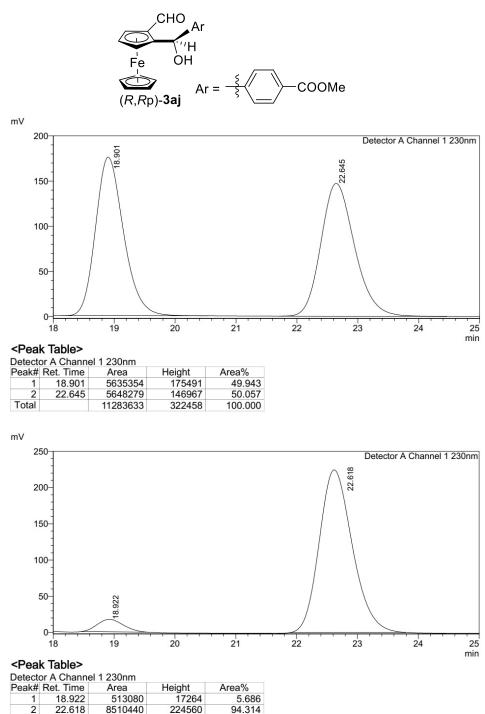


-			
Dat	octor	A Channel	1

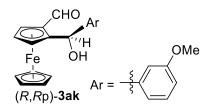
Dolooli				
Peak#	Ret. Time	Area	Height	Area%
1	16.797	9313	385	0.948
2	19.673	972982	31363	99.052
Total		982296	31748	100.000

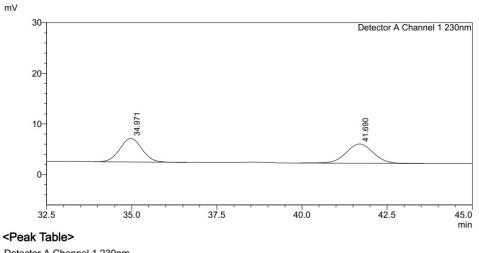


1 1 220

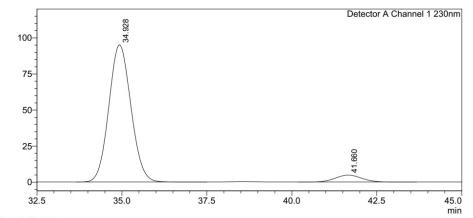

Detecto	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	
1	12.551	2749607	147253	

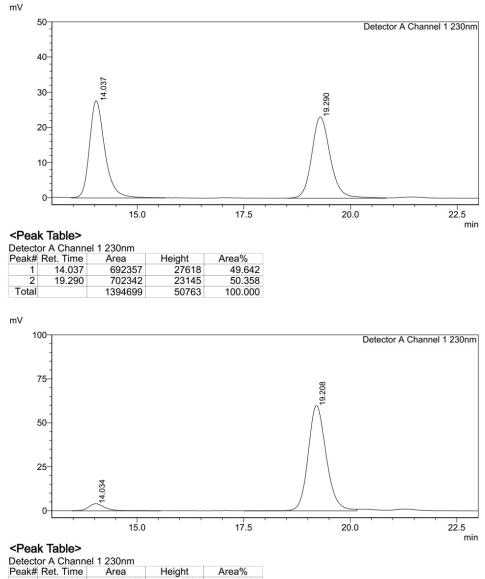
Peak#	Ret. Time	Area	Height	Area%
1	12.551	2749607	147253	49.823
2	13.516	2769191	140027	50.177
Total		5518798	287281	100.000

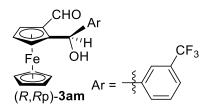


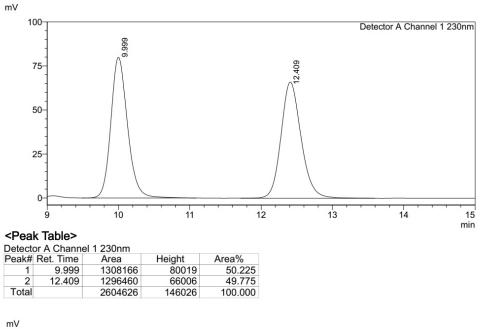

<peak table=""></peak>	
DDetector A Chan	

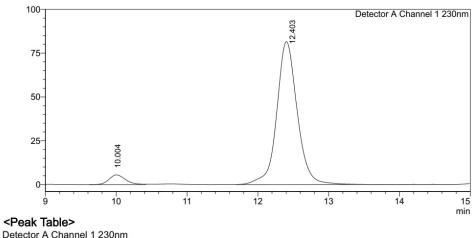
Peak# Ret. Time	Area	Height	Area%
1 12.522	91727	4247	8.112
2 13.464	1038969	53530	91.888
Total	1130696	57777	100.000

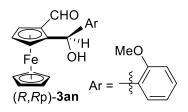

2	22.618	8510440	224560	94.314
Total		9023520	241824	100.000

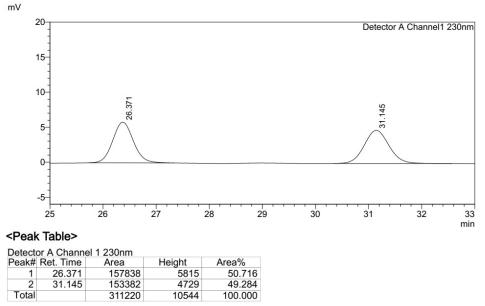

Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	34.971	210457	4660	49.981
2	41.690	210620	3802	50.019
Total		421077	8462	100.000

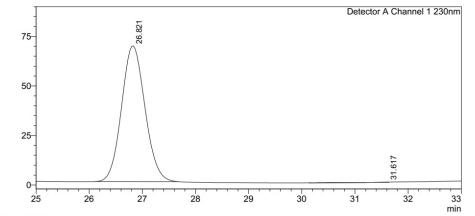


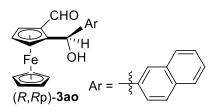

Detecto	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	34.928	4309910	95124	94.266
2	41.660	262153	4807	5.734
Total		4572063	99931	100.000

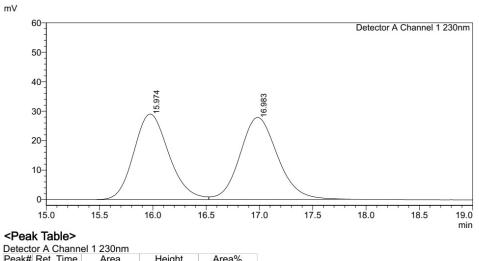


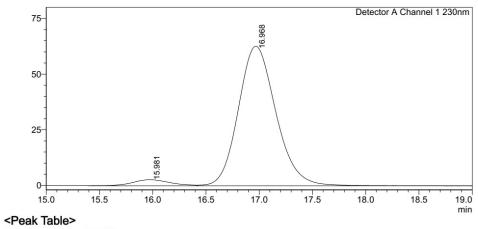

Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	14.034	106446	4024	5.669
2	19.208	1771125	59845	94.331
Total		1877571	63869	100.000

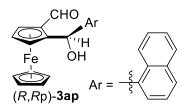


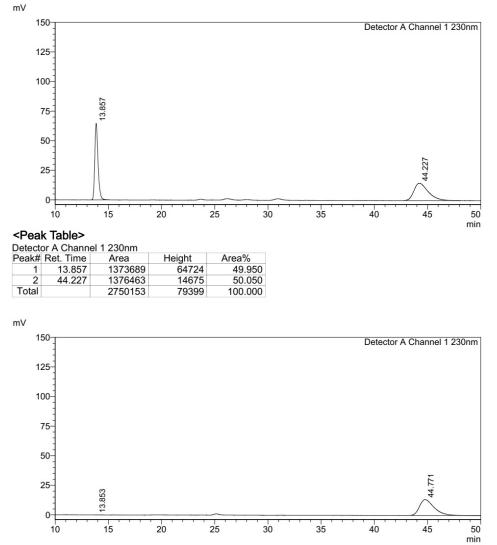

Peak#	Ret. Time	Area	Height	Area%
1	10.004	88493	5514	5.119
2	12.403	1640282	81520	94.881
Total		1728775	87035	100.000



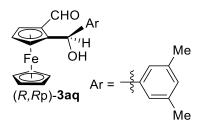

100.000

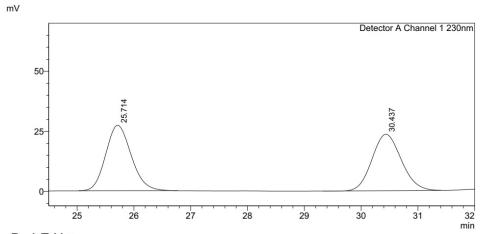

Detect	or A Channe	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	26.821	2098191	68438	99.741
2	31.617	5448	94	0.259
Total		2103639	68532	100.000




Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	15.974	664119	29035	49.348
2	16.983	681657	27819	50.652
Total		1345776	56854	100.000

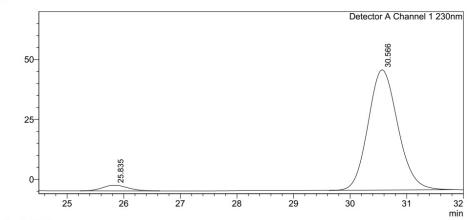
<peak table=""></peak>						
Detector A Channel 1 230nm						
Peak#	Ret. Time	Area	Height	Area%		
1	15.981	69490	2774	4.304		
2	16.968	1544987	62761	95.696		
Total		1614477	65535	100.000		

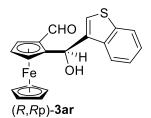


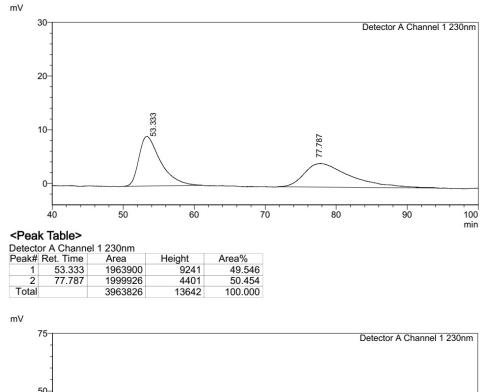


<Peak Table>
Detector A Ch

	oun	- abio	
)e	tector	A Chann	nel 1 230nm
•	1 // 0		

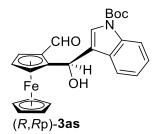

Peak#	Ret. Time	Area	Height	Area%
1	13.853	1211	79	0.094
2	44.771	1287766	13418	99.906
Total		1288977	13496	100.000

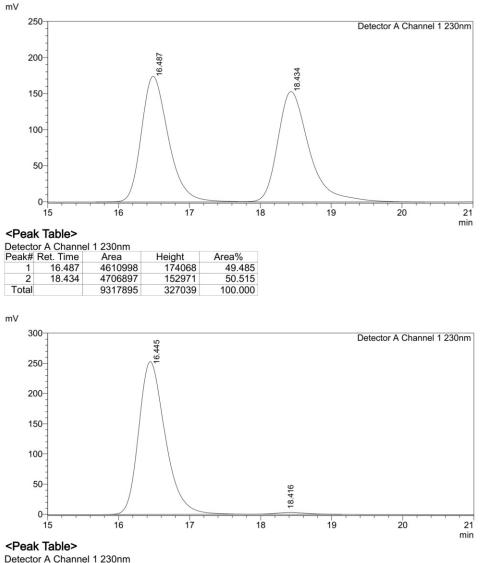


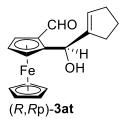

Detect	or A Channe	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	25.714	852668	27214	50.300
2	30.437	842484	23535	49.700
Total		1695153	50748	100.000



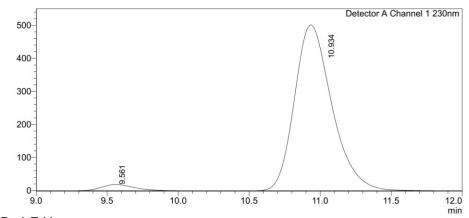
Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	25.835	73185	2361	3.832
2	30.566	1836794	50237	96.168
Total		1909979	52598	100.000

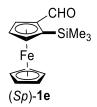


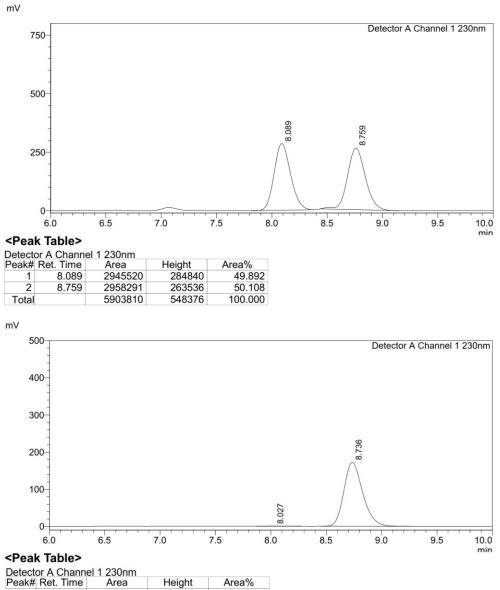


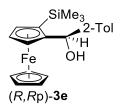

<peak< th=""><th>able></th></peak<>	able>
Detector	A Channe

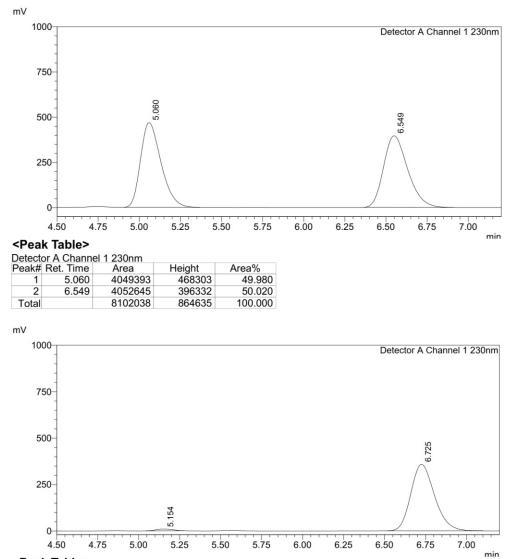
	1 00							
D	Detector A Channel 1 230nm							
F	Peak#	Ret. Time	Area	Height	Area%			
	1	53.072	497142	2458	7.614			
	2	74.991	6032035	14760	92.386			
	Total		6529176	17218	100.000			

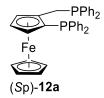

Peak#	Ret. Time	Area	Height	Area%
1	16.445	6559970	252788	98.719
2	18.416	85126	3061	1.281
Total		6645097	255849	100.000

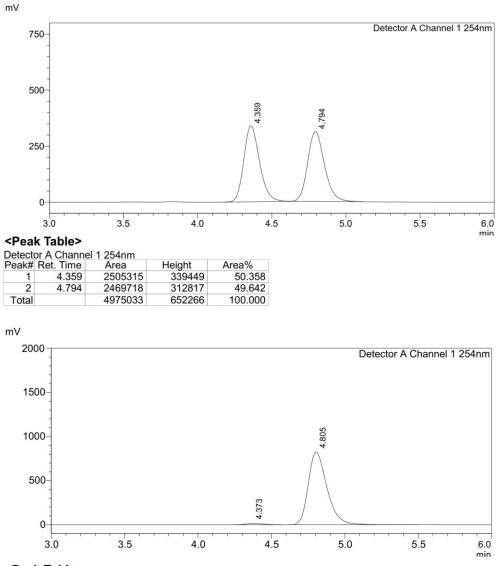


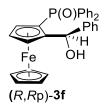

Detector A Channel 1 230nm						
Peak#	Ret. Time	Area	Height	Area%		
1	9.544	3962715	245934	49.865		
2	10.916	3984135	218544	50.135		
Total		7946850	464478	100.000		

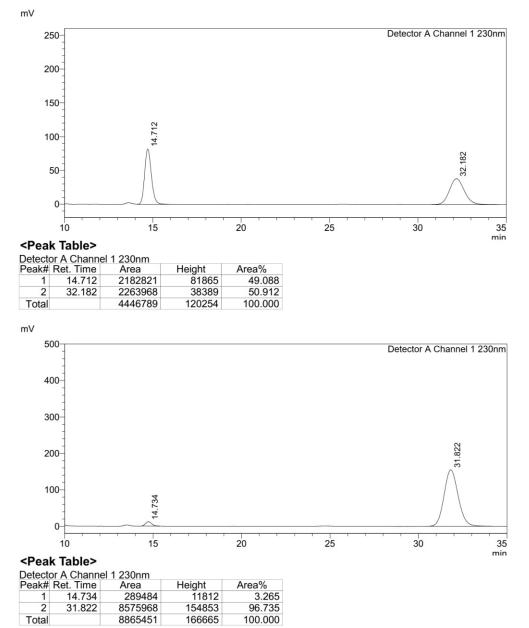


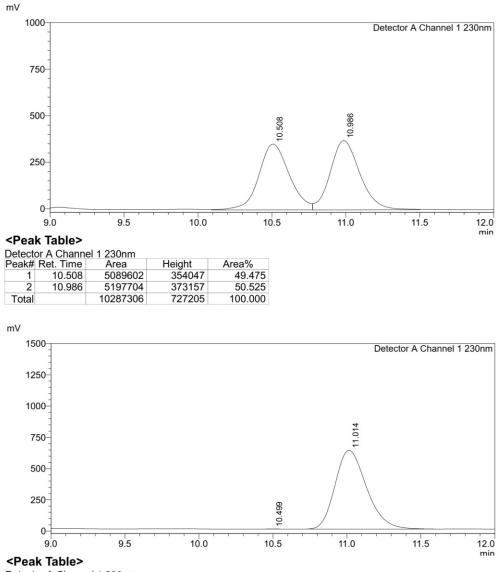

Detector A Channel 1 230nm						
Peak#	Ret. Time	Area	Height	Area%		
1	9.561	296302	18763	3.113		
2	10.934	9222073	502163	96.887		
Total		9518375	520926	100.000		



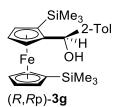

Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	8.027	3285	325	0.161
2	8.736	2038092	172322	99.839
Total		2041377	172647	100.000

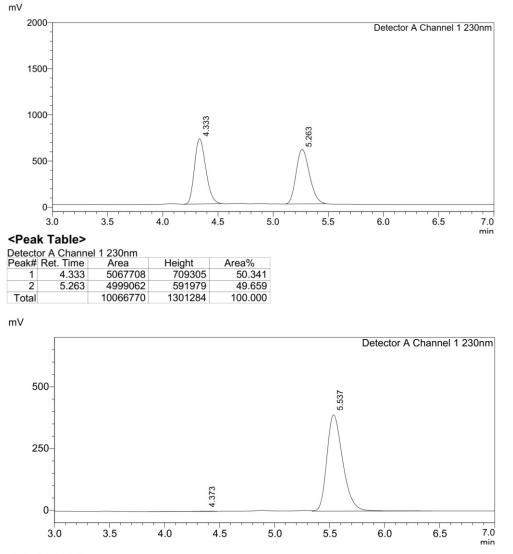

Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	5.154	66471	9243	1.808
2	6.725	3609524	357783	98.192
Total		3675995	367026	100.000

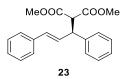


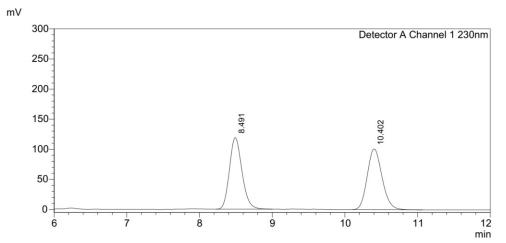

<Peak Table>

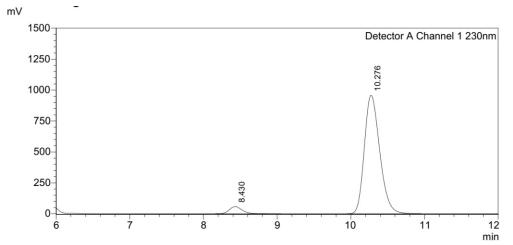
tor A Chann	el 1 254nm		
# Ret. Time	Area	Height	Area%
4.373	113944	13966	1.549
4.805	7243010	820187	98.451
al	7356954	834153	100.000
	tor A Chann Ret. Time 4.373	A Channel 1 254nm # Ret. Time Area 4.373 113944 4.805 7243010	# Ret. Time Area Height 4.373 113944 13966 4.805 7243010 820187



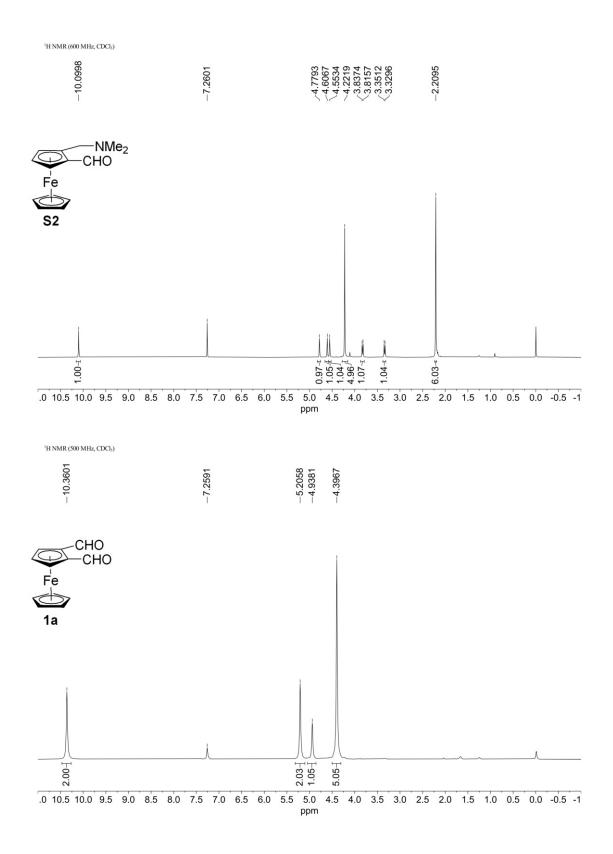


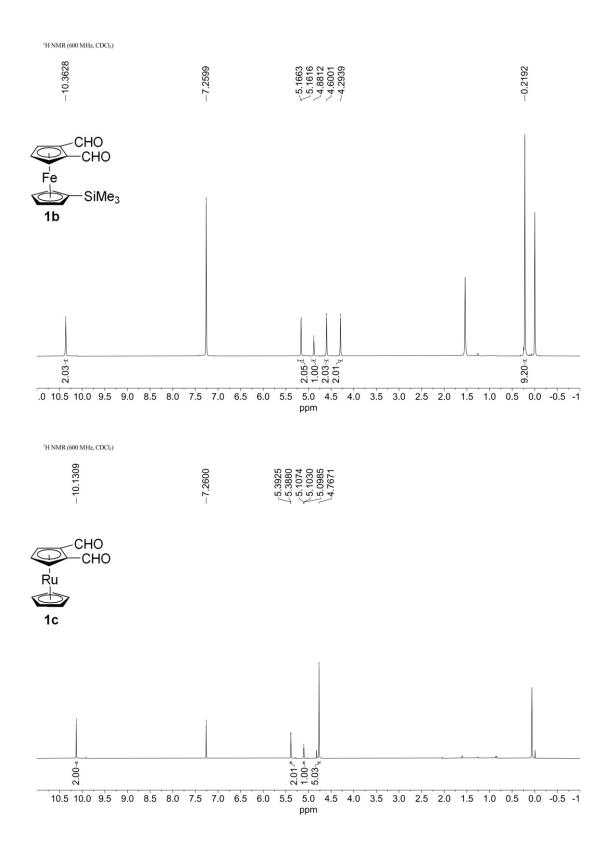



Detect	or A Chann	el 1 230nm		
Peak#	Ret. Time	Area	Height	Area%
1	10.499	12240	970	0.131
2	11.014	9346431	630163	99.869
Total		9358671	631133	100.000



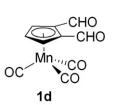
Ret. Time	Area	Height	Area%
4.373	10415	792	0.265
5.537	3922625	389336	99.735
	3933040	390128	100.000
	4.373	4.373 10415 5.537 3922625	4.373 10415 792 5.537 3922625 389336

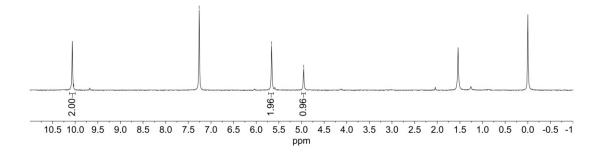


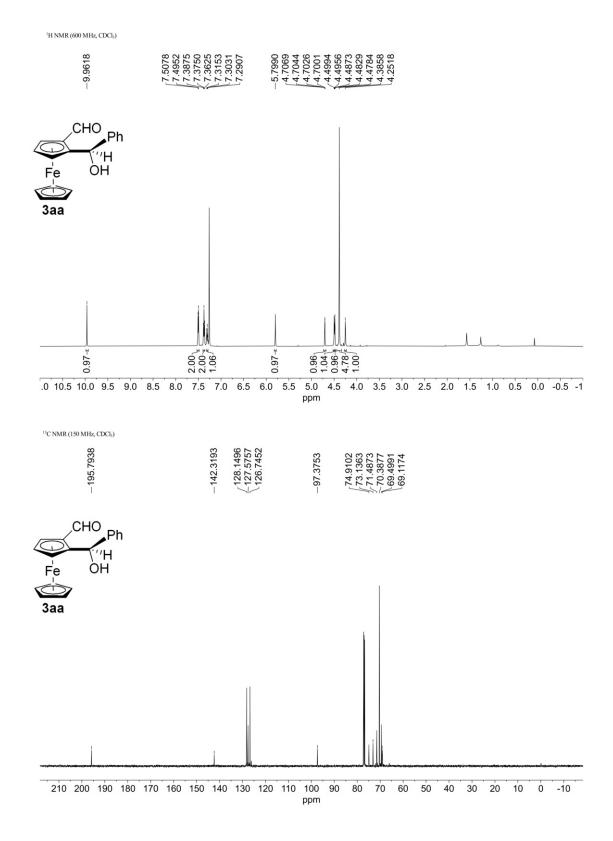


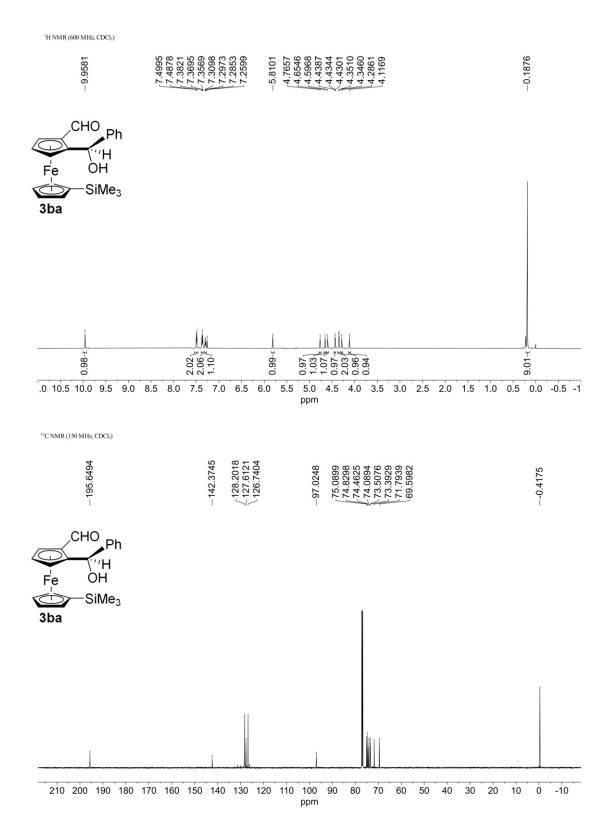
or A Chann	el 1 230nm		
Ret. Time	Area	Height	Area%
8.491	1428714	118962	49.948
10.402	1431688	100792	50.052
	2860402	219754	100.000
	Ret. Time 8.491	8.491142871410.4021431688	Ret. Time Area Height 8.491 1428714 118962 10.402 1431688 100792

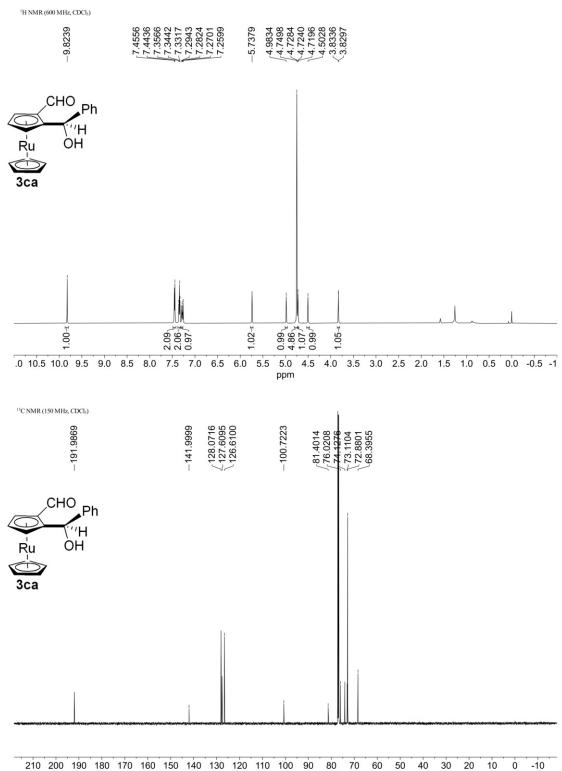
or A Chann	el 1 230nm		
Ret. Time	Area	Height	Area%
8.430	696633	57782	4.781
10.276	13874595	957482	95.219
	14571229	1015263	100.000
	Ret. Time 8.430	8.430 696633 10.276 13874595	Ret. Time Area Height 8.430 696633 57782 10.276 13874595 957482

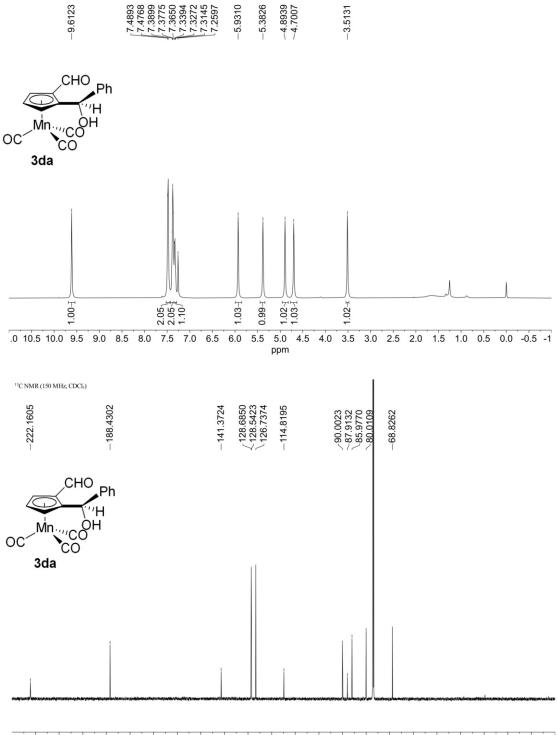




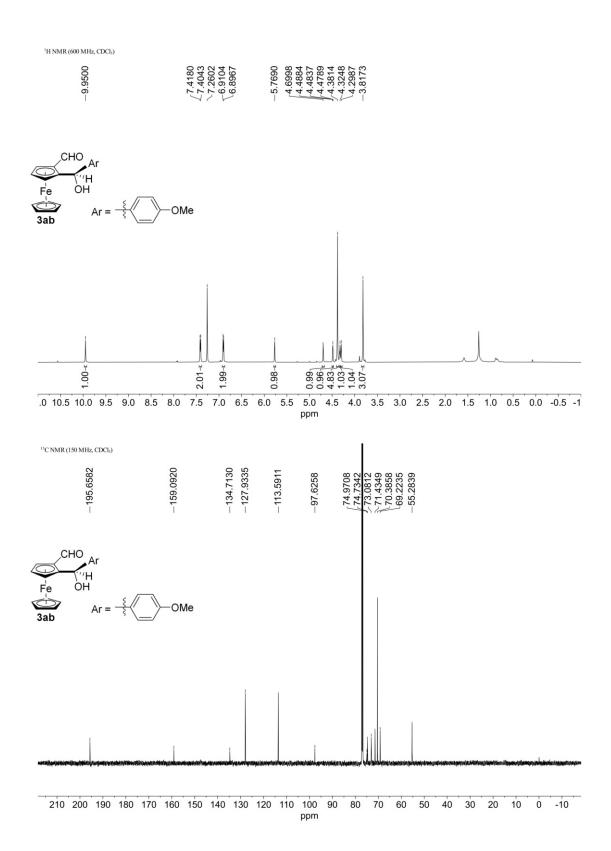

-10.0313

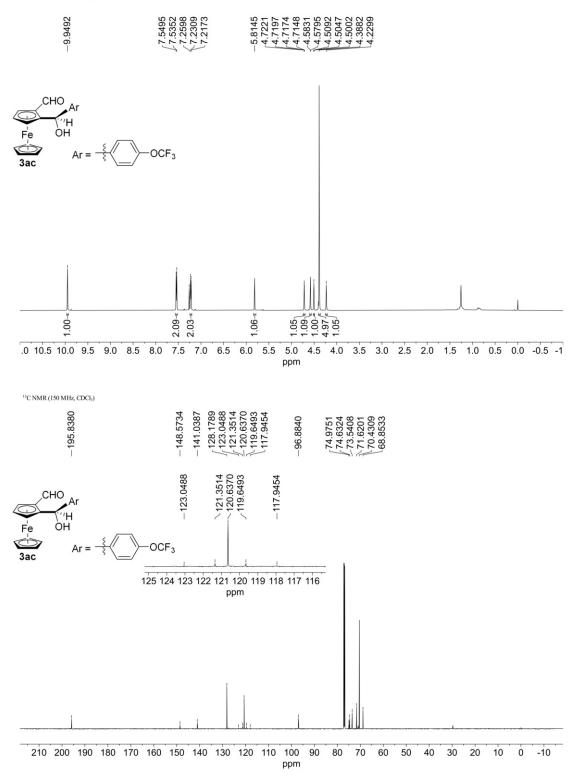

-5.6597 -4.9522

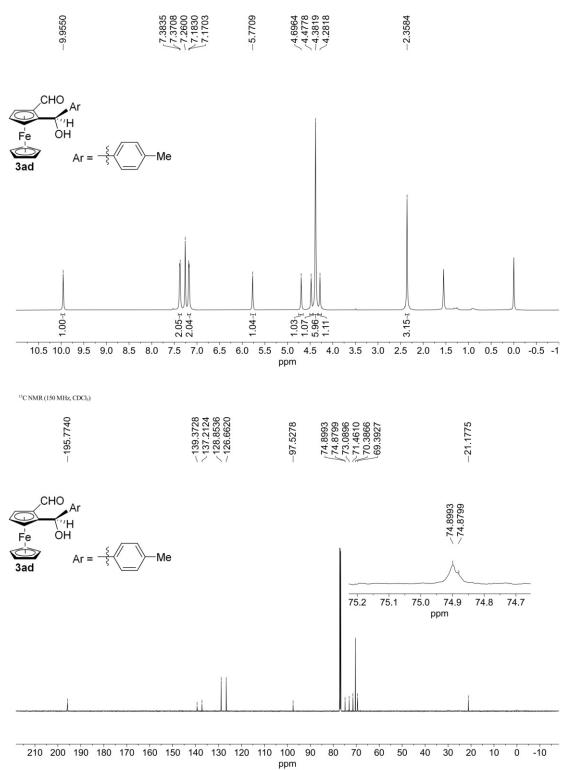




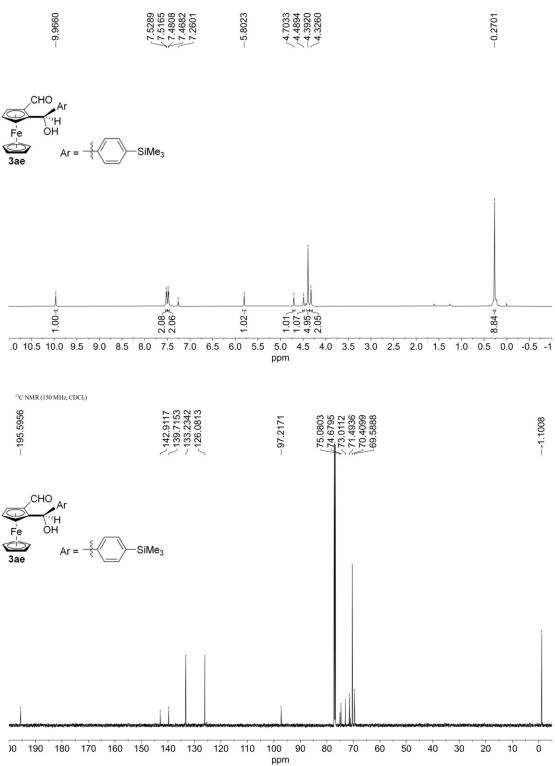
S74

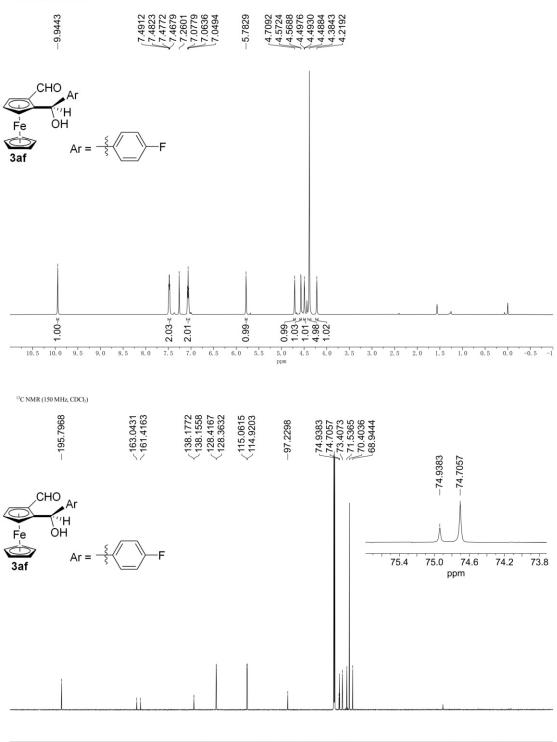


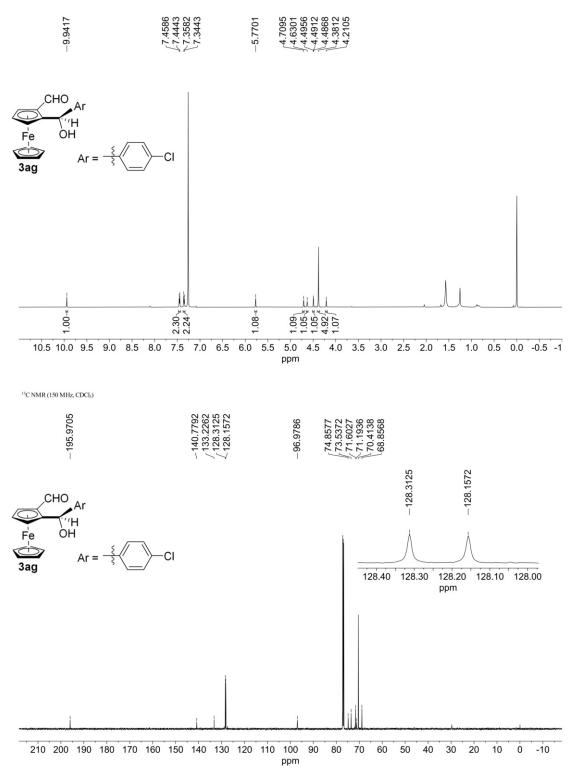




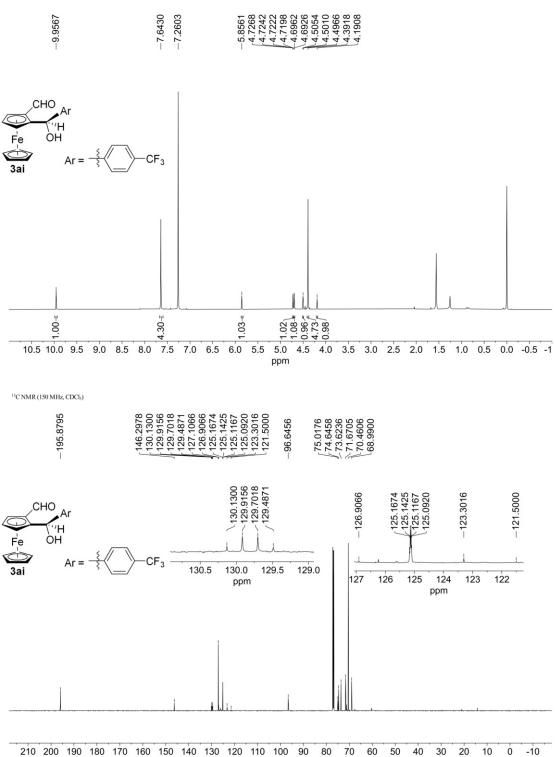
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (ppm

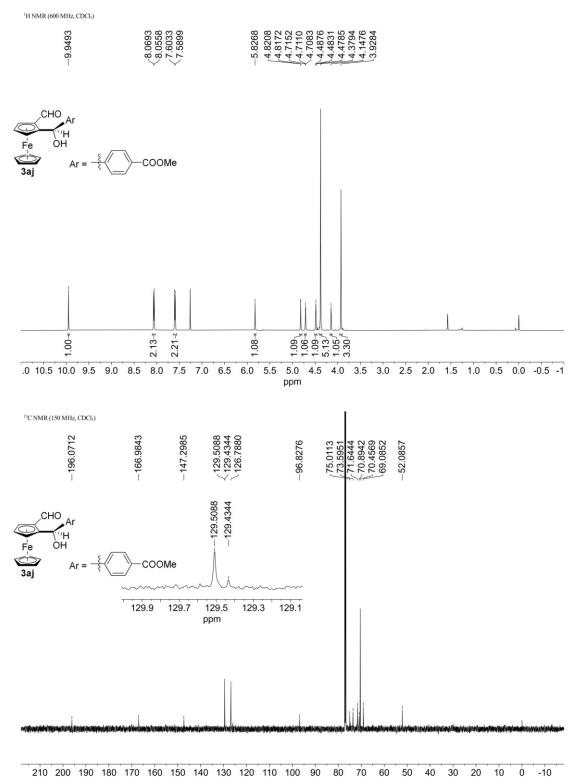


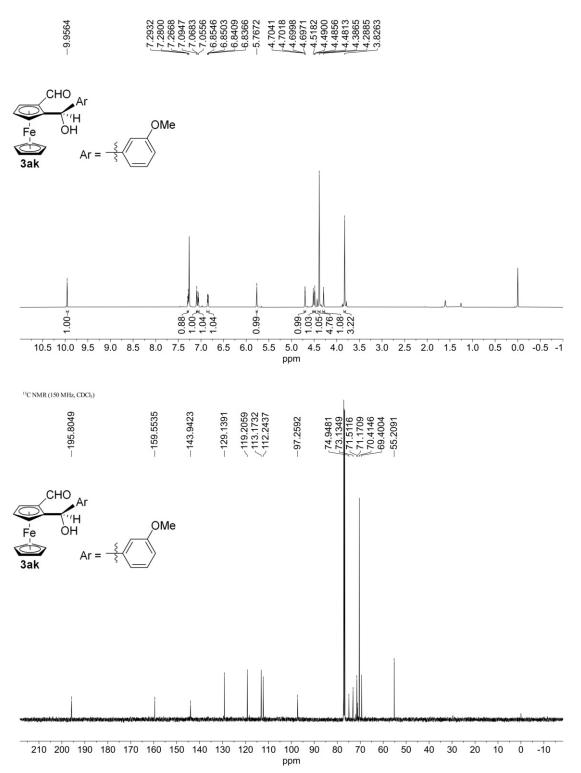


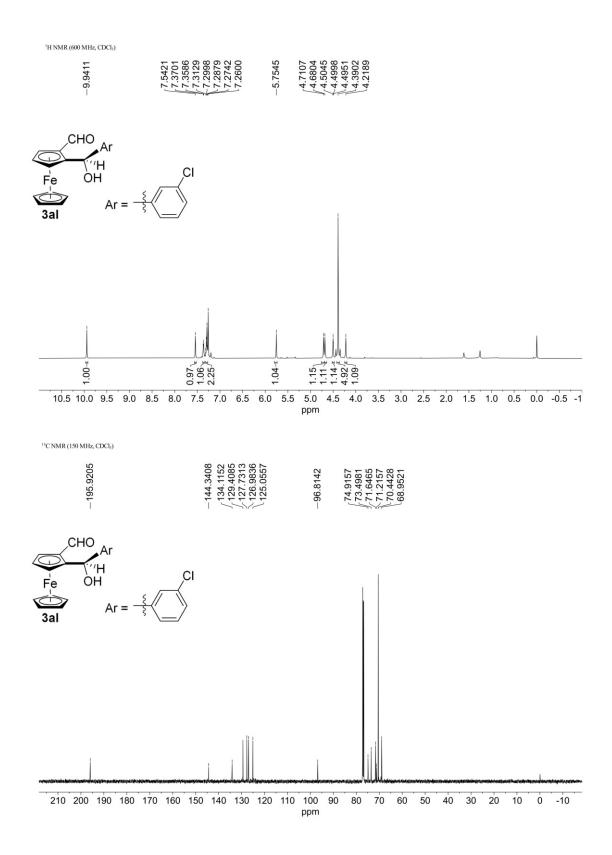


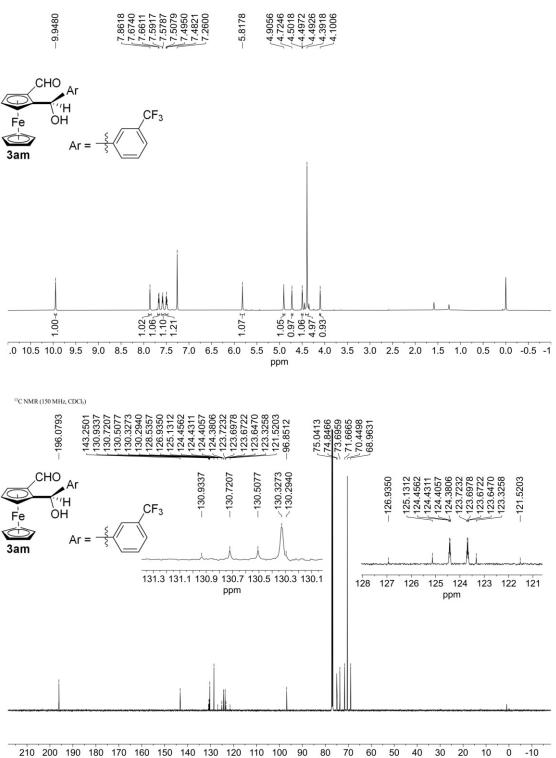
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm



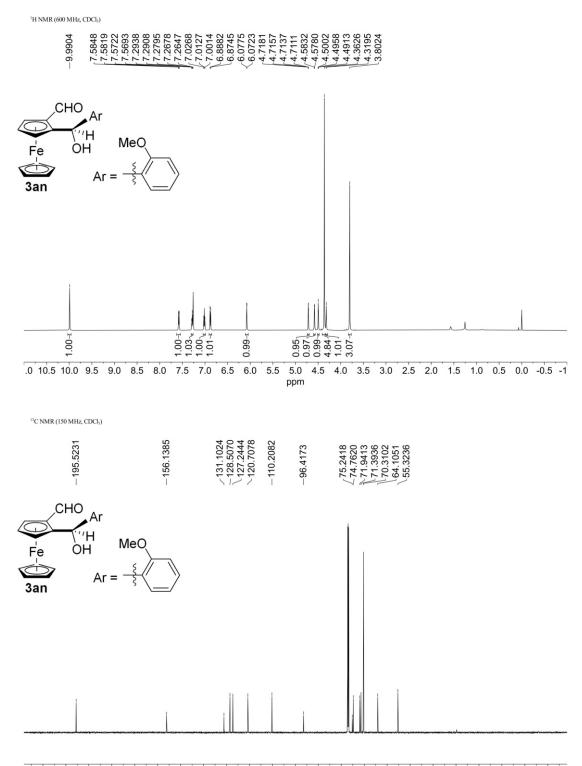


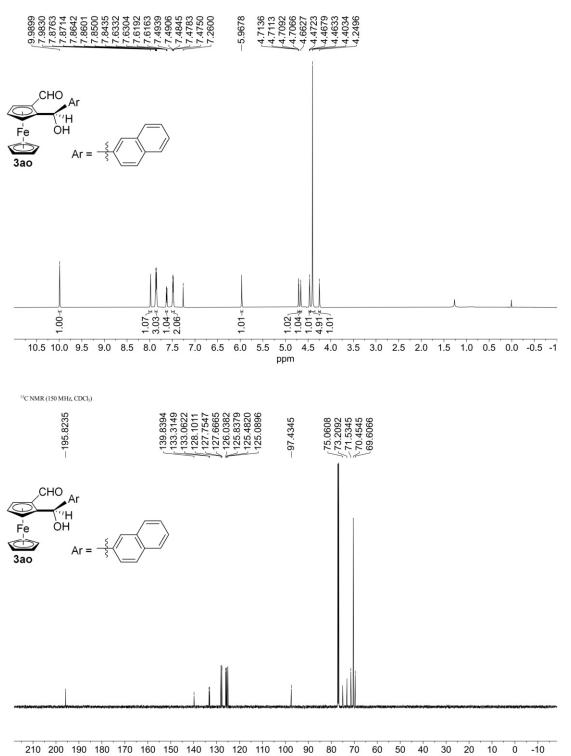


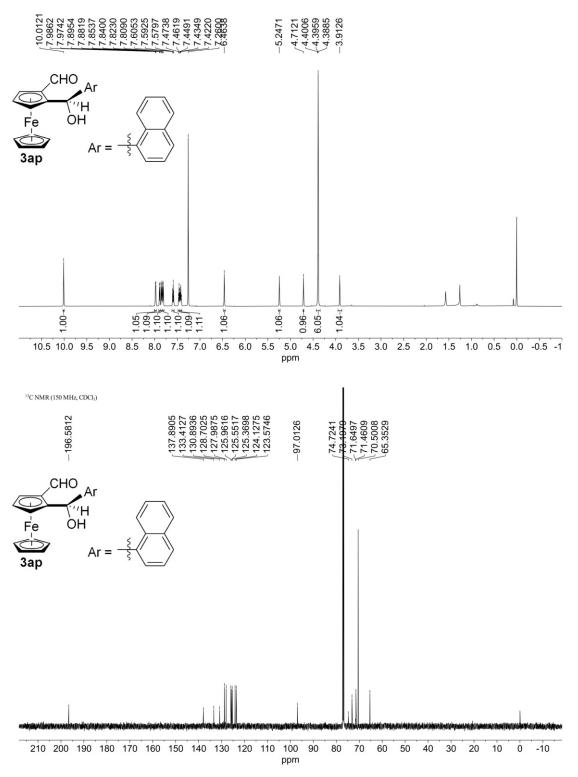


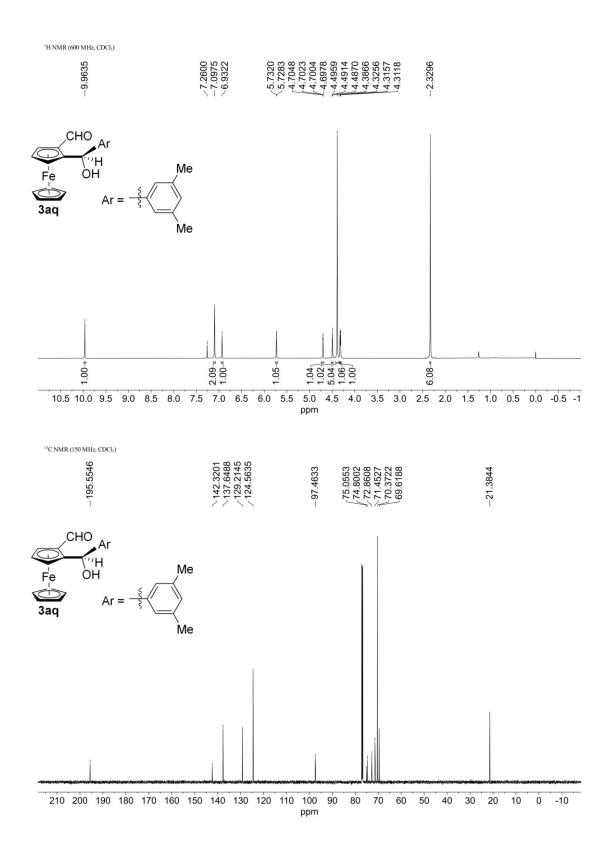


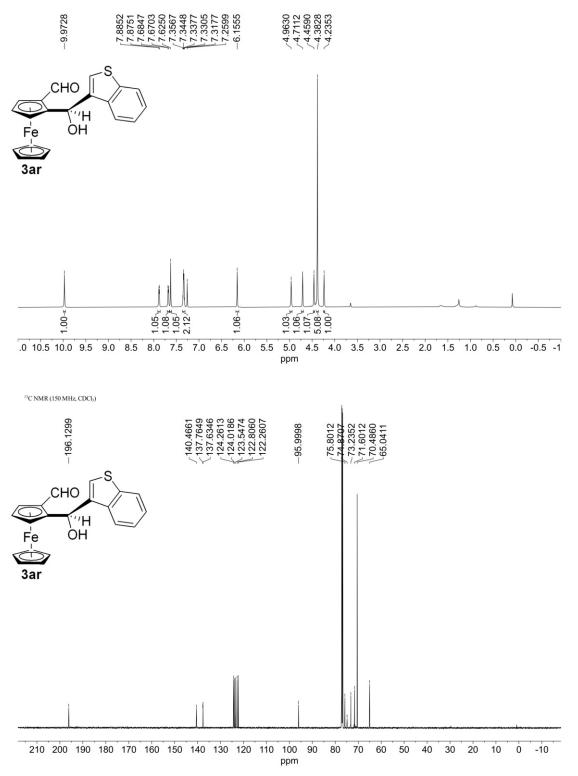
¹H NMR (600 MHz, CDCl₃)

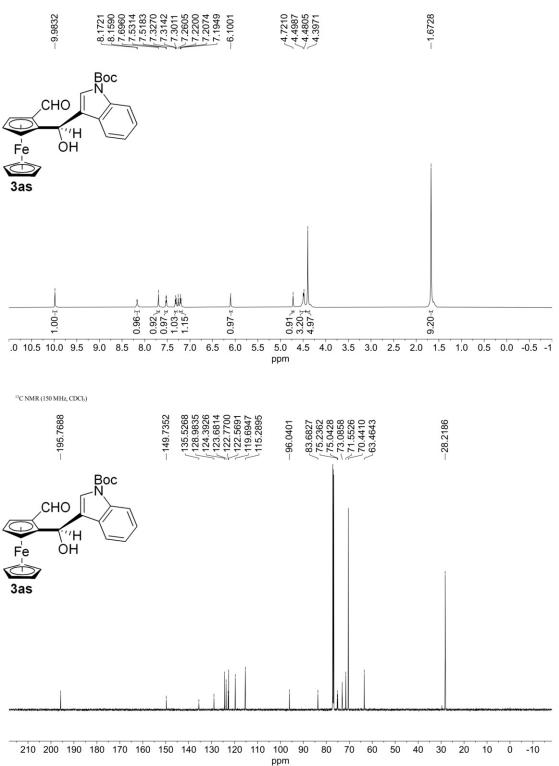


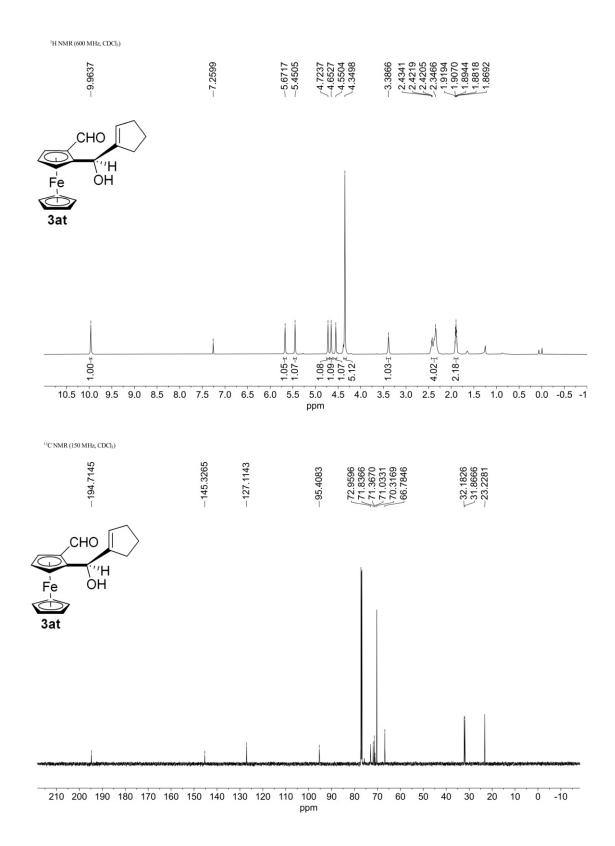


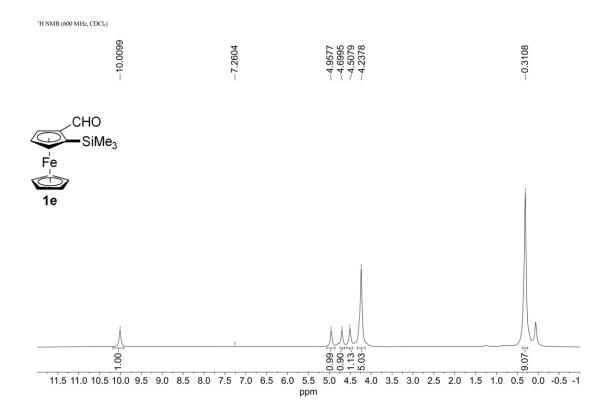


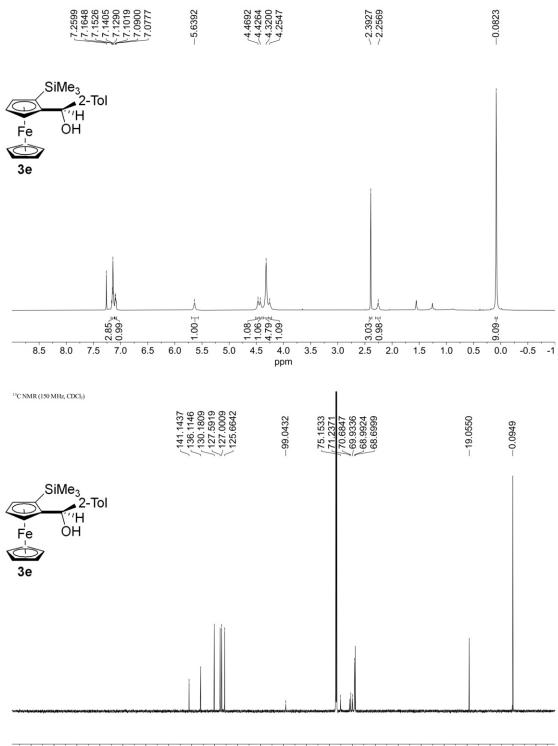

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

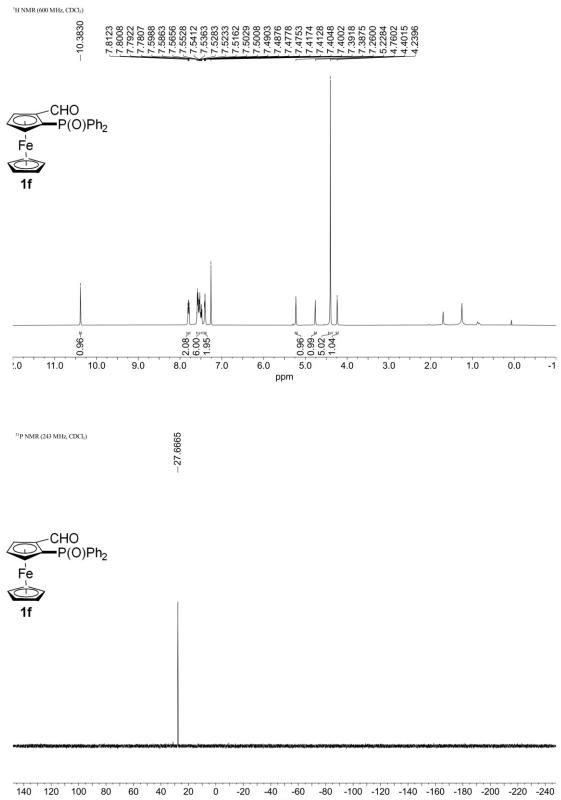


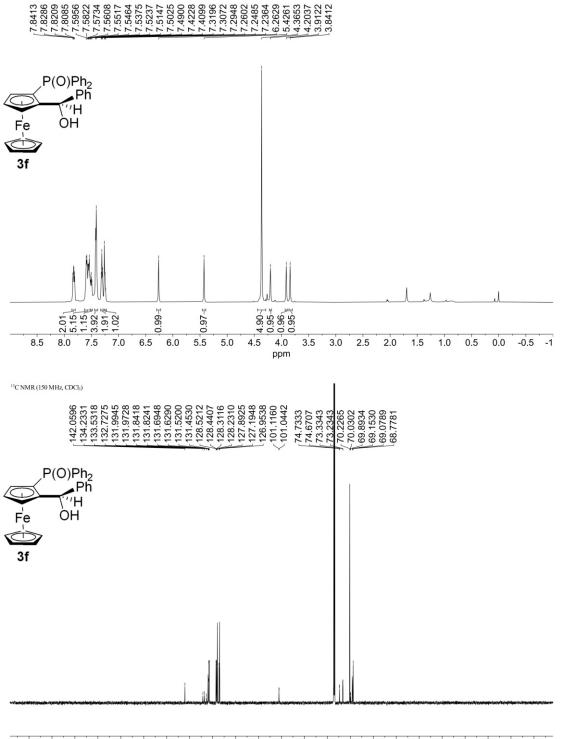

ppm



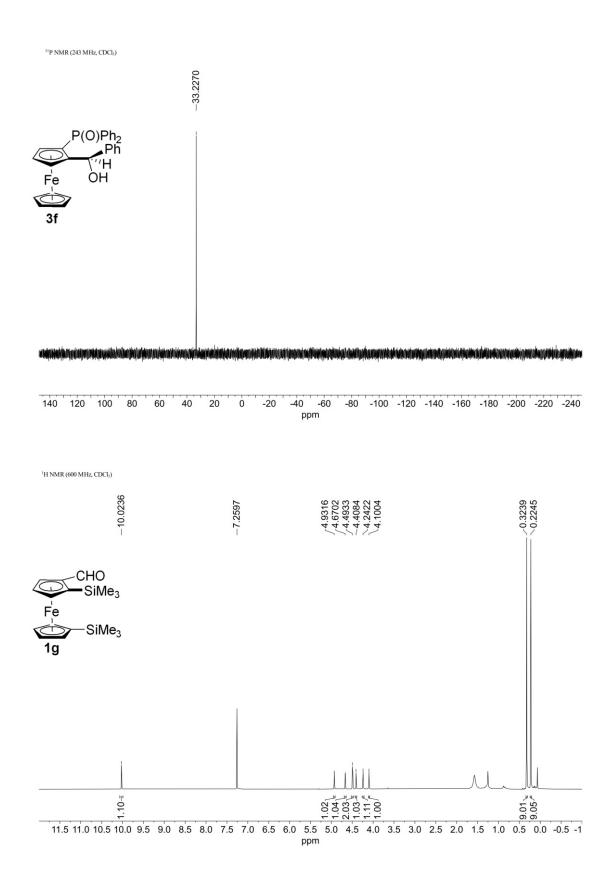


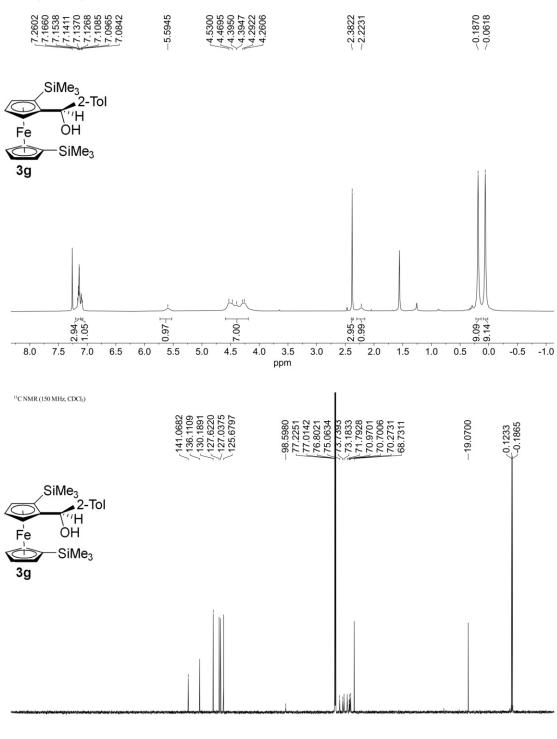


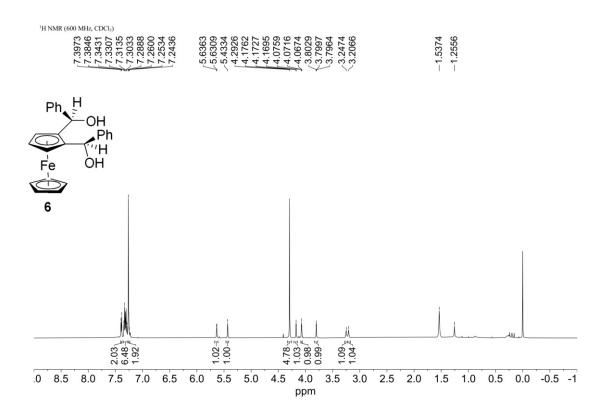

S95

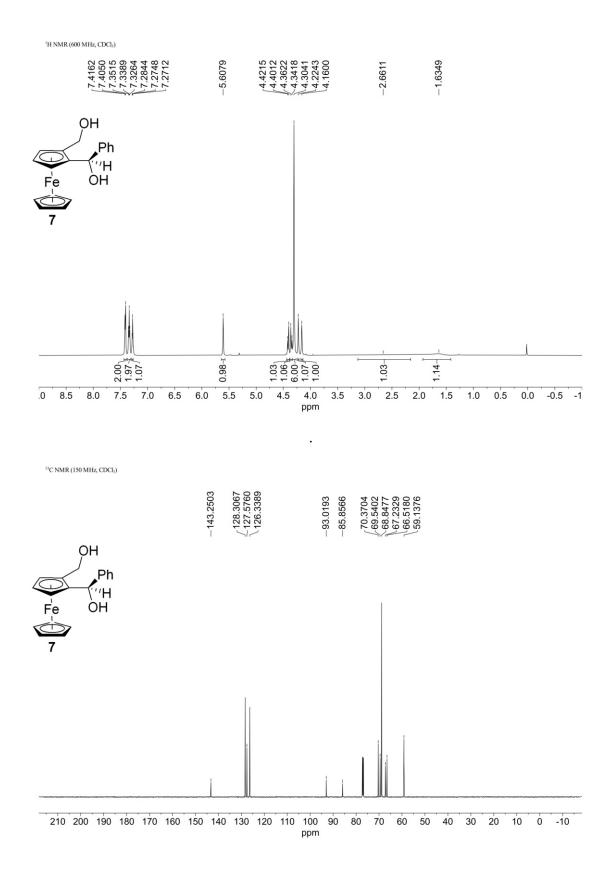


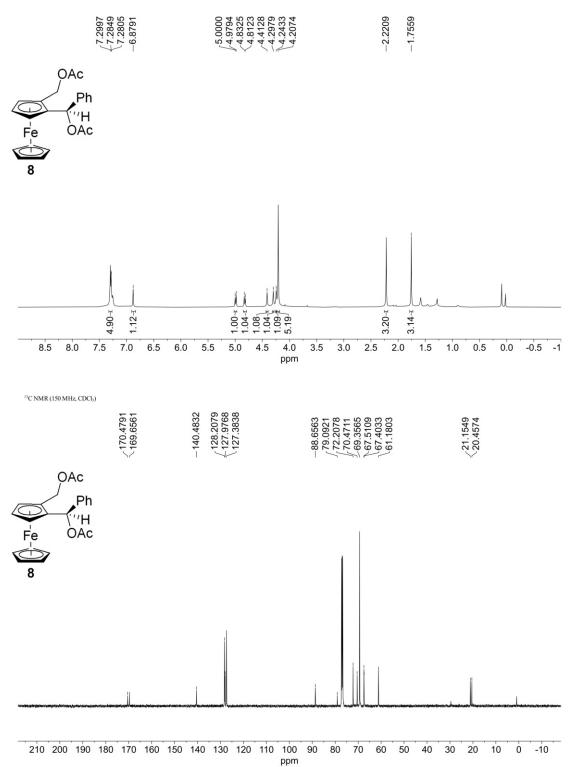
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

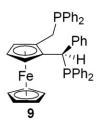


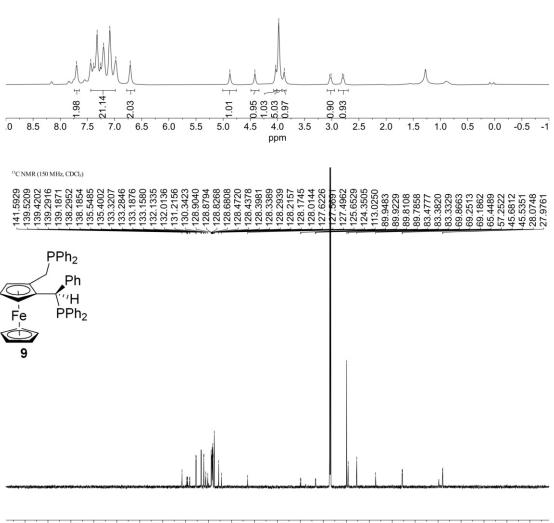

¹H NMR (600 MHz, CDCl₃)

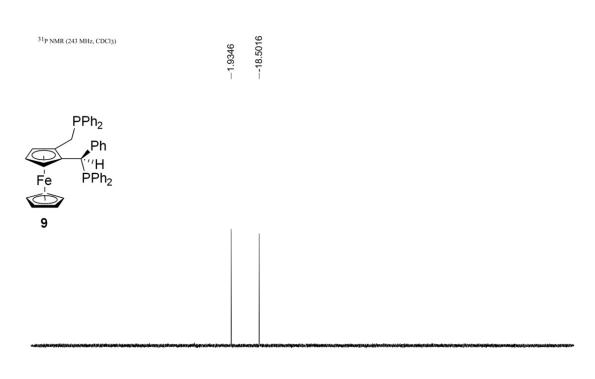

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

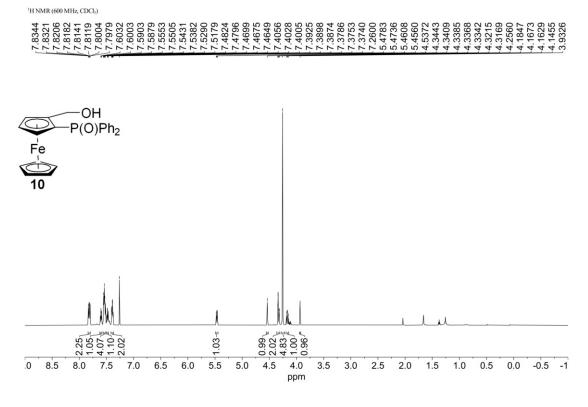


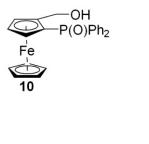

S101



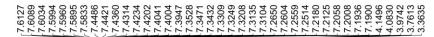

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

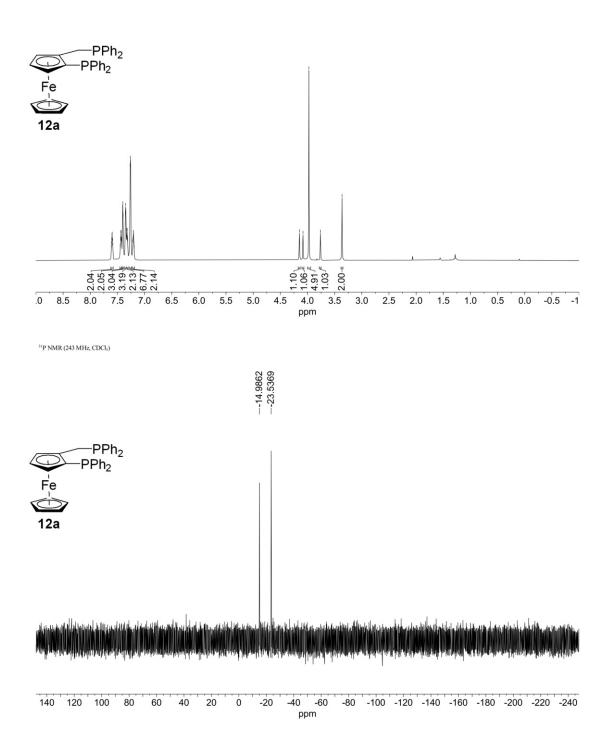


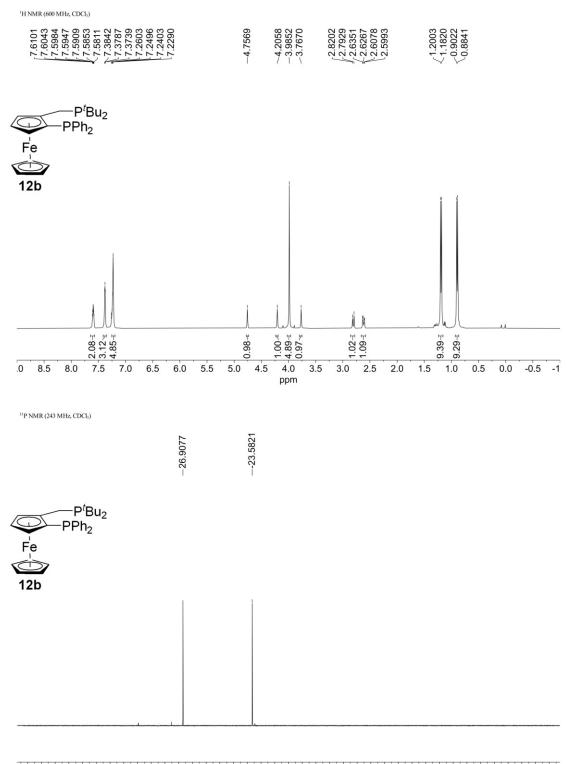


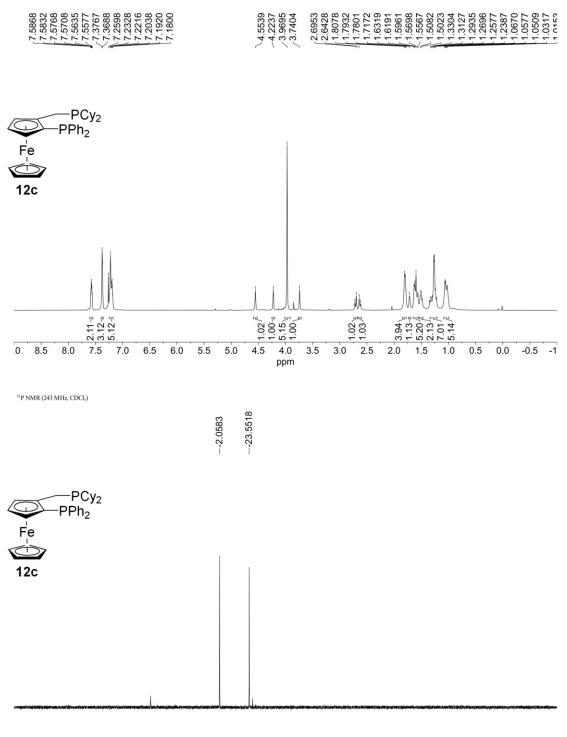


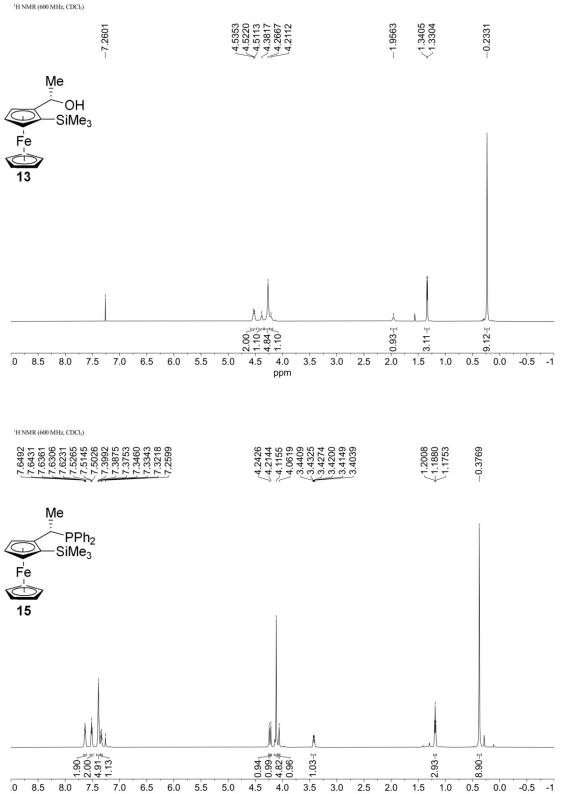
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

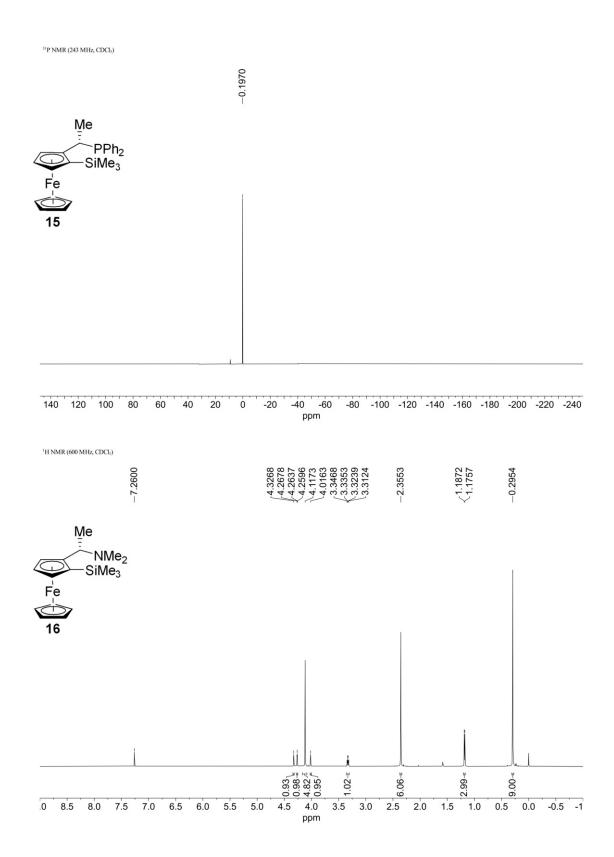


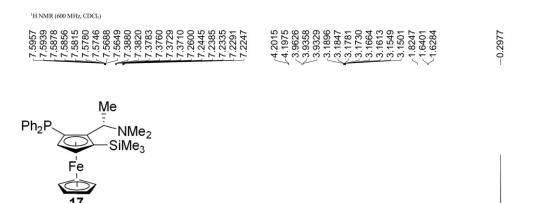


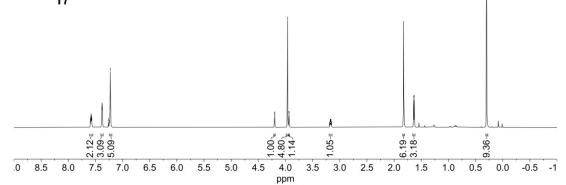


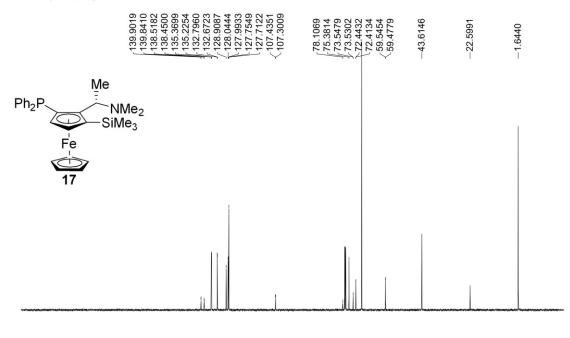


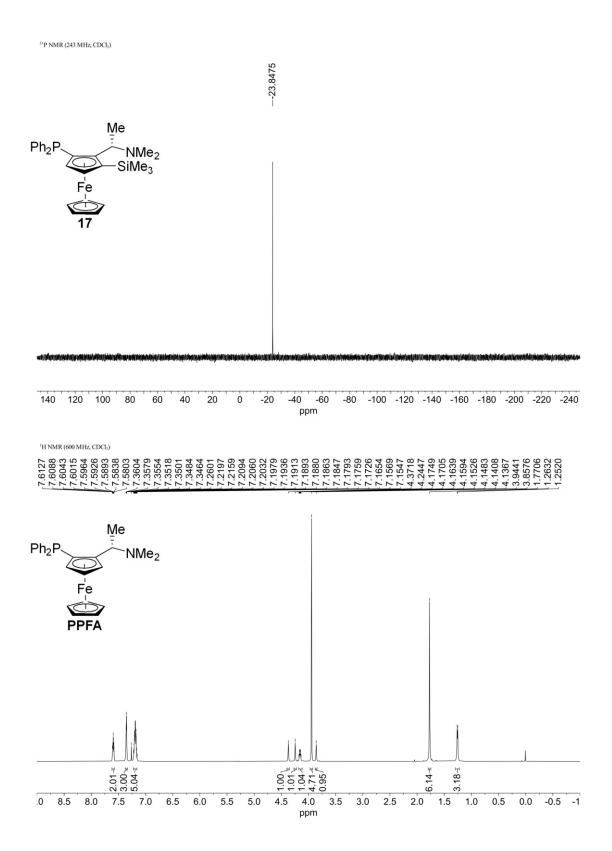

¹H NMR (600 MHz, CDCl₃)

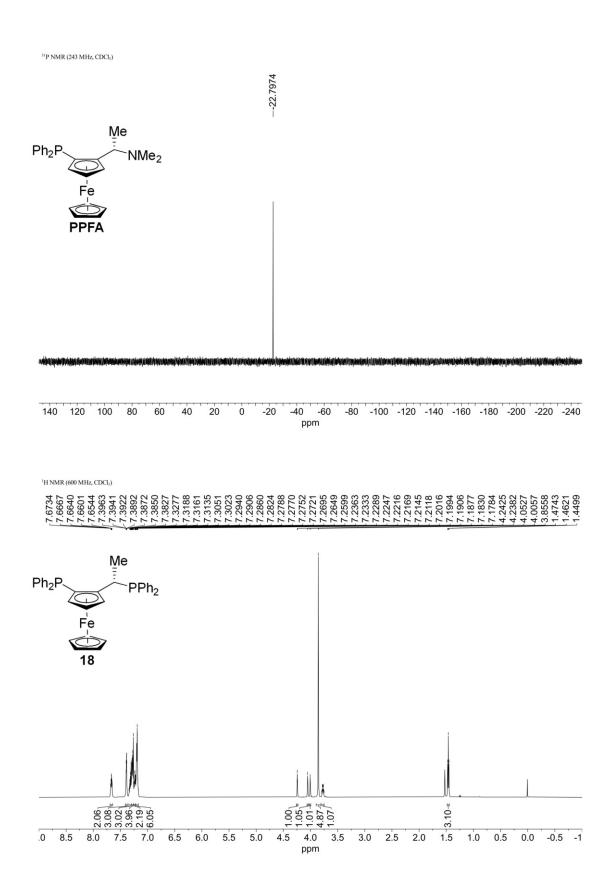


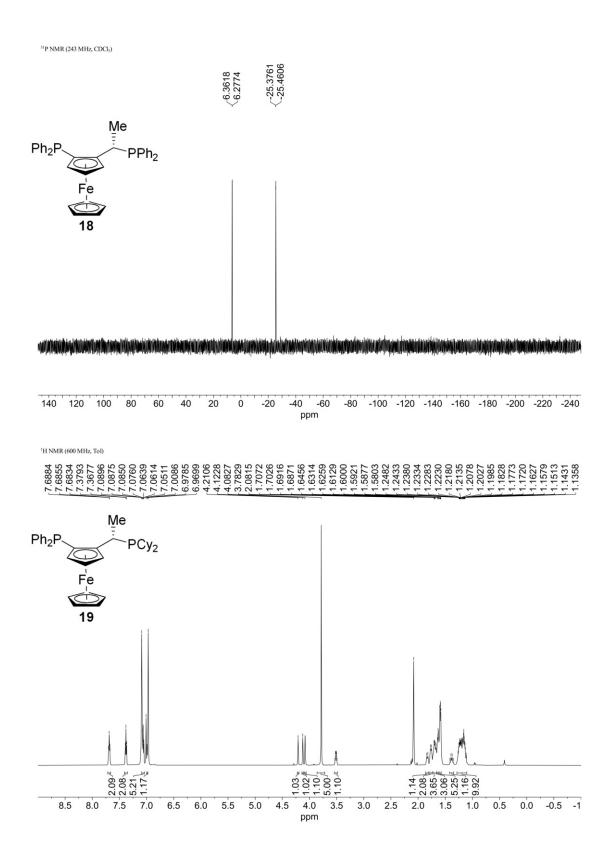


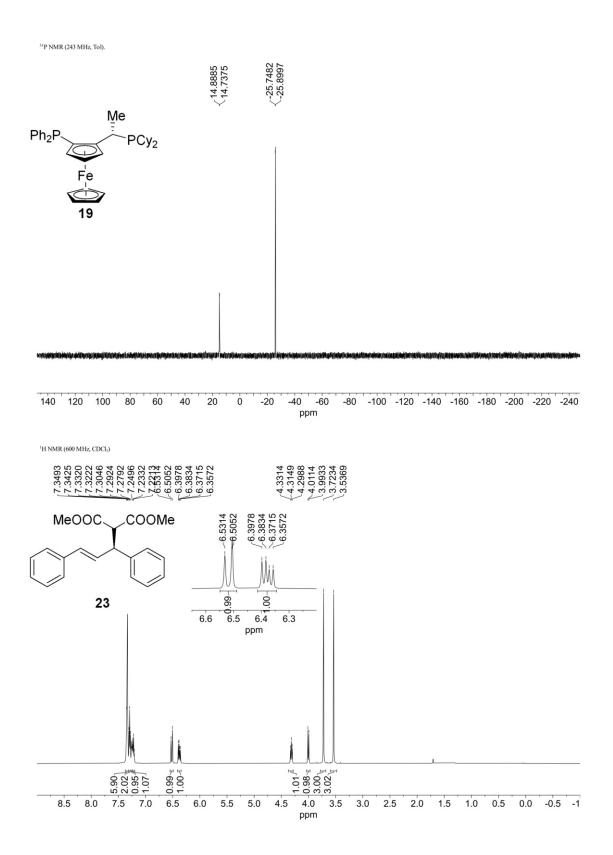


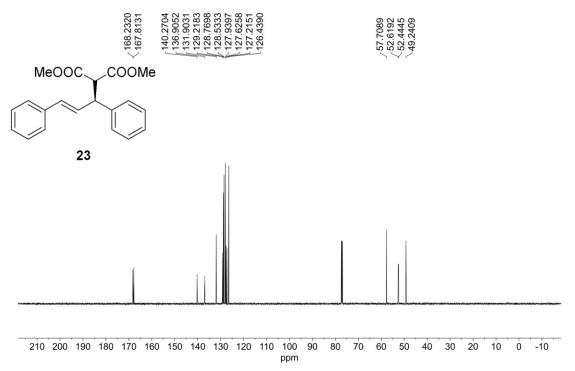

3.5 4.5 4.0 5.0 3.0 ppm






```
13C NMR (150 MHz, CDCl3)
```



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm



S117

