Electronic Supplementary Information

Modular Assembly of Amines and Diborons with Photocatalysis Enabled Halogen Atom Transfer of Organohalides for C(sp³)-C(sp³) Bond Formation

Rong-Bin Liang,^{1,#} Ting-Ting Miao,^{1,#} Xiang-Rui Li,¹ Jia-Bo Huang,¹ Shao-Fei Ni,*,¹ Sanliang Li,¹ Qing-Xiao Tong,¹ and Jian-Ji Zhong*,^{1,2}

¹College of Chemistry and Chemical Engineering, and Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China

² Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China

[#]These two authors contributed equally to this work

*E-mail: sfni@stu.edu.cn; jjzhong@stu.edu.cn

Table of Contents

Electronic Supplementary Information1
Table of Contents 2
1. Experimental section
1) General information
2) Preparation of α -trifluoromethyl arylalkenes
3) General procedure for the photochemical reactions
4) Stern-Volmer Quenching Experiments6
5) Cyclic Voltammetry experiments7
6) Radical-trapping experiment
7) Radical-clock experiment9
8) Deuterium labeling experiments10
9) ¹¹ B NMR monitoring experiments
10) Computational studies
11) References
2. Characterization data of the products
3. NMR spectra for the products

1. Experimental section

1) General information

All chemicals, unless otherwise noted, were purchased from commercial sources and were used without further purification. Unless stated otherwise, all reactions were carried out under argon atmosphere. The substrates α -trifluoromethyl arylalkenes (**S**) were synthesized according to the literature methods with slight modification.^[1-4] Irradiation with visible light was performed using blue LEDs ($\lambda = 450 \pm 10$ nm) illumination instruments (The instruments were designed by ourselves and the actual output power density of the LEDs at 0.5 cm distance is 33.70 mW/cm² detected by CEL-NP2000-10 (Beijing Ceau Light Co. Ltd., China) light power meter). For irradiation, the material of the reaction vessel is common glass; the distance from the light source is about 0.5 cm.

The nuclear magnetic resonance spectra were recorded on the Bruker AscendTM 400 MHz NMR spectrometer with tetramethylsilane (TMS) as an internal standard. High resolution mass spectra were recorded using a Q Exactive mass spectrometer (Thermo Fisher Scientific, USA).

2) Preparation of α -trifluoromethyl arylalkenes

$$R \xrightarrow{II} B(OH)_{2} + Br CF_{3} \xrightarrow{Pd(PPh_{3})_{4}, K_{2}CO_{3}} R \xrightarrow{II} CF_{3}$$

Arylboronic acid (10.0 mmol), Pd(PPh₃)₄ (0.3 mmol, 3 mol%), K₂CO₃ (20.0 mmol, 2.0 equiv.) were dissolved in co-solvents (THF/ H₂O = 2:3, (v/v), 50.0 mL) in a twoneck flask under argon atmosphere. Then, 2-bromo-3,3,3-trifluoroprop-1-ene (20.0 mmol, 2.1 mL) was added dropwise into the mixture. The mixture was heated to 60 °C in an oil bath for at least 12 h. Then the mixed solution was extracted with ethyl acetate $(3 \times 15.0 \text{ mL})$. The organic layer was washed with brine (20.0 mL), dried over Na₂SO₄, and then concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 200/1) to afford the desired products.

To a solution of carboxylic acid (5.0 mmol), 4-dimethylaminopyridine (DMAP) (20 mol%, 1.0 mmol, 122 mg) and **a'** (5.5 mmol, 1.1 equiv.) in dry DCM (15 mL) at 0 °C, followed by adding *N*,*N*'-dicyclohexylcarbodiimide (DCC) (5.5 mmol, 1.14 g, 1.1 equiv.). After stirring for 5 min at 0 °C, the reaction mixture was stirred at room temperature for 12h. Upon completion, the resulting mixture was filtered through a pad of Celite. The filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to afford the desired products.

3) General procedure for the photochemical reactions

S (1.0 equiv., 0.2 mmol), Ir(dFMeppy)₂(dtbbpy)PF₆ (2.0 mg, 1.0 mol%), **A1** (1.5 equiv., 0.3 mmol), **B1** (1.5 equiv., 0.3 mmol) were dissolved in **Cl-R'** (2.0 mL) in a 10.0 mL tube equipped with magnetic stirring bar, then the reaction tube was irradiated by blue LEDs ($\lambda = 450 \pm 10$ nm) at room temperature for 6-12 h. After reaction, the solvent was removed by rotary evaporation and purified by column-chromatography on silica gel using hexane/ ethyl acetate as the eluent to afford the desired products.

S-2 (1.0)equiv., 0.2 mmol), Br-R' (5.0)1.0 equiv., mmol). Ir(dFMeppy)₂(dtbbpy)PF₆ (2.0 mg, 1.0 mol%), A1 (1.5 equiv., 0.3 mmol), B1 (1.5 equiv., 0.3 mmol) were dissolved in 3.0 mL CH₃CN in a 10.0 mL flask equipped with magnetic stirring bar, then the reaction tube was irradiated by blue LEDs ($\lambda = 450 \pm 10$ nm) at room temperature for 4-8 h. After reaction, the solvent was removed by rotary evaporation and purified by column-chromatography on silica gel using hexane/ ethyl acetate as the eluent to afford the desired products.

4) Stern-Volmer Quenching Experiments

All Stern-Volmer quenching experiments were carried out on Fluorescence spectrometer (PTI QM-TM) under an argon atmosphere. Stern-Volmer quenching experiments were measured with excitation at 400 nm. The acetonitrile solution of 1.0 $\times 10^{-5}$ M Ir(dFMeppy)₂(dtbbpy)PF₆ and 1.0×10^{-3} M **DCM**, **S-1**, **A1**, **B1** or (**A1+B1**), respectively, were prepared. The experiments were conducted in 1.25 cm x 1.25 cm x 4.5 cm quartz cuvette at room temperature. Appropriate volume (the whole solution volume change < 5%) of quenchers were respectively injected to the acetonitrile solution (3.0 mL) of 1.0×10^{-5} M Ir(dFMeppy)₂(dtbbpy)PF₆ in the quartz cuvette by microsyringe.

Figure S1. Ir(dFMeppy)₂(dtbbpy)PF₆ emission quenching by S-1, A1, B1, (A1+B1) and DCM

5) Cyclic Voltammetry experiments

All Cyclic Voltammetry studies were performed using a Shanghai Chenhua CHI-760E workstation under an argon atmosphere. Polish the glass carbon electrode with aluminum oxide. A glassy-carbon (GC) electrode (5 mm-diameter, disk-electrode) was used as the working electrode, Pt wire was used as the counter electrode and an Ag/AgCl electrode was used as the reference electrode.

Figure S2. Cyclic voltammograms study for A1, B1 and (A1+B1)

6) Radical-trapping experiment

7) Radical-clock experiment

8) Deuterium labeling experiments

9) ¹¹B NMR monitoring experiments

10) Computational studies

All calculations were performed using Gaussian 16, Revision A.03 package.^[5] All of the reactants, intermediates, transition states, products were optimized by the DFT with the B3LYP-D3 functional.^[6-11] For geometry optimizations and frequency calculations, BS-I basis set system was employed. In BS-I, we employed 6-31G(d) basis sets for H, B, C, N and O. All the stationary structures were characterized with no imaginary frequency and the transition state structures (TSs) were characterized with a single imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were performed on the TSs. The solvent effect of dichloromethane (DCM) was evaluated through the SMD method,^[12] in which a better basis system BS-II was used. In BS-II, we employed 6-311++G(d,p) basis sets for H, B, C, N and O. All reported energies are free energies at a concentration of 1 M and a temperature of 298.15 K. A method developed by Whitesides *et al.*^[13] was used to estimate the entropic contributions. This method was designed to better describe the suppression of the translational entropy upon moving from gas phase to a solvent for each species.^[14,15]Three-dimensional structures and the orbitals' diagrams of molecules were visualized using GaussView $6.0.16.^{[16]}$

Figure S3. Graph sheets of potential energy scan.

Figure S4. Three-dimensional structures and HOMO orbitals' energy values and diagrams of B1, INT-1 and INT-2.

Cartesian coordinates of the optimized structures:

B1

E = -743.923192661 a.u.

01				
С	-2.81404300	1.54211200	0.27547800	
С	-2.71847400	3.89573300	-0.45675700	
С	-3.30055800	2.51665500	-0.81032100	
Н	-3.28575800	1.78621800	1.23829800	
Н	-2.92149200	4.61598000	-1.25844100	
Н	-3.18714800	4.27725000	0.46181300	
Н	-3.09070600	0.51216300	0.02010400	
С	3.01053800	3.48131900	1.51979200	
С	3.20103500	1.99603000	-0.44052800	
С	3.75416700	3.28639000	0.18774700	
Н	3.30363200	2.69661600	2.23216100	
Н	3.26741600	4.44960100	1.96587800	
Н	3.59652400	1.86178900	-1.45455200	
Н	3.50907900	1.12538700	0.15619900	
В	-0.68658100	2.71664900	0.17689300	
В	1.01709300	2.71385600	0.35713700	
0	-1.30263900	3.86233900	-0.26471000	
0	-1.39490600	1.57052600	0.44171400	
0	1.77516400	1.99890300	-0.53802000	
0	1.59022900	3.45017200	1.36445600	
С	-4.83359100	2.58464600	-0.79342100	
Н	-5.20043200	3.29284400	-1.54615200	
Н	-5.26944200	1.60415900	-1.02003500	
Н	-5.21320600	2.90488300	0.18468000	
С	-2.80628000	2.06439500	-2.19605200	
Н	-3.20984300	1.07572000	-2.44466400	
Н	-3.13305600	2.76870500	-2.97025200	
Н	-1.71504900	2.00088000	-2.23755300	
С	3.50674000	4.48622500	-0.74409800	
Н	3.88848300	5.40941100	-0.29227300	
Н	4.01827100	4.34104300	-1.70299700	
Н	2.44173400	4.62896900	-0.94886900	
С	5.25703700	3.12661400	0.45418100	
Н	5.80341100	2.96264700	-0.48247100	
Н	5.66732100	4.02854300	0.92414500	
Н	5.46185000	2.27728700	1.11753400	

A1

E = -345.339880758 a.u.

01				
С	-0.72408100	-0.50704600	0.00012900	
С	-1.25631200	0.96507400	0.00065600	
Н	-1.06580100	-1.05899200	-0.88341500	
Н	-1.06569100	-1.05960900	0.88333000	
Н	-1.87279500	1.17122100	-0.88224900	
Η	-1.87150100	1.17103900	0.88450500	
С	1.22780300	0.19859500	-1.19852600	
Η	2.32371600	0.16632200	-1.19767100	
Η	0.88494500	-0.35430700	-2.08102500	
С	0.69521000	1.67061600	-1.19871400	
Η	1.51679700	2.39660200	-1.19849000	
Η	0.07760100	1.87583200	-2.08105100	
С	0.69629600	1.67099400	1.19802600	
Η	1.51830200	2.39650200	1.19635100	
Η	0.07978200	1.87722400	2.08089300	
С	1.22806200	0.19867400	1.19832300	
Η	2.32395700	0.16576500	1.19771800	
Η	0.88468900	-0.35379300	2.08089300	
Ν	0.75015400	-0.51481000	-0.00002800	
Ν	-0.12784700	1.91372500	-0.00001000	

INT-1

E = -1089.28124878 a.u.

01			
С	3.40097700	0.08882900	0.50905600
С	2.73807800	1.08369200	-1.63818900
С	3.36068600	1.41136200	-0.27258600
Н	4.11898900	-0.60106700	0.04203300
Н	3.72860300	0.26096400	1.54164000
Н	2.57940500	2.00003900	-2.22040700
Н	3.41498700	0.43516800	-2.21308700
В	1.17157600	-0.36439300	-0.41425700
0	1.47042200	0.43358700	-1.51456700
0	2.12465600	-0.54401400	0.56819200
С	2.50268300	2.44880300	0.47378000
Н	2.94096000	2.67648900	1.45259900
Н	2.44436100	3.38359500	-0.09681300
Н	1.48286200	2.08921900	0.63978600
С	4.78599800	1.94451700	-0.46796000
Н	4.77854900	2.87805100	-1.04368000
Н	5.25858700	2.15449800	0.49908200
Н	5.41713200	1.22343200	-1.00192300
С	-0.65391500	-0.83232900	2.30372400

С	-1.04020900	-3.02634500	1.14247300
С	-0.54858800	-2.38969200	2.45995000
Н	-1.38355100	-0.43226100	3.01987800
Н	0.32023700	-0.37474700	2.53554100
Н	-0.85094000	-4.10834100	1.16483800
Н	-2.13238200	-2.89070900	1.06896900
В	-0.39853300	-1.05308800	-0.09920800
0	-0.37178200	-2.49975900	0.01183100
0	-1.08532700	-0.42019400	1.01804100
С	0.91045300	-2.80451200	2.71524000
Н	1.29554900	-2.33097900	3.62783100
Н	0.98990900	-3.89212800	2.84318100
Н	1.54605100	-2.50083000	1.88032100
С	-1.43816400	-2.87424300	3.61522800
Н	-1.39661100	-3.96645700	3.71816300
Н	-1.11252400	-2.43977700	4.56874800
Н	-2.48637700	-2.58884800	3.45839700
С	-2.82066800	-1.32025900	-1.12949200
С	-3.81686200	-0.90047600	-2.24744100
Н	-2.65610900	-2.39849600	-1.10312500
Н	-3.12644500	-0.99467200	-0.13444900
Н	-4.32295700	-1.77805000	-2.66490500
Н	-4.59095500	-0.23230200	-1.85420700
С	-0.95284400	-1.25780900	-2.67940600
Н	-0.01668700	-0.73970100	-2.88936300
Н	-0.72877600	-2.30996300	-2.48928200
С	-2.01089600	-1.04734600	-3.80203800
Н	-1.55429600	-0.57236100	-4.67736200
Н	-2.43350200	-2.00297800	-4.13147200
С	-2.56349000	1.05370000	-2.79804100
Н	-1.98236600	1.53338200	-3.59339100
Н	-3.39352600	1.72406100	-2.54869100
С	-1.67586700	0.78410900	-1.54810400
Н	-0.68630700	1.23202000	-1.63732700
Н	-2.12704200	1.13196500	-0.61722000
Ν	-1.48113200	-0.69589100	-1.39374800
Ν	-3.11994600	-0.19842000	-3.33588100

H₂O

E = -76.4070324119 a.u.

0 1 O -1.83875200 0.17257000 0.02385400 H -0.87132900 0.22001500 0.02385400 H -2.11696100 1.10034100 0.02385400

INT-2

E = -1165.71707929 a.u.

01

С	3.52152300	-0.49593100	-0.20090100
С	2.64997900	1.39902000	-1.50729500
С	3.60179300	1.03029600	-0.35970700
Н	3.98221700	-0.98947200	-1.06885700
Н	4.06696700	-0.81792800	0.69411000
Н	2.56722500	2.48733600	-1.60782600
Н	3.02886600	0.99926800	-2.45842700
В	1.10592500	-0.28177700	-0.58264000
0	1.32136400	0.89339200	-1.29968100
0	2.18127600	-0.97044900	-0.07210700
С	3.18103100	1.74560100	0.93786700
Н	3.78787200	1.39723100	1.78190000
Н	3.33066400	2.82745900	0.83905900
Н	2.12671700	1.59486600	1.18526400
С	5.03726200	1.42604900	-0.73513600
Н	5.11488900	2.50890300	-0.88908600
Н	5.73512600	1.15476400	0.06600200
Н	5.36910500	0.92841300	-1.65493100
С	-1.45266700	-1.08412000	2.06120000
С	-0.02239600	-2.92408900	1.14715300
С	-0.37408700	-2.11566500	2.44129000
Н	-2.37703800	-1.61174500	1.77679800
Н	-1.68739900	-0.44892800	2.92456300
Н	1.06809100	-3.03613500	1.06621100
Н	-0.45656800	-3.93045700	1.21265300
В	-0.47065800	-0.91072100	-0.17164900
0	-0.53869300	-2.34882800	-0.04193300
0	-1.01603100	-0.23121700	1.01326200
С	0.86555800	-1.38521400	2.98794400
Н	0.61375800	-0.80875900	3.88723600
Н	1.64923900	-2.10465300	3.25627200
Н	1.28046500	-0.70170800	2.24495100
С	-0.93061600	-3.05877200	3.51911100
Н	-0.19561000	-3.83094700	3.77810400
Н	-1.17386700	-2.51176400	4.43889300
Η	-1.84088300	-3.56628600	3.17529700
С	-2.95316700	-1.14760800	-1.00460300
С	-3.93490200	-1.04989000	-2.20518000
Н	-2.80005600	-2.16905400	-0.65561200
Н	-3.26746000	-0.53632000	-0.15684800

Н	-4.17496100	-2.04400900	-2.59809800
Н	-4.87665600	-0.58264800	-1.89731100
С	-1.18216900	-1.32801300	-2.67144500
Н	-0.16216100	-1.00426800	-2.89451100
Н	-1.15348800	-2.39311000	-2.43556600
С	-2.17631200	-0.97556200	-3.81668700
Н	-1.69696500	-0.34024300	-4.56933200
Н	-2.51800000	-1.88455600	-4.32358400
С	-2.90828900	1.03421000	-2.74365600
Н	-2.58890600	1.67900700	-3.56958500
Н	-3.77345000	1.51210000	-2.27182000
С	-1.74957800	0.84182200	-1.72436700
Н	-0.79141300	1.17349100	-2.12388000
Н	-1.90960700	1.36669700	-0.78133800
Ν	-1.60519000	-0.62311800	-1.41747100
Ν	-3.35007500	-0.25709400	-3.29698000
0	-0.24191900	2.42567500	0.79762200
Н	0.25169600	2.20970100	-0.00918400
Н	-0.54324300	1.53990900	1.09003000

PC*

E = -3089.93305277 a.u.

01 Ν 7.62669500 3.94149400 1.79936000 Ν 7.81241000 2.28695900 -0.29166600 Ν 9.76309800 4.69000400 -0.06846700 4.33395700 Ν 5.73738800 -0.72340300С 2.61477200 2.08873600 7.66305700 С 7.76178400 1.69760000 0.93103400 С 10.17744800 6.04517100 0.14671800 С 5.39223900 4.47548100 -2.03296500 С 10.69038900 3.72256900 -0.09563700 С 0.20839100 4.79241900 4.11131600 С 7.52407400 4.82597600 2.80110200 С 7.84973700 1.50889200 -1.38048400 С 7.58471600 2.18079100 3.41302200 С 7.77389100 0.31329000 1.05506000 С 11.56893100 6.31325000 0.30305900 С -2.39160200 4.04120900 4.43035400 С 12.05512700 3.94665300 0.06279300 С 3.43776700 4.04656000 -0.08320000 С 7.44580300 4.44657700 4.13549500 С 7.86601700 0.12215800 -1.31099900 С 7.47111300 3.08711300 4.47466800

С	7.80188500	-0.51776000	-0.07180000
С	12.49473600	5.30728100	0.26509000
С	3.07287600	4.21729500	-1.42564800
Н	10.31587100	2.71873500	-0.26717100
Н	5.15001400	3.98323300	1.22254500
Н	7.49255200	5.86830600	2.50097400
Н	7.85471600	2.02691100	-2.33153600
Н	7.60267100	1.11884900	3.61979000
Н	7.70706300	-0.13382100	2.03818400
Н	11.88606400	7.34112600	0.44710700
Н	3.75886400	4.53708300	-3.43216300
Н	7.36158400	5.22009400	4.88816200
Н	7.85572800	-0.43528700	-2.23602200
Н	13.55386900	5.51749100	0.37807900
Н	2.02678700	4.15341600	-1.71006900
Р	4.14491300	0.32403900	-1.31126000
F	5.03599200	0.69112700	0.02998800
F	4.89631400	1.56449500	-2.09007000
F	2.96669900	1.33843000	-0.79357400
F	3.28345400	-0.01259200	-2.64261800
F	3.45741500	-0.91107000	-0.49733900
F	5.33479000	-0.69700600	-1.82184400
С	6.52697800	4.66044400	-2.93809200
С	6.40950700	4.77480200	-4.33041600
С	7.80413300	4.70436000	-2.31307800
С	7.54177900	4.93940600	-5.12308400
Н	5.43640700	4.72613100	-4.80978700
С	8.93652200	4.87630100	-3.11914500
С	8.78509700	4.98887200	-4.49590600
Н	7.48056500	5.02404300	-6.20243600
Н	9.93410600	4.92362300	-2.69571600
F	9.88741600	5.14859700	-5.26094200
С	7.37341600	2.57310000	5.91607800
С	7.26082500	3.72202900	6.93477200
Н	6.36314600	4.32791000	6.76725500
Н	7.19479400	3.30898300	7.94672300
Н	8.13577800	4.38143900	6.90375600
С	6.11927700	1.67588600	6.04597500
Н	5.20843800	2.23784200	5.81183000
Н	6.16125800	0.81089500	5.37617100
Н	6.03456100	1.29957800	7.07178500
С	8.63953000	1.74725600	6.24581900
Н	8.74928100	0.88244100	5.58327100
Н	9.54326800	2.36021900	6.15447400

Η	8.58315000	1.37265200	7.27414300
С	7.69873300	-2.03542400	0.09608500
С	6.36765200	-2.35636700	0.82190600
Н	6.25556500	-3.44344600	0.91210200
Н	6.34761200	-1.93791500	1.83489000
Н	5.51513000	-1.95388900	0.27255200
С	8.89415400	-2.53687800	0.93913000
Н	8.81833100	-3.62068900	1.08350800
Н	9.84770600	-2.32648500	0.43984900
Н	8.92281000	-2.07307500	1.93193600
С	7.70394100	-2.76740100	-1.25808500
Н	6.84898100	-2.46414200	-1.86704400
Н	8.62897700	-2.58182600	-1.81815300
Н	7.63463300	-3.84720600	-1.08726700
С	2.42919000	3.72790000	0.98568600
Н	2.82550700	3.92419900	1.98772100
Н	1.51212300	4.31384300	0.85919600
Н	2.16962200	2.66648100	0.91847600
С	13.04303300	2.81868400	0.01483600
Н	13.62023500	2.75695000	0.94810800
Н	12.55279800	1.85275200	-0.14385700
Н	13.77112500	2.96483300	-0.79520500
С	9.12064300	6.97475600	0.17102500
С	9.27648300	8.38351700	0.39954500
С	7.77272400	6.42796500	-0.06445600
С	8.17648000	9.20946300	0.40019200
Н	10.26081600	8.80598100	0.57474700
С	6.68925900	7.30421500	-0.06437500
С	6.89219700	8.66260000	0.16902500
Н	8.26516700	10.27741400	0.57257400
Н	5.68075300	6.95002000	-0.25086400
F	5.83623800	9.50390300	0.18246600
Ir	7.76058100	4.45754500	-0.32691900

PC-

E = -3090.06834218 a.u.

-12

1 2			
Ν	7.69544800	4.08795800	1.82147800
Ν	7.86108400	2.41018900	-0.26499700
Ν	9.84529300	4.83384900	0.03366000
Ν	5.84509400	4.30642800	-0.69788900
С	7.73865400	2.71920300	2.10999000
С	7.76467200	1.83103600	0.99308200
С	10.25034900	6.12056200	0.25669800

С	5.51725100	4.34712300	-2.02231700
С	10.73790800	3.82640400	0.04145200
С	4.94118400	3.89095900	0.21042500
С	7.64408700	4.96185800	2.84045600
С	7.75051100	1.62190200	-1.35133200
С	7.71653000	2.31087100	3.47248800
С	7.64768000	0.41979200	1.08749800
С	11.61152500	6.37535300	0.48252200
С	4.22722100	3.98617100	-2.41876100
С	12.09777900	4.01590500	0.26193300
С	3.65909600	3.47852200	-0.12961400
С	7.61818700	4.59982700	4.17446800
С	7.60468700	0.25012600	-1.29570000
С	7.65555500	3.21055800	4.51642200
С	7.55847000	-0.38970400	-0.02947500
С	12.52709300	5.33402100	0.48399200
С	3.30684900	3.54363500	-1.48331800
Н	10.31959600	2.84222300	-0.13799500
Н	5.29496500	3.85137700	1.23353800
Н	7.61726700	6.00757100	2.54779900
Н	7.76913200	2.14219000	-2.30336400
Н	7.75545100	1.24771600	3.68403700
Н	7.56715400	-0.02259100	2.07376100
Н	11.94222700	7.39373500	0.65497300
Н	3.97535200	3.96795900	-3.47220100
Н	7.57057100	5.37809700	4.92482800
Н	7.45201000	-0.29492700	-2.21564000
Н	13.58132600	5.53784400	0.65896900
Н	2.34362300	3.16759900	-1.80584100
Р	3.57133000	-0.08746600	-1.92680600
F	4.46426200	0.65644700	-0.76565300
F	3.98305900	1.08402200	-2.99314600
F	2.25540100	0.79395900	-1.46140000
F	2.67734900	-0.82691300	-3.07122100
F	3.16503600	-1.25081200	-0.84601600
F	4.88958300	-0.96021500	-2.37582300
С	6.62691700	4.70648800	-2.90963400
С	6.49728700	4.87467900	-4.29533700
С	7.88864500	4.84164000	-2.26624000
С	7.60871800	5.18436300	-5.07606500
Н	5.52987800	4.76511200	-4.77798100
С	8.99726800	5.15443000	-3.06697600
С	8.83872400	5.31674300	-4.43700700
Н	7.54035000	5.32034700	-6.15017400

Н	9.98735800	5.27768400	-2.63809500
F	9.92776300	5.61976600	-5.19239300
С	7.63475800	2.70987100	5.97025400
С	7.55068300	3.86771900	6.98295600
Н	6.64061100	4.46147600	6.84081300
Н	7.53392800	3.46897400	8.00461000
Н	8.41275500	4.53957400	6.90052500
С	6.40772700	1.79362500	6.18608200
Н	5.47810000	2.33882700	5.98695600
Н	6.43104200	0.92488000	5.52049300
Н	6.37618000	1.42577800	7.22057300
С	8.92644400	1.91062100	6.26094200
Н	9.02025300	1.04455900	5.59780900
Н	9.81191800	2.54016300	6.11449100
Н	8.93157200	1.54499000	7.29673000
С	7.36343000	-1.90504900	0.13192100
С	5.98108500	-2.15946500	0.77748800
Н	5.81154300	-3.23883900	0.89255600
Н	5.91783600	-1.70093000	1.77141900
Н	5.18279100	-1.74425600	0.16004600
С	8.47813400	-2.48064300	1.03562300
Н	8.34321400	-3.56321600	1.15779900
Н	9.46876000	-2.30788500	0.59648400
Н	8.47224600	-2.03193700	2.03500900
С	7.41026000	-2.64409100	-1.21901300
Н	6.58851700	-2.32924600	-1.86513500
Н	8.36110200	-2.47178300	-1.73938900
Н	7.31297100	-3.72356200	-1.04879900
С	2.74120900	2.86649700	0.89264300
Н	3.12646000	2.99561700	1.90972700
Н	1.73557800	3.30155800	0.84470700
Н	2.65343100	1.79704000	0.67772000
С	13.05482400	2.85072600	0.26228300
Н	13.57372300	2.76219100	1.22519800
Н	12.53177300	1.90739000	0.07711500
Н	13.82358600	2.96572800	-0.51241700
С	9.17024500	7.10245900	0.22315900
С	9.35455300	8.47728900	0.44115800
С	7.87880100	6.55846500	-0.04675300
С	8.27046700	9.34665200	0.39432600
Н	10.34223300	8.88142200	0.65107600
С	6.79866600	7.45482100	-0.09604100
С	7.01132400	8.80802200	0.12281400
Н	8.37551000	10.41391800	0.55753400

Н	5.79253900	7.10384100	-0.30372200
F	5.95492700	9.65750500	0.07604600
Ir	7.84107800	4.56349100	-0.26927300

INT-3

E = -1165.49372286 a.u.

12				
С	3.04040900	-0.29783700	0.04589000	
С	2.30183800	1.42532800	-1.57673700	
С	3.49495600	0.95035600	-0.73021300	
Н	2.77365900	-1.11185700	-0.64400800	
Н	3.83289800	-0.65708900	0.70832600	
Н	2.49425900	2.41066500	-2.01124800	
Н	2.12497500	0.72168400	-2.40201000	
В	0.90025900	0.72932800	0.29541900	
0	1.08069500	1.54526400	-0.81407500	
0	1.91134200	0.00136700	0.87884100	
С	3.93387400	2.05360700	0.24930300	
Н	4.77219800	1.70961500	0.86474600	
Н	4.26030000	2.94551600	-0.29674600	
Н	3.12357200	2.34404000	0.92470600	
С	4.65204900	0.57574300	-1.66919500	
Н	4.96229100	1.43909400	-2.26843600	
Н	5.52258700	0.24402300	-1.09304800	
Н	4.37343200	-0.23199200	-2.35674000	
С	-1.79996500	-1.38881000	2.15944700	
С	0.21391200	-2.64535700	1.31518100	
С	-0.54983100	-2.16793900	2.59057200	
Н	-2.51713800	-2.04885900	1.65689400	
Н	-2.29400200	-0.93402300	3.02152200	
Н	1.29062000	-2.50063800	1.44798100	
Н	0.02999600	-3.70834300	1.13327800	
В	-0.69938400	-0.71478400	0.10206600	
0	-0.17041200	-1.98725800	0.09635200	
0	-1.48647400	-0.30535700	1.24223900	
С	0.34910600	-1.28615900	3.47887700	
Н	-0.20397500	-0.93189100	4.35662000	
Н	1.20559400	-1.86579500	3.84008400	
Н	0.75300900	-0.42484500	2.94478600	
С	-1.00860100	-3.39609200	3.39953300	
Н	-0.14550500	-4.00186000	3.69654400	
Н	-1.52815900	-3.09281100	4.31550600	
Н	-1.68387600	-4.03508000	2.81813000	
С	-2.71544500	-1.39958100	-1.27049600	

С	-3.45254400	-1.27219300	-2.63624700
Н	-2.33581000	-2.40478000	-1.08191000
Н	-3.33968600	-1.09553500	-0.42774600
Н	-3.37726200	-2.20460500	-3.20332300
Н	-4.51528900	-1.06679700	-2.47738800
С	-0.65759600	-0.79647700	-2.47393300
Н	0.23069800	-0.17103300	-2.40595900
Н	-0.35558700	-1.83901800	-2.36707700
С	-1.48334800	-0.52366800	-3.76579200
Н	-1.05374100	0.30968400	-4.32980100
Н	-1.47334400	-1.40246900	-4.41712900
С	-2.91059100	1.05456500	-2.67018100
Н	-2.56533000	1.87373200	-3.30782300
Н	-3.94982400	1.26302300	-2.39925900
С	-2.01649400	0.95044400	-1.39737600
Н	-1.13505900	1.58956800	-1.45785100
Н	-2.56360700	1.17484000	-0.47905100
Ν	-1.51022800	-0.46950700	-1.26729500
Ν	-2.87481900	-0.19193900	-3.44086300
0	0.12822600	1.55231900	1.40066800
Н	-0.14712900	2.41853300	1.04548500
Н	-0.69256900	0.96409200	1.61551700

INT-4

E = -1510.90631550 a.u.

12				
С	2.3590	59800 0.3	39360100	1.19357400
С	2.3518	33500 0.7	78059700 -	1.24153500
С	3.1865	59700 0.9	97245800	0.03485100
Н	2.2458	83300 -0.6	58883900	1.05663100
Η	2.8614	47400 0.5	56736500	2.15255900
Н	2.845.	30400 1.2	24440500 -	2.10269000
Н	2.2292	26700 -0.2	.9196000 -	1.44721300
В	0.3607	77700 1.2	22275300	0.08499900
0	1.0592	26000 1.3	38368100 -	1.12635900
0	1.064	58200 0.9	99632000	1.28749800
С	3.4744	42100 2.4	46431300	0.27049500
Η	4.0624	42700 2.6	50452500	1.18507000
Н	4.044	96600 2.8	88656500 -	0.56461100
Η	2.547	86900 3.0	03720700	0.37196700
С	4.4987	78800 0.1	18608600 -	0.09354100
Н	5.098.	35500 0.5	56273400 -	0.93019300
Н	5.1024	49500 0.2	28405700	0.81616400
Н	4.314	76100 -0.8		0.26369700

С	-1.85636700	-1.86183500	1.72141500
С	0.16683700	-2.81727400	0.63621600
С	-0.54826700	-2.62644300	1.98702700
Н	-2.55863700	-2.51360900	1.18077700
Н	-2.33369900	-1.59146500	2.67192700
Н	1.19138000	-3.17027900	0.79751000
Н	-0.35655800	-3.59238700	0.05505700
В	-0.73899400	-0.63610500	-0.08659400
0	0.24611700	-1.63106000	-0.15798300
0	-1.67518900	-0.64538600	0.98089400
С	0.33771400	-1.85062700	2.97379900
Н	-0.16737200	-1.75001400	3.94324500
Н	1.28031300	-2.38161200	3.14835400
Н	0.56962400	-0.85462100	2.59691500
С	-0.88586300	-4.00819600	2.57093900
Н	0.02781200	-4.58735000	2.74668700
Н	-1.40275200	-3.90880000	3.53258100
Н	-1.52938000	-4.58989400	1.90019500
С	-2.45084900	-1.82862800	-1.59216600
С	-3.11994700	-1.93489500	-2.99355700
Н	-1.82306300	-2.69236200	-1.36818000
Н	-3.18542900	-1.71285000	-0.79386700
Н	-2.70635000	-2.77497900	-3.55984700
Н	-4.19599700	-2.10614600	-2.88792400
С	-0.63103800	-0.65659200	-2.73098300
Н	0.06097300	0.17592700	-2.62070200
Н	-0.07021000	-1.58754600	-2.63770600
С	-1.46632100	-0.57452800	-4.04114700
Н	-1.30415800	0.38372500	-4.54476200
Н	-1.16727700	-1.36456300	-4.73703200
С	-3.34283600	0.43760200	-2.95778800
Н	-3.29957500	1.34090000	-3.57446700
Н	-4.39044800	0.27869700	-2.68197700
С	-2.45080200	0.60693100	-1.69304800
Н	-1.79044600	1.46840200	-1.76374700
Н	-3.02470100	0.69961200	-0.76919500
Ν	-1.56458800	-0.60127000	-1.54327900
Ν	-2.90341800	-0.70763100	-3.76423100
0	-0.69267000	2.21674400	0.23128900
Н	-0.48645900	2.95201600	-0.36831100
Н	-1.17041900	2.44400600	1.77523000
С	-3.07398200	1.98504100	2.46768800
С	-3.76872500	1.87238400	3.85831800
Н	-3.53799800	2.73101000	1.81681800

-2.99961100	1.04047500	1.92508900
-4.68891200	2.46331200	3.87925300
-4.03796700	0.83374900	4.07168700
-1.64558900	3.81056100	3.32533300
-0.59896200	4.08006500	3.48780900
-2.07297400	4.50233600	2.59461100
-2.47034900	3.73052300	4.64960400
-1.87694800	4.09865700	5.49105700
-3.36915200	4.35000700	4.58198100
-1.68479500	1.48906100	4.98809600
-1.02438900	1.87389200	5.77055300
-1.99190200	0.48120200	5.28317300
-0.95857100	1.45484600	3.61309700
0.09293300	1.74312400	3.64972600
-1.01897800	0.49672400	3.10307000
-1.65763500	2.43929600	2.71208400
-2.87707800	2.34737800	4.92505600
	$\begin{array}{c} -2.99961100\\ -4.68891200\\ -4.03796700\\ -1.64558900\\ -0.59896200\\ -2.07297400\\ -2.47034900\\ -1.87694800\\ -3.36915200\\ -1.68479500\\ -1.02438900\\ -1.02438900\\ -1.99190200\\ -0.95857100\\ 0.09293300\\ -1.01897800\\ -1.65763500\\ -2.87707800\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

HO-Bneop

E = -447.837867322 a.u.

-2.57896600	1.29669200	-0.33367100
-2.96525500	3.65363000	0.30608300
-3.28223200	2.59517500	-0.76563500
-3.05403500	0.89756300	0.57452900
-3.34312200	4.63515700	-0.00336200
-3.46236000	3.38808000	1.25098900
-2.66417900	0.53447800	-1.11715200
-0.74687000	2.71330200	0.37577900
-1.56768200	3.79442100	0.54453600
-1.18791100	1.48898500	-0.07723000
-4.79808300	2.36087500	-0.82283600
-5.32287900	3.28037100	-1.10788700
-5.04589300	1.59380700	-1.56619100
-5.19390600	2.03283900	0.14611100
-2.76480800	3.05357600	-2.14069900
-2.97100400	2.29360000	-2.90357800
-3.25745300	3.98393800	-2.44642600
-1.68619500	3.23507200	-2.12946000
0.58335500	2.87904800	0.65063800
1.05876300	2.05284300	0.48370600
	-2.57896600 -2.96525500 -3.28223200 -3.05403500 -3.34312200 -3.46236000 -2.66417900 -0.74687000 -1.56768200 -1.18791100 -4.79808300 -5.32287900 -5.04589300 -5.19390600 -2.76480800 -2.76480800 -2.97100400 -3.25745300 -1.68619500 0.58335500 1.05876300	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

HA1⁺

E = -345.726631674 a.u.

11			
С	2.16905700	1.24956900	-3.63558700
С	1.41380900	1.39018600	-4.99571400
Н	2.65949100	0.27491800	-3.57295500
Н	1.46604400	1.32268500	-2.80202000
Н	1.54659700	0.53129900	-5.65785600
Н	0.34501600	1.58612700	-4.88156200
С	4.17276100	2.19404600	-4.56993600
Н	4.93851000	2.95948600	-4.42134600
Н	4.66058400	1.21818200	-4.50618600
С	3.49338500	2.37042400	-5.96545900
Н	3.85510500	3.24060800	-6.51833000
Н	3.57537400	1.48744400	-6.60369400
С	1.80649200	3.85137700	-4.87564300
Н	2.20938200	4.68538400	-5.45516800
Н	0.72810100	3.98705800	-4.76436000
С	2.54733200	3.62098500	-3.51990200
Н	3.31517300	4.38459700	-3.37273400
Н	1.84383100	3.69116800	-2.68653800
Ν	3.18101600	2.30002100	-3.49649700
Ν	2.01116100	2.59443600	-5.70748200
Н	1.53583600	2.71413800	-6.60592400

BN

E = -717.242764373 a.u.

02			
С	2.92786500	1.50389200	0.01816300
С	4.59390600	0.04280800	-1.05597600
С	4.14843400	0.61117600	0.30283100
Н	2.09410200	0.86157700	-0.32315600
Η	2.59614900	2.00010100	0.94063000
Н	5.50865200	-0.55413400	-0.93720500
Н	3.80623000	-0.63999000	-1.42689600
В	4.12968000	2.27439100	-1.98892500
0	4.85857400	1.05375200	-2.01587300
0	3.19541100	2.51249100	-0.94352000
С	5.28059000	1.43691000	0.93619100
Н	4.95877200	1.86054500	1.89562500
Η	6.16009400	0.80776400	1.12104600
Н	5.58045100	2.26025500	0.28229900
С	3.74296400	-0.53733600	1.23600500
Η	4.59408200	-1.20174100	1.43016000
Н	3.39565300	-0.15124500	2.20236200
Η	2.93507800	-1.14286300	0.80590000

С	2.24238000	1.26103400	-3.52859700
С	1.46854700	1.37008400	-4.87715300
Н	2.79055800	0.32129500	-3.43045500
Н	1.59315700	1.37746600	-2.65790800
Н	1.58976300	0.45867900	-5.47279800
Н	0.39609300	1.51000600	-4.70278400
С	4.20202400	2.22454700	-4.60667100
Н	4.94543100	3.01882100	-4.49421700
Н	4.71794600	1.27123100	-4.48000300
С	3.39436800	2.31945500	-5.93429400
Н	3.74178400	3.16065800	-6.54396200
Н	3.51705000	1.40962500	-6.53182700
С	1.77882800	3.74308500	-4.89119400
Н	2.12580600	4.58420500	-5.50122600
Н	0.70684400	3.88565400	-4.71681200
С	2.55609500	3.67599600	-3.54382700
Н	3.32658400	4.44643500	-3.44946200
Н	1.91066600	3.74735500	-2.66667600
Ν	3.26421800	2.36033200	-3.44750800
Ν	1.95773600	2.50731200	-5.67158300

11) References

[1] C.-M. Zhu, R.-B. Liang, Y. Xiao, W. Zhou, Q.-X. Tong and J.-J. Zhong, *Green Chem.* 2023, **25**, 960.

[2] R.-B. Liang, C.-M. Zhu, P.-Q. Song, L.-M. Zhao, Q.-X. Tong and J.-J. Zhong, Org. Chem. Front. 2022, 9, 4536.

[3] B. Du, C.-M. Chan and W.-Y. Yu, Nat. Commun., 2021, 12, 412.

[4] X. Lu, X.-X. Wang, S.-J. He and Y. Fu, Chem. Sci. 2019, 10, 809.

[5] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,; Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Gaussian, Inc., Wallingford, CT, **2016**.

[6] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200.

[8] C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.* 1988, 37, 785.

[9] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

[10] P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*1994, 98, 11623.

[11] G. Stefan, A. Jens, E. Stephan and K. Helge, J. Chem. Phys., 2010, 132, 154104.

[12] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378.

[13] M. Mammen, E. I. Shakhnovich, J. M. Deutch and G. M. Whitesides, *J. Org. Chem.*1998, 63, 3821.

- [14] G. Jindal and R. B. Sunoj, J. Am. Chem. Soc. 2014, 136, 15998.
- [15] G. Zeng and S. Li, Inorg. Chem. 2011, 50, 10572.
- [16] Gauss View, Version 6.0.16, R. Dennington, T. A. Keith, J. M. Millam, Semichem

Inc., Shawnee Mission, KS, 2016.

2. Characterization data of the products

Purification by column chromatography on silica gel (hexane) afforded **1** as a white solid (50.6 mg, 91% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 – 7.59 (m, 4H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 3H), 3.54 (t, *J* = 7.1 Hz, 2H), 2.93 (tt, *J* = 6.9, 2.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.55 (dd, *J* = 291.5, 289.5 Hz), 140.61, 140.40, 131.23, 128.87, 128.68 (t, *J* = 3.1 Hz), 127.56, 127.38, 127.05, 89.31 (dd, *J* = 21.3, 15.8 Hz), 41.76, 31.21.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -88.81 (d, *J* = 37.7 Hz, 1F), -89.13 (d, *J* = 37.7 Hz, 1F).

HRMS (ESI) m/z calcd. for C₁₆H₁₄ClF₂ [M+H]⁺: 279.0747, found: 279.0746.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **2** as a white solid (54.8 mg, 89% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.45 (d, J = 13.7 Hz, 4H), 7.40 – 7.35 (m, 1H), 7.27 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 5.10 (s, 2H), 3.50 (t, J = 7.1 Hz, 2H), 2.86 (tt, J = 7.0, 2.0 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 158.31, 154.35 (t, J = 291.2 Hz), 136.81, 129.52 (t, J = 3.2 Hz), 128.64, 128.07, 127.48, 124.66, 115.07, 89.03 (dd, J = 21.5, 16.4 Hz), 70.08, 41.76, 31.41. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ = -90.11 (d, J = 40.6, 1F), -90.57 (d, J = 40.6, 1F). **HRMS** (ESI) m/z calcd. for C₁₇H₁₆ClF₂O [M+H]⁺ : 309.0852, found: 309.0855.

Purification by column chromatography on silica gel (hexane) afforded **3** as a colorless oil (35.0 mg, 81% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.21 (s, 4H), 3.48 (t, *J* = 7.1 Hz, 2H), 2.86 (ddq, *J* = 7.2, 4.5, 2.2 Hz, 2H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.37 (dd, *J* = 290.4, 288.4 Hz), 137.60, 129.38, 128.17 (t, *J* = 3.0 Hz), 89.35 (dd, *J* = 21.2, 16.4 Hz), 41.74, 31.32, 21.13.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -89.76 (d, J = 39.7 Hz, 1F), -90.26 (d, J = 39.7 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{11}H_{12}ClF_2$ [M+H]⁺ : 217.0590, found: 217.0599.

Purification by column chromatography on silica gel (hexane) afforded **4** as a colorless oil (31.0 mg, 60% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.25 (s, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 3.49 (t, *J* = 7.2 Hz, 2H), 2.87 (tt, *J* = 7.2, 2.1 Hz, 2H), 2.49 (d, *J* = 7.2 Hz, 2H), 1.88 (dq, *J* = 13.6, 6.8 Hz, 1H), 0.94 (s, 3H), 0.93 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.39 (dd, *J* = 291.1, 288.5 Hz), 141.36, 129.50, 129.38, 127.94 (t, *J* = 3.2 Hz), 89.39 (dd, *J* = 21.2, 16.0 Hz), 45.08, 41.75, 31.35, 30.12, 22.35.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ = -89.62 (d, *J* = 39.5, 1F), -90.10 (d, *J* = 39.5, 1F).

HRMS (ESI) m/z calcd. for $C_{14}H_{18}ClF_2$ [M+H]⁺ : 259.1060, found: 259.1062.

Purification by column chromatography on silica gel (hexane) afforded **5** as a colorless oil (46.0 mg, 84% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 7.2 Hz, 2H), 3.50 (t, *J* = 7.1 Hz, 2H), 2.89 (tt, *J* = 7.1, 2.1 Hz, 2H), 0.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 154.51 (dd, *J* = 291.7, 289.1 Hz), 140.20, 133.66, 132.66, 127.52 (t, *J* = 3.1 Hz), 89.56 (dd, *J* = 21.2, 16.0 Hz), 41.72, 31.21, -1.19.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -89.02 (d, *J* = 37.7 Hz, 1F), -89.37 (d, *J* = 37.9 Hz, 1F).

HRMS (ESI) m/z calcd. for C₁₃H₁₈ClF₂Si [M+H]⁺ : 275.0829, found: 275.0823.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **6** as a yellow oil (26.2 mg, 50% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 3.48 (t, *J* = 7.1 Hz, 2H), 2.97 (q, *J* = 7.4 Hz, 2H), 2.85 (tt, *J* = 7.1, 2.1 Hz, 2H), 1.34 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.44 (dd, *J* = 291.7, 289.3 Hz), 136.67, 129.49, 128.66 (t, *J* = 3.4 Hz), 128.64, 89.11 (dd, *J* = 21.5, 15.7 Hz), 41.67, 31.13, 27.29, 14.29.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -88.96 (d, *J* = 38.0 Hz, 1F), -89.36 (d, *J* = 38.0 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{12}H_{14}ClF_2S$ [M+H]⁺ : 263.0467, found: 263.0469.

Purification by column chromatography on silica gel (hexane) afforded **7** as a colorless oil (28.3 mg, 60% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 3.46 (t, *J* = 6.9 Hz, 2H), 2.85 (ddt, *J* = 6.9, 4.7, 2.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.47 (dd, *J* = 291.5, 289.6 Hz), 133.68, 130.78, 129.67 (t, *J* = 3.2 Hz), 128.92, 88.81 (dd, *J* = 21.9, 15.9 Hz), 41.51, 31.10.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -88.55 (d, *J* = 37.0 Hz, 1F), -88.92 (d, *J* = 36.9 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{10}H_9Cl_2F_2$ [M+H]⁺ : 237.0044, found: 237.0044.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **8** as a colorless oil (30.2 mg, 65% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.30 (t, *J* = 8.3 Hz, 1H), 6.91 (d, *J* = 7.7 Hz, 1H), 6.86 (d, *J* = 5.4 Hz, 2H), 3.83 (s, 3H), 3.48 (t, *J* = 7.0 Hz, 2H), 2.86 (ddt, *J* = 7.0, 5.1, 2.2 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.73, 154.45 (dd, *J* = 291.2, 288.7 Hz), 133.67, 129.67, 120.67 (t, *J* =

3.1 Hz), 114.39 (t, *J* = 3.4 Hz), 113.02, 89.51 (dd, *J* = 21.1, 15.9 Hz), 55.25, 41.69, 31.33.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -88.73 (d, J = 38.0 Hz, 1F), -89.65 (d, J = 38.1 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{11}H_{12}CIF_2O [M+H]^+$: 233.0539, found: 233.0530.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **9** as a brown oil (38.0 mg, 60% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.35 (s, 1H), 7.26 (d, *J* = 5.2 Hz, 2H), 6.99 – 6.91 (m, 1H), 6.67 (s, 1H), 3.44 (t, *J* = 7.0 Hz, 2H), 2.81 (t, *J* = 6.9 Hz, 2H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 154.43 (dd, *J* = 292.3, 289.9 Hz), 152.71, 138.80, 133.12, 129.23, 122.98 (t, *J* = 2.9 Hz), 118.37, 117.92, 89.46 (dd, *J* = 21.6, 16.0 Hz), 80.72, 41.68, 31.25, 28.30.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -88.89 (d, J = 38.0 Hz, 1F), -89.79 (d, J = 38.1 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{15}H_{19}ClF_2NO_2$ [M+H]⁺ : 318.1067, found: 318.1066.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **10** as a brown oil (23.5 mg, 48% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.27 – 7.21 (m, 1H), 6.71 – 6.62 (m, 3H), 3.49 (t, *J* = 7.1 Hz, 2H), 2.97 (s, 6H), 2.84 (tt, *J* = 7.1, 2.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.35 (dd, *J* = 290.3, 288.4 Hz), 150.68, 133.07, 129.28, 116.52, 112.58, 112.02, 90.15 (dd, *J* = 20.9, 16.2 Hz), 41.86, 40.52, 31.63.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -89.33 (d, J = 40.0 Hz, 1F), -90.73 (d, J = 40.0 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{12}H_{15}ClF_2N [M+H]^+$: 246.0856, found: 246.0865.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **11** as a colorless oil (42.9 mg, 73% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 – 7.28 (m, 4H), 7.18 – 7.09 (m, 2H), 6.99 – 6.90 (m, 3H), 3.48 (t, *J* = 7.0 Hz, 2H), 2.84 (tt, *J* = 7.0, 2.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.99, 154.97, 154.19 (t, *J* = 290.2 Hz), 131.95, 129.81, 129.74, 123.68, 123.33, 119.28, 118.29, 86.50 (dd, *J* = 23.6, 18.5 Hz), 41.88, 31.24

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -87.49 (d, *J* = 37.4 Hz, 1F), -91.04 (d, *J* = 37.4 Hz, 1F).

HRMS (ESI) m/z calcd. for C₁₆H₁₄ClF₂O [M+H]⁺ : 295.0696, found: 295.0687.

Purification by column chromatography on silica gel (hexane) afforded **12** as a white solid (49.9 mg, 76% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99 – 7.94 (m, 2H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.60 – 7.52 (m, 4H), 7.52 – 7.45 (m, 4H), 3.61 (t, *J* = 7.1 Hz, 2H), 2.98 (ddt, *J* = 7.1, 5.1, 2.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.65 (dd, *J* = 291.8, 289.1 Hz), 140.27, 139.52, 133.87, 131.52, 131.27, 130.40, 128.39, 128.18 (t, *J* = 3.2 Hz), 127.91, 126.99, 126.19, 125.90, 125.88, 125.42, 89.44 (dd, *J* = 21.2, 15.8 Hz), 41.84, 31.31.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -88.74 (d, *J* = 37.7 Hz, 1F), -89.02 (d, *J* = 37.7 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₂₀H₁₆ClF₂ [M+H]⁺ : 329.0903, found: 329.0901.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **13** as a brown solid (41.4 mg, 70% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 – 7.55 (m, 2H), 7.50 – 7.44 (m, 3H), 7.41 (t, *J* = 7.3 Hz, 1H), 7.18 (dd, *J* = 15.1, 10.2 Hz, 2H), 3.55 (t, *J* = 7.0 Hz, 2H), 2.91 (tt, *J* = 7.0, 2.2 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.67 (d, J = 248.7 Hz), 154.74 (dd, J = 293.1, 290.2 Hz), 135.15, 133.29, 130.91 (d, J=4.2 Hz), 128.93 (d, J = 2.9 Hz), 128.54, 128.37, 127.92, 124.18 (d, J = 3.3 Hz), 116.02 (d, J = 24.3 Hz), 88.79 (dd, J = 22.5, 14.8 Hz), 41.60, 30.95.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -87.44 (d, J = 34.9 Hz, 1F), -87.88 (d, J = 34.9 Hz, 1F), -117.28, 1F.

HRMS (ESI) m/z calcd. for C₁₆H₁₃ClF₃ [M+H]⁺ : 297.0652, found: 297.0642.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **14** as a colorless oil (41.8 mg, 85% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.80 (dt, *J* = 14.7, 8.3 Hz, 3H), 5.98 (s, 2H), 3.47 (t, *J* = 7.0 Hz, 2H), 2.80 (tt, *J* = 7.3, 2.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.39 (t, *J* = 289.3 Hz), 147.90, 147.16, 125.82, 121.94 (t, *J* = 3.1 Hz), 108.89 (t, *J* = 3.3 Hz), 108.48, 101.25, 89.28 (dd, *J* = 21.9, 16.3 Hz), 41.64, 31.54.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -89.59 (d, *J* = 39.9 Hz, 1F), -90.47 (d, *J* = 40.0 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{11}H_{10}ClF_2O_2$ [M+H]⁺ : 247.0332, found: 247.0328.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **15** as a yellow oil (25.9 mg, 57% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) $\delta = 7.75 - 7.61$ (m, 4H), 7.45 (dt, J = 13.9, 7.0 Hz, 4H), 3.80 - 3.69 (m, 1H), 3.67 - 3.56 (m, 1H), 3.54 - 3.41 (m, 2H), 3.13 (tt, J=16.4, 8.2 Hz, 1H), 2.93 - 2.86 (m, 2H), 2.56 - 2.40 (m, 1H), 2.39 - 2.24 (m, 1H).
¹³C NMR (101 MHz, CDCl₃) δ = 154.79 (dd, J = 293.7, 291.8 Hz), 138.47, 137.42 (t, J = 3.3 Hz), 132.69, 132.40, 129.92, 128.98 (t, J = 3.4 Hz), 127.55 (t, J = 281.0 Hz), 118.39, 118.12, 112.83, 111.51, 89.08 (dd, J = 21.6, 15.9 Hz), 47.01 (q, J = 27.6 Hz), 41.41, 40.99, 31.41, 30.63.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ = -69.02 (s), -86.15 (d, *J* = 31.2 Hz, 1F), -86.32 (d, *J* = 31.3 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{11}H_9ClF_2N$ and $C_{11}H_{10}ClF_3N$ [M+H]⁺ : 228.0386 and 248.0448, found: 228.0388 and 248.0445.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **16** as a white solid (42.9 mg, 76% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 – 7.71 (m, 3H), 7.41 (dt, *J* = 8.6, 1.4 Hz, 1H), 7.20 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.15 (d, *J* = 2.4 Hz, 1H), 3.95 (s, 3H), 3.52 (t, *J* = 7.1 Hz, 2H), 2.96 (tt, *J* = 7.1, 2.1 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.12, 154.60 (dd, *J* = 290.9, 288.9 Hz), 133.87, 129.44, 128.75, 127.31 (t, *J* = 3.3 Hz), 127.20, 126.46 (t, *J* = 3.0 Hz), 119.35, 105.61, 99.99, 89.62 (dd, *J* = 21.0, 16.1 Hz), 55.34, 41.81, 31.40.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ = -89.48 (d, *J*=38.9, 1F), -89.75 (d, *J*=39.0, 1F).

HRMS (ESI) m/z calcd. for C₁₅H₁₄ClF₂O [M+H]⁺ : 283.0696, found: 283.0698.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **17** as a white solid (41.1 mg, 63% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.25 – 8.16 (m, 5H), 8.07 (dq, *J* = 15.3, 8.3, 7.6 Hz, 3H), 7.92 (d, *J* = 7.9 Hz, 1H), 3.48 (t, *J* = 6.6 Hz, 2H), 3.10 (d, *J* = 7.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.38 (dd, *J* = 292.0, 288.4 Hz), 131.34, 131.25, 130.85, 129.53, 128.27, 127.98, 127.39 (d, *J* = 1.4 Hz), 127.21, 126.95 (d, *J* = 3.7 Hz), 126.22, 125.55, 125.42, 124.99, 124.79, 124.66, 124.03, 87.82(t, *J* = 21.5 Hz), 41.77, 33.26.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -85.89 (d, *J* = 37.2 Hz, 1F), -90.62 (d, *J* = 37.2 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{20}H_{14}ClF_2$ [M+H]⁺ : 327.0747, found: 327.0740.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **18** as a white solid (50.2 mg, 86% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.02 – 7.92 (m, 2H), 7.62 (d, *J* = 8.2 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.43 – 7.34 (m, 3H), 3.52 (t, *J* = 7.0 Hz, 2H), 3.12 (tt, *J* = 6.9, 2.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.02, 154.60 (t, *J* = 293.2 Hz), 153.75, 128.15, 127.50, 124.78, 123.98, 123.02, 122.96, 120.77, 120.61, 116.69, 111.82, 85.73 (dd, *J* = 24.1, 17.4 Hz), 41.93, 30.96.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -86.24 (d, *J* = 34.0 Hz, 1F), -89.38 (d, *J* = 34.0 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{16}H_{12}ClF_2O [M+H]^+$: 293.0539, found: 293.0537.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **19** as a white solid (38.2 mg, 62% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 7.8 Hz, 2H), 7.91 – 7.82 (m, 1H), 7.52 – 7.44 (m, 3H),
7.38 (d, *J* = 7.2 Hz, 1H), 3.47 (t, *J* = 6.7 Hz, 2H), 3.00 (d, *J* = 7.1 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 154.34 (t, *J* = 293.1 Hz), 139.91, 139.87, 139.06, 136.21, 135.64, 127.84,
127.11, 124.86, 124.61, 122.79, 121.81, 121.48, 88.51 (dd, *J* = 22.9, 18.8 Hz), 41.70, 31.04.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -84.74 (d, J = 33.4 Hz, 1F), -89.69 (d, J = 33.4 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{16}H_{12}ClF_2S$ [M+H]⁺ : 309.0311, found: 309.0305.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **20** as a brown solid (51.4 mg, 70% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (dd, *J* = 7.9, 2.9 Hz, 2H), 7.69 – 7.63 (m, 2H), 7.63 – 7.58 (m, 2H), 7.56 – 7.50 (m, 1H), 7.48 – 7.44 (m, 2H), 7.39 (s, 1H), 7.34 (ddd, *J* = 8.0, 5.3, 2.8 Hz, 1H), 7.26 (d, *J* = 8.1 Hz, 1H), 3.52 (t, *J* = 7.0 Hz, 2H), 2.94 (tt, *J* = 7.0, 2.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.46 (t, *J* = 291.0 Hz), 141.45, 140.99, 137.43, 130.05, 127.71, 127.13, 126.31, 123.01, 122.96, 120.51, 120.40, 120.24, 109.91, 109.86, 109.83, 109.79, 90.35 (dd, *J* = 21.3, 16.3 Hz)., 41.88, 31.85.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -89.44 (d, *J* = 39.1 Hz, 1F), -90.13 (d, *J* = 39.1 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₂₂H₁₇ClF₂N [M+H]⁺ : 368.1012, found: 368.1009.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **21** as a white solid (45.6 mg, 67% yield).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.49 (dt, *J* = 7.7, 2.1 Hz, 3H), 7.26 – 7.21 (m, 3H), 7.19 (dd, *J* = 7.6, 1.5 Hz, 1H), 3.42 (t, *J* = 6.9 Hz, 2H), 2.92 – 2.81 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.46 (dd, *J* = 292.5, 287.9 Hz), 136.72, 136.29, 136.08, 135.07, 132.33, 129.59, 128.93, 128.88, 128.67, 128.02, 127.87, 127.47, 88.19 (dd, *J* = 24.5, 19.4 Hz), 41.55, 31.82.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -85.72 (d, *J* = 35.5 Hz, 1F), -90.33 (d, *J* = 35.8 Hz, 1F).
HRMS (ESI) m/z calcd. for C₁₆H₁₂ClF₂S₂ [M+H]⁺ : 341.0032, found: 341.0030.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **22** as a brown oil (36.4 mg, 72% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.88 (s, 1H), 8.11 (d, J = 9.4 Hz, 2H), 7.82 (d, J = 8.3 Hz, 1H), 7.77 – 7.70 (m, 1H), 7.58 (t, J = 7.5 Hz, 1H), 3.52 (t, J = 6.8 Hz, 2H), 2.98 (tt, J = 6.9, 2.1 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 155.06 (t, J = 293.4 Hz), 149.97 (t, J = 3.5 Hz), 147.21, 135.31, 130.00, 129.20, 127.78, 127.58, 127.27, 125.68 (t, J = 3.5 Hz), 87.23 (dd, J = 21.4, 14.7 Hz), 41.50, 30.93. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -87.12 (d, J = 34.1 Hz, 1F), -87.54 (d, J = 34.1 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₁₃H₁₁ClF₂N [M+H]⁺ : 254.0543, found: 254.0533.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **23** as a colorless oil (31.6 mg, 76% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 4.3 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.20 – 7.11 (m, 1H), 3.57 (t, *J* = 7.1 Hz, 2H), 2.87 (t, *J* = 6.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.74 (dd, *J* = 294.2, 288.3 Hz), 132.46, 126.75 (d, *J* = 3.8 Hz), 126.07, 122.19 (t, *J* = 5.3 Hz), 85.83 (dd, *J* = 23.4, 15.0 Hz), 41.87, 30.93.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -85.46 (d, J = 35.8 Hz, 1F), -89.67 (d, J = 35.7 Hz, 1F).
HRMS (ESI) m/z calcd. for C₈H₈ClF₂S [M+H]⁺ : 208.9998, found: 208.9998.

Purification by column chromatography on silica gel (hexane) afforded **24** as a white solid (35.6 mg, 61% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 7.2 Hz, 4H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.45 (dd, *J* = 12.0, 7.8 Hz, 3H), 3.58 (t, *J* = 6.4 Hz, 2H), 2.73 – 2.64 (m, 2H), 1.94 (p, *J* = 6.6 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.92 (t, J = 289.8 Hz), 140.48, 140.32, 132.03, 128.89, 128.56 (t, J =

3.3 Hz), 127.53, 127.30, 127.05, 91.01 (t, *J* = 17.5 Hz), 44.11, 30.66, 24.90.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -89.93, 2F.

HRMS (ESI) m/z calcd. for $C_{17}H_{16}ClF_2$ [M+H]⁺ : 293.0903, found: 293.0904.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **25** as a white solid (42.5 mg, 66% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.44 (dt, *J* = 14.6, 7.4 Hz, 4H), 7.36 (dd, *J* = 8.3, 5.8 Hz, 1H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.02 – 6.97 (m, 2H), 5.09 (s, 2H), 3.52 (t, *J* = 6.5 Hz, 2H), 2.57 (ddd, *J* = 10.1, 4.6, 2.2 Hz, 2H), 1.86 (p, *J* = 6.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.10, 153.65 (dd, J = 289.9, 287.6 Hz), 136.87, 129.33 (t, J = 3.3 Hz), 128.63, 128.04, 127.48, 125.47, 114.97, 90.64 (dd, J = 20.9, 14.8 Hz), 70.08, 44.07, 30.59, 25.06.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.37 (d, J = 44.1 Hz, 1F), -91.53 (d, J = 44.2 Hz, 1F).
HRMS (ESI) m/z calcd. for C₁₈H₁₈ClF₂O [M+H]⁺: 323.1009, found: 323.1001.

Purification by column chromatography on silica gel (hexane) afforded **26** as a colorless oil (29.9 mg, 55% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.23 (d, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 3.52 (t, *J* = 6.5 Hz, 2H), 2.58 (ddt, *J* = 8.6, 4.7, 2.3 Hz, 2H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.92 – 1.82 (m, 3H), 0.93 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 153.72 (dd, *J* = 290.7, 287.4 Hz), 141.04, 130.28, 129.29, 127.80 (t, *J* = 3.3 Hz), 91.02 (dd, *J* = 20.7, 14.2 Hz), 45.07, 44.07, 30.64, 30.12, 24.98, 22.36.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -90.83 (d, J = 42.9 Hz, 1F), -91.02 (d, J = 42.9 H, 1Fz). **HRMS** (ESI) m/z calcd. for C₁₅H₂₀ClF₂ [M+H]⁺ : 273.1216, found: 273.1213.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **27** as a brown solid (26.0 mg, 42% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 – 7.54 (m, 2H), 7.46 (td, *J* = 8.1, 7.6, 5.3 Hz, 3H), 7.43 – 7.36 (m, 1H), 7.18 (dd, *J* = 16.4, 10.0 Hz, 2H), 3.56 (t, *J* = 6.4 Hz, 2H), 2.66 – 2.59 (m, 2H), 1.91 (dt, *J* = 13.4, 6.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.66 (d, J = 248.2 Hz), 154.06 (dd, J = 292.8, 289.0 Hz), 135.22, 134.08, 130.77 (d, J = 4.2 Hz), 128.92 (d, J = 3.0 Hz), 128.50, 128.11 (d, J = 13.7 Hz), 127.84, 124.00 (dd, J = 7.0, 3.5 Hz), 115.80 (dt, J = 24.2, 3.8 Hz), 90.45 (dd, J = 22.6, 13.8 Hz), 43.94, 30.60, 24.71. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -88.53 (d, J = 38.1 Hz, 1F), -88.68 (d, J = 38.1 Hz, 1F), -117.50,

1F.

HRMS (ESI) m/z calcd. for $C_{17}H_{15}ClF_3 [M+H]^+$: 311.0809, found: 311.0803.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **28** as a white solid (36.3 mg, 53% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.98 – 7.92 (m, 2H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.58 – 7.51 (m, 4H), 7.51 – 7.44 (m, 4H), 3.60 (t, *J* = 6.5 Hz, 2H), 2.69 (ddd, *J* = 8.6, 5.9, 2.3 Hz, 2H), 1.97 (dt, *J* = 13.6, 6.6 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.96 (t, *J* = 289.6 Hz), 139.95, 139.59, 133.86, 132.03, 131.54, 130.27, 128.35, 128.00 (t, *J* = 3.4 Hz), 127.83, 126.96, 126.14, 125.89, 125.86, 125.39, 91.06 (dd, *J* = 19.0, 16.3 Hz), 44.12, 30.74, 25.01.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ (-89.93, 1F), (-89.94, 1F).

HRMS (ESI) m/z calcd. for C₂₁H₁₈ClF₂ [M+H]⁺: 343.1060, found: 343.1058.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **29** as a white solid (34.9 mg, 59% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 – 7.70 (m, 3H), 7.41 (d, *J* = 8.6 Hz, 1H), 7.21 – 7.11 (m, 2H), 3.94 (s, 3H), 3.53 (t, *J* = 6.5 Hz, 2H), 2.68 (tt, *J* = 8.4, 2.2 Hz, 2H), 1.89 (p, *J* = 6.6 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 158.04, 153.91 (dd, *J* = 290.4, 288.5 Hz), 133.72, 129.42, 128.77, 128.13, 127.09, 127.06, 126.42 (t, *J* = 3.3 Hz), 119.25, 105.62, 91.25 (dd, *J* = 20.0, 15.3 Hz), 55.34, 44.07, 30.63, 25.05.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -90.57 (d, J = 42.3 Hz, 1F), -90.74 (d, J = 42.3 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₁₆H₁₆ClF₂O [M+H]⁺ : 297.0852, found: 297.0847.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **30** as a brown solid (38.1 mg, 50% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.15 (dd, J = 7.9, 4.7 Hz, 2H), 7.65 (t, J = 7.7 Hz, 2H), 7.61 – 7.57 (m, 2H), 7.54 – 7.49 (m, 1H), 7.45 – 7.42 (m, 2H), 7.37 (s, 1H), 7.32 (ddd, J = 8.0, 5.2, 2.9 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 3.51 (t, J = 6.4 Hz, 2H), 2.65 (dd, J = 8.6, 4.0 Hz, 2H), 1.87 (p, J = 6.6 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.77 (dd, J = 290.0, 287.9 Hz), 141.42, 141.01, 137.47, 130.87, 130.00, 127.64, 127.14, 126.19, 123.01, 122.75, 120.36, 120.33, 120.21, 120.17, 109.86, 109.53 (t, J = 3.3 Hz), 91.96 (dd, J = 21.4, 14.0 Hz), 44.13, 30.65, 25.43.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -90.65 (d, *J* = 42.3 Hz, 1F), -90.92 (d, *J* = 42.3 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₂₃H₁₉ClF₂N [M+H]⁺ : 382.1169, found: 382.1159.

Purification by column chromatography on silica gel (hexane) afforded **31** as a white solid (46.8 mg, 75% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 (t, *J* = 7.8 Hz, 4H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 3H), 5.60 (t, *J* = 6.7 Hz, 1H), 3.35 (d, *J* = 6.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 155.20 (t, J = 291.9 Hz), 141.04, 140.27, 130.38, 128.89, 128.73 (t, J = 3.0 Hz), 127.66, 127.57, 127.06, 88.66 (dd, J = 20.5, 18.3 Hz), 70.43 (t, J = 4.5 Hz), 42.24.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -87.21 (d, *J* = 32.7 Hz, 1F), -88.04 (d, *J* = 32.6 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₁₆H₁₃Cl₂F₂ [M+H]⁺ : 313.0357, found: 313.0355.

Purification by column chromatography on silica gel (hexane) afforded **32** as a white solid (33.2 mg, 51% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (t, *J* = 7.0 Hz, 4H), 7.45 (ddd, *J* = 21.9, 14.5, 7.4 Hz, 5H), 4.08 – 3.95 (m, 1H), 3.79 (dd, *J* = 11.5, 4.8 Hz, 1H), 3.70 (dd, *J* = 11.4, 7.3 Hz, 1H), 3.20 (dq, *J* = 15.0, 3.3 Hz, 1H), 2.89 (dd, *J* = 15.0, 9.3 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.78 (t, *J* = 290.6 Hz), 140.78, 140.35, 130.91, 128.87, 128.73 (t, *J*=3.1 Hz), 127.59, 127.47, 127.05, 88.84 (t, *J* = 18.9 Hz), 58.00, 47.83, 33.89.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -88.48 (d, J = 2.8 Hz, 2F).

HRMS (ESI) m/z calcd. for $C_{17}H_{15}Cl_2F_2$ [M+H]⁺ : 327.0513, found: 327.0510.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 2/1, v/v) afforded **33** as a white solid (72.4 mg, 65% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.13 – 7.04 (m, 3H), 6.91 (d, *J* = 9.0 Hz, 1H), 6.71 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.92 (s, 2H), 3.85 (s, 3H), 3.46 (t, *J* = 7.0 Hz, 2H), 2.84 (ddt, *J* = 7.0, 4.9, 2.1 Hz, 2H), 2.47 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.12, 168.28, 156.18, 154.51 (dd, *J* = 292.3, 290.5 Hz), 150.11, 139.38, 136.25, 133.84, 131.19, 130.90, 130.47, 130.04, 129.44 (t, *J* = 3.1 Hz), 129.15, 121.93, 121.69, 115.02, 111.85, 111.80, 101.30, 88.89 (dd, *J* = 21.7, 15.9 Hz), 55.74, 41.52, 31.26, 30.56, 13.37.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -88.86 (d, J = 37.4 Hz, 1F), -89.26 (d, J = 37.4 Hz, 1F).
HRMS (ESI) m/z calcd. for C₂₉H₂₄Cl₂F₂NO₄ [M+H]⁺: 558.1050, found: 558.1053.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 5/1, v/v) afforded **34** as a white solid (55.8 mg, 60% yield)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.34 (dd, *J* = 15.0, 7.6 Hz, 5H), 7.26 (d, *J* = 8.6 Hz, 2H), 7.02 (d, *J* = 8.5 Hz, 2H), 5.08 (d, *J* = 7.7 Hz, 1H), 4.83 (q, *J* = 7.4, 6.9 Hz, 1H), 3.48 (t, *J* = 7.0 Hz, 2H), 3.25 (d, *J* = 6.0 Hz, 2H), 2.85 (tt, *J* = 7.1, 2.2 Hz, 2H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.50, 154.54 (dd, *J* = 291.5, 289.5 Hz), 149.75, 135.68, 130.19, 129.47, 129.44, 128.75, 127.31, 121.61, 88.88 (dd, *J* = 22.2, 15.6 Hz), 80.21, 54.69, 41.55, 38.34, 31.26, 28.30.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -88.77 (d, *J* = 37.4 Hz, 1F), -89.19 (d, *J* = 37.4 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{24}H_{27}ClF_2NO_4$ [M+H]⁺: 466.1591, found: 466.1591.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **35** as a white solid (70.1 mg, 75% yield)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.63 (s, 1H), 7.63 (s, 1H), 7.52 – 7.48 (m, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.10 (d, *J* = 7.1 Hz, 1H), 7.00 (d, *J* = 8.6 Hz, 2H), 3.49 (t, *J* = 7.0 Hz, 2H), 2.91 – 2.84 (m, 3H), 1.99 (dd, *J* = 10.7, 7.5 Hz, 1H), 1.82 (t, *J* = 7.9 Hz, 1H), 1.60 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.97, 154.51 (dd, *J* = 293.4, 290.0 Hz), 153.28, 137.87, 133.30, 130.32, 129.91, 129.33, 124.52 (t, *J* = 3.0 Hz), 121.73, 119.69 (t, *J* = 3.3 Hz), 119.22, 89.39 (dd, *J* = 21.7, 15.8 Hz), 82.17, 60.69, 41.66, 34.83, 31.24, 25.91, 24.98, 24.96.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -88.60 (d, *J* = 37.5 Hz, 1F), -89.39 (d, *J* = 37.5 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{23}H_{23}Cl_3F_2NO_2$ [M+H]⁺ : 488.0757, found: 488.0761.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **36** as a white solid (43.8 mg, 58% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.29 (d, *J* = 7.9 Hz, 1H), 7.11 – 7.01 (m, 2H), 3.47 (t, *J* = 7.0 Hz, 2H), 2.96 – 2.89 (m, 2H), 2.84 (d, *J* = 6.7 Hz, 2H), 2.51 (dd, *J* = 18.7, 8.6 Hz, 1H), 2.41 (t, *J* = 12.6 Hz, 1H), 2.31 (d, *J* = 9.7 Hz, 1H), 2.20 – 2.12 (m, 1H), 2.06 (t, *J* = 9.8 Hz, 2H), 1.97 (d, *J* = 10.8 Hz, 1H), 1.62 (q, *J* = 9.6 Hz, 2H), 1.57 – 1.44 (m, 4H), 0.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.39 (t, *J* = 289.7 Hz), 139.44, 136.86, 129.67, 128.79, 125.66, 125.62, 89.25 (dd, *J* = 20.9, 16.4 Hz), 50.50, 47.96, 44.34, 41.79, 38.03, 35.84, 31.57, 31.26, 29.38, 26.42, 25.60, 21.57, 13.83.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -89.46 (d, J = 39.3 Hz, 1F), -89.97 (d, J = 39.3 Hz, 1F).
HRMS (ESI) m/z calcd. for C₂₂H₂₆ClF₂O [M+H]⁺: 379.1635, found: 379.1635.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **37** as a white solid (26.6 mg, 25% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 5.37 (d, *J* = 5.0 Hz, 1H), 4.67 – 4.55 (m, 1H), 4.41 (td, *J* = 8.0, 6.5 Hz, 1H), 3.55 (t, *J* = 6.1 Hz, 2H), 3.47 (ddd, *J* = 11.0, 4.6, 2.0 Hz, 1H), 3.37 (t, *J* = 10.9 Hz, 1H), 2.36 – 2.25 (m, 4H), 2.00 (dtd, *J* = 17.1, 8.2, 7.4, 5.1 Hz, 2H), 1.89 – 1.74 (m, 8H), 1.69 – 1.40 (m, 10H), 1.33 – 1.24 (m, 1H), 1.22 – 1.07 (m, 3H), 1.04 (s, 3H), 0.97 (d, *J* = 7.0 Hz, 4H), 0.79 (t, *J* = 3.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.51, 139.64, 122.38, 109.23, 80.78, 73.88, 66.82, 62.11, 56.43, 49.95, 44.43, 41.61, 40.25, 39.72, 38.11, 36.94, 36.72, 33.75, 32.03, 31.85, 31.40, 30.29, 28.80, 27.77, 22.33, 20.81, 19.32, 17.11, 16.26, 14.50.

HRMS (ESI) m/z calcd. for C₃₂H₅₀ClO₄ [M+H]⁺: 533.3392, found: 533.3390.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **38** as a white solid (22.5 mg, 43% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.85 (ddd, *J* = 16.4, 9.0, 6.0, 3H), 7.58 (d, *J* = 2.2, 1H), 7.54 – 7.45 (m, 2H), 7.24 (dd, *J* = 8.9, 2.3, 1H), 3.64 (t, *J* = 6.2, 2H), 2.69 (t, *J* = 7.1, 2H), 2.00 – 1.93 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 171.77, 148.30, 133.77, 131.47, 129.41, 127.77, 127.63, 126.58, 125.71, 121.07, 118.46, 44.39, 33.58, 31.83, 22.28.

HRMS (ESI) m/z calcd. for C₁₅H₁₆ClO₂ [M+H]⁺: 263.0833, found: 263.0833.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **39** as a white solid (21.5 mg, 51% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.52 (d, *J* = 7.9, 2H), 7.47 (s, 1H), 7.32 (t, *J* = 7.8, 2H), 7.11 (t, *J*=7.4, 1H), 3.57 (t, *J*=5.9, 2H), 2.40 (dd, *J*=8.6, 4.8, 2H), 1.92 - 1.81 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ = 170.69, 137.81, 128.98, 124.33, 119.92, 44.55, 36.62, 31.89, 22.81. HRMS (ESI) m/z calcd. for C₁₁H₁₅ClNO [M+H]⁺ : 212.0837, found: 212.0847.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 100/1, v/v) afforded **40** as a white solid (21.2 mg, 45% yield).

1H NMR (400 MHz, Chloroform-d) δ 7.58 (ddd, J = 10.4, 7.6, 1.6 Hz, 4H), 7.48 − 7.41 (m, 2H), 7.39 − 7.33 (m, 1H), 7.28 (d, J = 7.9 Hz, 2H), 2.92 (ddd, J = 13.7, 11.1, 6.5 Hz, 1H), 2.28 (ddd, J = 16.8, 7.6, 5.8 Hz, 1H), 2.22 − 2.10 (m, 1H), 2.07 − 1.87 (m, 2H), 1.36 (d, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.63, 140.75, 139.75, 128.76, 127.49, 127.33, 127.22, 126.98, 119.58, 38.60, 33.56, 21.91, 15.50.

HRMS (ESI) m/z calcd. for $C_{17}H_{18}N [M+H]^+$: 236.1434, found: 236.1435.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **41** as a colorless oil (22.8 mg, 48% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.80 (dd, *J* = 3.8, 1.4 Hz, 1H), 7.56 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.11 (dd, *J* = 5.0, 3.7 Hz, 1H), 4.30 (t, *J* = 6.5 Hz, 2H), 2.36 (t, *J* = 7.1 Hz, 2H), 1.80 – 1.75 (m, 2H), 1.69 (p, *J* = 7.2 Hz, 2H), 1.56 – 1.44 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 162.27, 133.88, 133.36, 132.33, 127.78, 119.68, 64.85, 28.42, 28.31, 25.28, 17.08.

HRMS (ESI) m/z calcd. for $C_{12}H_{16}NO_2S [M+H]^+$: 238.0896, found: 238.0897.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **42** as a colorless oil (35.7 mg, 49% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 3.8 Hz, 8H), 7.26 (td, *J* = 5.1, 3.1 Hz, 2H), 5.66 (t, *J* = 6.0 Hz, 1H), 5.02 (s, 1H), 4.15 (t, *J* = 6.5 Hz, 2H), 2.10 (dt, *J* = 8.1, 6.0 Hz, 2H), 1.66 – 1.60 (m, 2H), 1.52 – 1.45 (m, 2H), 1.31 – 1.25 (m, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 172.53, 138.70, 128.64, 128.62, 127.31, 73.40, 64.82, 57.23, 43.38, 28.29, 25.46, 24.86.

HRMS (ESI) m/z calcd. for $C_{20}H_{23}Cl_2O_2$ [M+H]⁺ : 365.1070, found: 365.1073.

43

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **43** as a colorless oil (24.5 mg, 43% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.77 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.65 (dd, *J* = 5.5, 3.1 Hz, 2H), 5.67 (t, *J* = 6.0 Hz, 1H), 3.64 (t, *J* = 7.2 Hz, 2H), 2.21 – 2.15 (m, 2H), 1.70 – 1.64 (m, 2H), 1.58 – 1.50 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 168.36, 133.99, 132.07, 123.27, 73.15, 42.92, 37.47, 27.54, 23.18. HRMS (ESI) m/z calcd. for $C_{13}H_{14}Cl_2NO_2$ [M+H]⁺ : 286.0396, found: 286.0395.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded 44 as a colorless oil (36.7 mg, 53% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 8.7 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 5.77 (t, *J* = 6.0 Hz, 1H), 3.98 (t, *J* = 6.3 Hz, 2H), 2.23 (dd, *J* = 15.5, 6.0 Hz, 2H), 1.87 – 1.79 (m, 2H), 1.64 (p, *J* = 7.4 Hz, 2H), 1.54 (q, *J* = 8.4 Hz, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 161.29, 138.30, 129.64 (q, *J* = 308.1 Hz), 115.45, 73.43, 67.80, 43.43, 28.87, 25.63, 25.12.

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -43.92, 3F.

HRMS (ESI) m/z calcd. for $C_{13}H_{16}Cl_2F_3OS [M+H]^+$: 347.0246, found: 347.0245.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **45** as a colorless oil (31.5 mg, 47% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 7.1 Hz, 1H), 7.92 (d, *J* = 7.4 Hz, 1H), 7.89 – 7.85 (m, 1H), 7.85 – 7.82 (m, 1H), 5.75 (t, *J* = 6.0 Hz, 1H), 3.79 (t, *J* = 7.3 Hz, 2H), 2.24 – 2.19 (m, 2H), 1.89 (p, *J* = 7.5 Hz, 2H), 1.63 (ddt, *J* = 11.1, 7.8, 3.8 Hz, 2H), 1.48 (p, *J* = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.01, 137.68, 134.77, 134.36, 127.38, 125.17, 120.94, 73.36, 43.30, 39.12, 28.14, 25.73, 25.35.

HRMS (ESI) m/z calcd. for $C_{13}H_{16}Cl_2NO_3S [M+H]^+$: 336.0222, found: 336.0222.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 7/1, v/v) afforded **46** as a colorless oil (50.1 mg, 69% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.16 (s, 4H), 3.43 (q, *J* = 7.1 Hz, 2H), 3.29 (q, *J* = 7.1 Hz, 2H), 2.82 (t, *J* = 7.3 Hz, 2H), 2.12 – 1.97 (m, 2H), 1.58 (p, *J* = 7.4 Hz, 2H), 1.51 – 1.37 (m, 4H), 1.12 (t, *J* = 7.0 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 162.82 (t, *J* = 29.4 Hz), 135.34, 131.71, 130.34, 128.96, 119.59 (t, *J* = 254.2 Hz), 41.83 (t, *J* = 6.4 Hz), 41.45, 34.67 (t, *J* = 23.4 Hz), 33.65, 28.76, 28.41, 21.17 (t, *J* = 4.6 Hz), 14.30, 12.33.

¹⁹F NMR (376 MHz, Chloroform-d) δ -100.28, 2F.

HRMS (ESI) m/z calcd. for $C_{17}H_{25}ClF_2NOS [M+H]^+$: 364.1308, found: 364.1310.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 2/1, v/v) afforded **47** as a yellow oil (74.9 mg, 61% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 8.6 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.11 (d, *J* = 8.1 Hz, 2H), 6.75 (s, 1H), 4.93 – 4.81 (m, 1H), 3.72 (q, *J* = 5.0 Hz, 4H), 3.70 – 3.67 (m, 2H), 3.63 (t, *J* = 4.8 Hz, 2H), 2.95 (q, *J* = 6.7 Hz, 2H), 2.38 (s, 3H), 2.15 – 2.05 (m, 2H), 1.50 (qq, *J* = 7.9, 5.5, 4.4 Hz, 4H), 1.36 (ddd, *J* = 15.2, 8.7, 6.1 Hz, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 162.01 (t, *J* = 29.9 Hz), 145.27, 144.06 (q, *J* = 38.4 Hz), 142.46, 139.81, 139.54, 129.75, 128.72, 128.06, 125.69, 125.57, 121.07 (q, *J* = 269.2 Hz), 119.43 (t, *J* = 254.1 Hz), 106.27, 66.79, 66.71, 46.53 (t, *J* = 6.3 Hz), 43.34, 42.99, 34.33 (t, *J* = 22.9 Hz), 29.25, 26.14, 21.31, 21.01 (t, *J* = 4.6 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -62.42, 3F, -99.26, 2F.

HRMS (ESI) m/z calcd. for $C_{28}H_{32}F_5N_4O_4S$ [M+H]⁺ : 615.2059, found: 615.2059.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 4/1, v/v) afforded **48** as a yellow oil (72.2 mg, 56% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 6.97 (d, *J* = 2.5 Hz, 1H), 6.87 (d, *J* = 9.0 Hz, 1H), 6.67 (dd, *J* = 9.0, 2.6 Hz, 1H), 4.09 (t, *J* = 6.7 Hz, 2H), 3.83 (s, 3H), 3.68 (t, *J* = 6.9 Hz, 2H), 3.65 (s, 2H), 3.52 (t, *J* = 7.1 Hz, 2H), 2.38 (s, 3H), 2.15 – 2.05 (m, 2H), 1.95 (p, *J* = 6.8 Hz, 2H), 1.85 (p, *J* = 6.9 Hz, 2H), 1.61 (p, *J* = 6.8 Hz, 2H), 1.50 (qd, *J* = 8.8, 8.0, 6.2 Hz, 2H), 1.37 – 1.31 (m, 2H), 1.30 – 1.21 (m, 10H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 170.95, 168.29, 162.48 (t, *J* = 30.3 Hz), 156.06, 139.24, 135.86, 133.98, 131.17, 130.83, 130.70, 129.11, 119.24 (t, *J* = 252.4 Hz), 114.93, 112.78, 111.68, 101.35, 65.18, 55.69, 47.33, 46.59 (t, *J* = 6.5 Hz), 34.28 (t, *J* = 23.2 Hz), 30.44, 29.43, 29.33, 29.29, 29.18, 28.62, 26.53, 25.87, 23.30, 21.46 (t, *J* = 4.3 Hz), 13.35.

¹⁹**F NMR** (565 MHz, Chloroform-*d*) δ -103.26, 2F.

HRMS (ESI) m/z calcd. for $C_{35}H_{44}ClF_2N_2O_5$ [M+H]⁺ : 645.2901, found: 645.2904.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **49** as a white solid (33.2 mg, 55% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 7.2 Hz, 2H), 7.43 (t, *J* = 7.3 Hz, 2H), 7.37 (dd, *J* = 8.3, 5.8 Hz, 1H), 7.27 (d, *J* = 8.8 Hz, 2H), 7.02 – 6.98 (m, 2H), 5.10 (s, 2H), 2.44 – 2.34 (m, 2H), 1.36 (h, *J* = 6.4 Hz, 4H), 0.91 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.88, 153.48 (dd, *J* = 288.2, 286.4 Hz), 136.97, 129.37 (t, *J* = 3.3 Hz), 128.60, 127.99, 127.48, 126.33, 114.77, 91.86 (dd, *J* = 19.7, 15.1 Hz), 70.06, 29.89 (t, *J* = 2.5 Hz), 27.43, 22.11, 13.75.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.86, 2F.

HRMS (ESI) m/z calcd. for $C_{19}H_{21}F_2O [M+H]^+$: 303.1555, found: 303.1552.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **50** as a white solid (39.8 mg, 63% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.49 – 7.39 (m, 4H), 7.36 (t, *J* = 7.1 Hz, 1H), 7.26 (d, *J* = 8.7 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 5.09 (s, 2H), 2.37 (dd, *J* = 10.0, 4.7 Hz, 2H), 1.38 (p, *J* = 7.0, 6.4 Hz, 2H), 1.32 – 1.26 (m, 4H), 0.89 (t, *J* = 6.7 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.87, 153.48 (dd, *J* = 288.0, 286.8 Hz), 136.97, 129.37 (t, *J* = 3.3 Hz), 128.60, 127.99, 127.48, 126.34, 114.77, 91.89 (dd, *J* = 19.7, 15.3 Hz), 70.06, 31.21, 27.68, 27.39, 22.34, 13.97.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.87 (d, *J* = 1.5 Hz, 2F).

HRMS (ESI) m/z calcd. for C₂₀H₂₃F₂O [M+H]⁺:317.1711, found: 317.1709.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **51** as a white solid (40.3 mg, 61% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.49 – 7.39 (m, 4H), 7.36 (dd, *J* = 8.3, 5.8 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 5.09 (s, 2H), 2.37 (dd, *J* = 9.8, 4.7 Hz, 2H), 1.41 – 1.21 (m, 8H), 0.89 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.89, 153.49(t, *J* = 288.9 Hz), 136.99, 129.38 (t, *J* = 3.3 Hz), 128.61, 128.00, 127.49, 126.35, 114.78, 91.91 (dd, *J* = 19.4, 15.6 Hz), 70.06, 31.52, 28.69, 27.73, 27.70, 22.58, 14.01.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.86, 2F.

HRMS (ESI) m/z calcd. for $C_{21}H_{25}F_2O [M+H]^+$: 331.1868, found: 331.1868.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **52** as a white solid (41.7 mg, 56% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 – 7.39 (m, 4H), 7.37 (d, J = 7.1 Hz, 1H), 7.28 – 7.23 (m, 2H), 6.99 (d, J = 8.8 Hz, 2H), 5.09 (s, 2H), 2.44 – 2.29 (m, 2H), 1.45 – 1.16 (m, 14H), 0.91 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.88, 153.49 (t, J = 288.0 Hz), 136.98, 129.38 (t, J = 3.3 Hz), 128.60, 127.99, 127.48, 126.36, 114.78, 91.91 (dd, J = 19.3, 15.6 Hz), 70.07, 31.87, 29.51, 29.30, 29.26, 29.02, 27.72, 22.66, 14.08.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.85, 2F.

HRMS (ESI) m/z calcd. for $C_{24}H_{31}F_2O [M+H]^+$: 373.2337, found: 373.2343.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **53** as a white solid (52.6 mg, 70% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.43 (dt, *J* = 14.8, 7.5 Hz, 4H), 7.35 (t, *J* = 7.0 Hz, 1H), 7.26 (d, *J* = 8.6 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 2H), 5.08 (s, 2H), 4.48 (t, *J* = 5.7 Hz, 1H), 3.67 – 3.58 (m, 2H), 3.50 – 3.41 (m, 2H), 2.47 (dd, *J* = 10.3, 5.0 Hz, 2H), 1.74 – 1.67 (m, 2H), 1.21 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.98, 153.37 (t, J = 287.9 Hz), 136.94, 129.39 (t, J = 3.3 Hz), 128.60, 127.99, 127.45, 125.92, 114.88, 102.11, 91.36 (dd, J = 19.3, 16.1 Hz), 70.05, 61.15, 31.75, 23.11, 15.28.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.21, 2F.

HRMS (ESI) m/z calcd. for $C_{22}H_{27}F_2O_3$ [M+H]⁺ : 377.1923, found: 377.1920.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **54** as a white solid (45.1 mg, 56% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.46 – 7.39 (m, 4H), 7.35 (dd, *J* = 8.3, 5.8 Hz, 1H), 7.24 (d, *J* = 8.5 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 5.08 (s, 2H), 4.53 (s, 1H), 3.12 (d, *J* = 6.2 Hz, 2H), 2.46 – 2.38 (m, 2H), 1.55 (h, *J* = 6.8, 6.4 Hz, 2H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.03, 155.94, 153.48 (dd, *J* = 290.1, 288.1 Hz), 136.90, 129.36, 128.61, 128.01, 127.46, 125.72, 114.92, 91.13 (dd, *J* = 20.5, 14.4 Hz), 79.17, 70.06, 39.85, 28.40, 28.06, 25.00.
¹⁹F NMR (376 MHz, CDCl₃) δ = -91.99 (d, *J*=45.9 Hz, 1F), -92.14 (d, *J*=45.9 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{23}H_{28}F_2NO_3$ [M+H]⁺ : 404.2032, found: 404.2040.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **55** as a white solid (30.4 mg, 50% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 (dt, *J* = 14.7, 7.3 Hz, 4H), 7.31 (d, *J* = 6.9 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 5.03 (s, 2H), 3.58 (t, *J* = 6.4 Hz, 2H), 2.43 (t, *J* = 7.4 Hz, 2H), 1.59 (p, *J* = 6.6 Hz, 2H), 1.52 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.96, 153.47 (dd, *J* = 289.7, 286.2, Hz), 136.86, 129.34 (t, *J* = 3.3 Hz), 128.60, 128.01, 127.46, 125.85, 114.87, 91.26 (dd, *J* = 20.9, 14.7 Hz), 70.04, 61.95, 30.66, 24.02.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.13 (d, *J* = 45.8 Hz, 1F), -92.29 (d, *J* = 45.8 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₁₈H₁₉F₂O₂ [M+H]⁺ : 305.1348, found: 305.1345.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 10/1, v/v) afforded **56** as a white solid (38.2 mg, 60% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.41 (dt, *J* = 14.5, 7.3 Hz, 4H), 7.36 – 7.30 (m, 1H), 7.23 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 5.06 (s, 2H), 3.59 (t, *J* = 6.5 Hz, 2H), 2.44 – 2.35 (m, 2H), 1.56 (p, *J* = 6.5 Hz, 2H), 1.42 (p, *J* = 7.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.94, 153.52 (dd, J = 288.5, 287.0 Hz), 136.90, 129.36 (t, J = 3.2 Hz), 128.60, 128.01, 127.48, 125.99, 114.83, 91.59 (dd, J = 19.7, 15.3 Hz), 70.05, 62.58, 31.99, 27.45, 23.91.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.53, 2F.

HRMS (ESI) m/z calcd. for $C_{19}H_{21}F_2O_2$ [M+H]⁺ : 319.1504, found: 319.1500.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 2/1, v/v) afforded **57** as a colorless oil (22.3 mg, 46% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.67 (s, 2H), 3.58 (t, *J* = 6.5 Hz, 2H), 2.43 (tt, *J* = 7.5, 2.4 Hz, 2H), 1.55 (dt, *J* = 15.3, 6.7 Hz, 2H), 1.42 (p, *J* = 7.6 Hz, 2H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 153.65 (dd, *J* = 289.6, 287.5 Hz), 139.93, 132.93 (d, *J* = 2.7 Hz), 128.43 (t, *J* = 3.3 Hz), 127.11, 91.93 (dd, *J* = 19.8, 15.1 Hz), 64.94, 62.53, 31.95, 27.34, 23.91.

¹⁹**F** NMR (565 MHz, Chloroform-*d*) δ -91.49 (d, J = 44.1 Hz, 1F), -91.58 (d, J = 44.0 Hz, 1F)

HRMS (ESI) m/z calcd. for $C_{13}H_{17}F_2O_2$ [M+H]⁺ : 243.1191, found: 243.1194.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **58** as a white solid (40.6 mg, 59% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 – 7.39 (m, 4H), 7.36 (d, *J* = 7.0 Hz, 1H), 7.27 (d, *J* = 8.5 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 5.09 (s, 2H), 3.84 (ddt, *J* = 21.4, 13.6, 7.2 Hz, 2H), 3.73 (q, *J* = 7.6 Hz, 1H), 2.59 – 2.39 (m, 2H), 2.03 – 1.93 (m, 1H), 1.92 – 1.81 (m, 2H), 1.69 – 1.60 (m, 1H), 1.59 – 1.49 (m, 1H), 1.47 – 1.38 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.92, 153.38 (dd, *J* = 288.1, 287.0 Hz), 136.94, 129.37 (t, *J* = 3.4 Hz), 128.59, 127.99, 127.46, 126.02, 114.84, 91.63 (dd, *J* = 19.0, 16.0 Hz), 78.57, 70.05, 67.63, 33.81 (t, *J* = 2.4 Hz), 31.22, 25.68, 24.72.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.22 (d, J = 45.8 Hz, 1F), -92.38 (d, J = 45.8 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₂₁H₂₃F₂O₂ [M+H]⁺ : 345.1661, found: 345.1660.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **59** as a colorless oil (44.3 mg, 45% yield).

¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.47 - 7.38$ (m, 4H), 7.35 (d, J = 7.1, 1H), 7.20 (dd, J = 15.9, 8.2, 4H), 7.11 (d, J=8.0, 2H), 6.96 (d, J = 8.7, 2H), 5.07 (s, 2H), 4.04 (t, J = 6.2, 2H), 3.70 (q, J = 7.2, 1H), 2.46 (d, J = 7.2, 2H), 2.35 (t, J = 7.4, 2H), 1.85 (dp, J = 13.5, 6.7, 1H), 1.69 – 1.60 (m, 2H), 1.50 (d, J = 7.2, 3H), 0.90 (d, J=6.6, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 174.68, 157.99, 153.48 (dd, *J* = 289.3, 287.3 Hz), 140.52, 137.77, 136.87, 129.32, 129.30 (t, *J* = 3.4 Hz), 128.62, 128.03, 127.47, 127.16, 125.56, 114.87, 90.87 (dd, *J* = 20.4, 15.0 Hz), 70.04, 63.60, 45.19, 45.05, 30.18, 26.72, 24.05, 22.37, 18.38.

¹⁹**F** NMR (376 MHz, CDCl₃) δ = -91.77 (d, *J* = 44.7 Hz, 1F), -91.92 (d, *J* = 44.7 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{31}H_{35}F_2O_3$ [M+H]⁺ : 493.2549, found: 493.2548.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **60** as a white solid (39.6 mg, 63% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.44 (dt, *J* = 14.6, 7.3 Hz, 4H), 7.36 (dd, *J* = 8.5, 5.6 Hz, 1H), 7.26 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 5.80 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.09 (s, 2H), 5.07 – 4.94 (m, 2H), 2.45 – 2.36 (m, 2H), 2.08 (q, *J* = 7.1 Hz, 2H), 1.49 (p, *J* = 7.5 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.95, 153.51 (dd, *J* = 289.6, 285.3 Hz), 138.14, 136.96, 129.38 (t, *J* = 3.3 Hz), 128.60, 128.00, 127.47, 126.17, 114.86, 114.84, 91.66 (dd, *J* = 20.2, 15.0 Hz), 70.08, 33.05, 27.18, 26.96.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.51, 2F.

HRMS (ESI) m/z calcd. for $C_{20}H_{21}F_2O$ [M+H]⁺ : 315.1555, found: 315.1550.

 CF_2 BnO

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **61** as a white solid (42.0 mg, 64% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.46 – 7.40 (m, 4H), 7.36 (t, *J* = 7.1 Hz, 1H), 7.25 (d, *J* = 6.6 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 5.79 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.09 (s, 2H), 5.04 – 4.90 (m, 2H), 2.43 – 2.33 (m, 2H), 2.04 (d, *J* = 6.7 Hz, 2H), 1.48 – 1.32 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 157.89, 153.49 (t, *J* = 287.8 Hz), 138.69, 136.94, 129.36 (t, *J* = 3.3 Hz), 128.61, 128.01, 127.49, 126.21, 114.78, 114.46, 91.74 (dd, *J* = 19.1, 15.8 Hz), 70.05, 33.39, 28.24, 27.53, 27.15.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.69 (d, J = 1.2 Hz, 2F).

HRMS (ESI) m/z calcd. for $C_{21}H_{23}F_2O [M+H]^+$: 329.1711, found: 329.1711.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **62** as a white solid (40.3 mg, 60% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 – 7.41 (m, 4H), 7.40 – 7.35 (m, 1H), 7.26 (d, *J* = 8.2 Hz, 2H), 7.03 – 6.99 (m, 2H), 5.10 (s, 2H), 3.52 (t, *J* = 6.7 Hz, 2H), 2.44 (tt, *J* = 7.5, 2.3 Hz, 2H), 1.85 – 1.75 (m, 2H), 1.56 (dt, *J* = 10.2, 6.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.04, 153.58 (dd, J = 289.3, 286.5 Hz), 136.92, 129.37 (t, J = 3.2 Hz), 128.63, 128.03, 127.50, 125.80, 114.92, 91.37 (dd, J = 21.0, 14.2 Hz), 70.08, 44.57, 31.81, 26.97, 24.96.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.13 (d, J = 45.9 Hz, 1F), -92.31 (d, J = 46.0 Hz, 1F).
HRMS (ESI) m/z calcd. for C₁₉H₂₀ClF₂O [M+H]⁺: 337.1165, found: 337.1172.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **63** as a white solid (38.3 mg, 61% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.49 – 7.37 (m, 5H), 7.24 (d, *J* = 8.5 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 2H), 5.10 (s, 2H), 2.48 (dt, *J* = 7.6, 2.2 Hz, 2H), 2.33 (dt, *J* = 15.5, 7.8 Hz, 1H), 2.02 – 1.93 (m, 2H), 1.86 – 1.78 (m, 2H), 1.72 – 1.61 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.92, 153.93 (dd, J = 288.5, 285.6 Hz), 136.98, 129.47 (t, J = 3.2 Hz), 128.60, 127.99, 127.48, 126.48, 114.73, 90.76 (dd, J = 22.1, 13.1 Hz), 70.07, 34.79, 34.32, 27.94, 18.17. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.85 (d, J = 47.4 Hz, 1F), -93.15 (d, J = 47.4 Hz, 1F). HRMS (ESI) m/z calcd. for C₂₀H₂₁F₂O [M+H]⁺ : 315.1555, found: 315.1553.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **64** as a white solid (40.0 mg, 61% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.49 – 7.41 (m, 4H), 7.37 (dd, J = 8.2, 5.9 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 5.10 (s, 2H), 2.40 (dt, J = 7.4, 2.3 Hz, 2H), 1.84 (dt, J = 15.1, 7.5 Hz, 1H), 1.67 (dtd, J = 17.1, 9.5, 8.4, 4.3 Hz, 4H), 1.51 (dt, J = 7.6, 3.7 Hz, 2H), 1.24 – 1.14 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.91, 153.81 (t, J = 289.9 Hz), 136.98, 129.50 (t, J = 3.2 Hz), 128.61, 128.00, 127.50, 126.47, 114.75, 91.77 (dd, J = 21.6, 13.3 Hz), 70.06, 38.25, 33.70, 32.15, 25.00. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.93 (d, J = 47.5 Hz, 1F), -93.24 (d, J = 47.5 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₂₁H₂₃F₂O [M+H]⁺ : 329.1711, found: 329.1710.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **65** as a white solid (45.8 mg, 67% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 6.9 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (dd, *J* = 8.3, 5.7 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.05 – 6.99 (m, 2H), 5.11 (s, 2H), 2.30 (dt, *J* = 7.1, 2.3 Hz, 2H), 1.77 – 1.64 (m, 5H), 1.32 (ddq, *J* = 14.8, 7.4, 3.7, 2.9 Hz, 1H), 1.18 (s, 3H), 1.04 – 0.91 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.90, 153.96 (dd, *J* = 289.0, 285.5 Hz), 137.02, 129.44 (t, *J* = 3.2 Hz), 128.64, 128.03, 127.53, 126.62, 114.79, 90.54 (dd, *J* = 22.1, 13.0 Hz), 70.08, 35.71, 35.36, 32.91, 26.48, 26.12.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -92.14 (d, *J*= 46.5 Hz, 1F), -92.56 (d, *J*= 46.4 Hz, 1F).
HRMS (ESI) m/z calcd. for C₂₂H₂₅F₂O [M+H]⁺: 343.1868, found: 343.1875.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **66** as a brown solid (73.5 mg, 83% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.49 – 7.37 (m, 4H), 7.35 (d, *J* = 7.1 Hz, 1H), 7.23 (d, *J* = 8.3 Hz, 2H), 6.98 (d, *J* = 8.6 Hz, 2H), 5.07 (s, 2H), 4.04 (s, 2H), 2.59 (d, *J* = 10.4 Hz, 2H), 2.30 (d, *J* = 7.4 Hz, 2H), 1.66 – 1.56 (m, 2H), 1.45 (s, 9H), 1.43 – 1.36 (m, 1H), 1.18 – 1.04 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.99, 154.78, 153.95 (dd, J = 290.6, 287.1 Hz), 136.85, 129.32 (t, J = 3.1 Hz Hz), 128.61, 128.03, 127.48, 126.03, 114.88, 89.92 (dd, J = 21.8, 13.7 Hz Hz), 79.26, 70.06, 43.59, 34.45, 34.21, 31.70, 28.44.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -91.59 (d, J = 45.1 Hz, 1F), -91.93 (d, J = 45.1 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₂₆H₃₂F₂NO₃ [M+H]⁺ : 444.2345, found: 444.2335.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **67** as a white solid (44.8 mg, 71% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.50 – 7.39 (m, 4H), 7.37 (d, *J* = 7.1 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 5.09 (s, 2H), 3.94 (dd, *J* = 11.4, 3.8 Hz, 2H), 3.29 (t, *J* = 11.1 Hz, 2H), 2.34 (dd, *J* = 4.5, 2.2 Hz, 2H), 1.62 – 1.47 (m, 3H), 1.33 (ddt, *J* = 15.0, 11.0, 5.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.02, 154.02 (dd, J = 289.4, 286.4 Hz), 136.90, 129.35 (t, J = 3.2 Hz) 128.62, 128.04, 127.49, 126.11, 114.91, 89.82 (dd, J = 21.8, 13.6 Hz)., 70.08, 67.79, 34.82, 33.23, 32.65. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.63 (d, J = 45.2 Hz, 1F), -91.93 (d, J = 45.3 Hz, 1F). HRMS (ESI) m/z calcd. for C₂₁H₂₃F₂O₂ [M+H]⁺ : 345.1661, found: 345.1670.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **68** as a white solid (47.3 mg, 60% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 7.2 Hz, 2H), 7.43 (t, J = 7.3 Hz, 2H), 7.37 (dd, J = 8.3, 5.6 Hz, 1H), 7.31 - 7.26 (m, 2H), 7.01 - 6.97 (m, 2H), 5.09 (s, 2H), 2.25 - 2.18 (m, 2H), 1.91 (s, 3H), 1.67 (d, J = 12.2 Hz, 3H), 1.61 - 1.55 (m, 3H), 1.47 - 1.37 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.70, 154.34 (dd, *J* = 289.4, 286.9 Hz), 137.00, 129.47 (t, *J* = 2.9 Hz), 128.60, 128.01, 127.56, 127.47, 114.64, 89.21 (dd, *J* = 21.8, 12.8 Hz), 70.08, 42.73, 41.99, 36.93, 34.63, 28.68.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -89.88 (d, J = 43.2 Hz, 1F), -92.90 (d, J = 43.2 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₂₆H₂₉F₂O [M+H]⁺ : 395.2181, found: 395.2183.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **69** as a white solid (49.0 mg, 58% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 7.4 Hz, 2H), 7.43 (t, *J* = 7.3 Hz, 2H), 7.37 (dd, *J* = 8.3, 5.9 Hz, 1H), 7.27 (d, *J* = 7.9 Hz, 2H), 6.98 (d, *J* = 8.7 Hz, 2H), 5.10 (s, 2H), 2.24 (t, *J* = 2.6 Hz, 2H), 2.02 – 1.93 (m, 1H), 1.23 (d, *J* = 21.1 Hz, 6H), 1.11 (d, *J* = 12.0 Hz, 3H), 1.03 (d, *J* = 12.2 Hz, 3H), 0.78 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.67, 154.30 (dd, *J* = 289.5, 286.6 Hz), 136.99, 129.44 (t, *J* = 3.0 Hz), 128.33 (dd, *J* = 4.6, 2.9 Hz), 128.29, 127.97, 127.51, 114.66, 89.28 (dd, *J* = 21.9, 13.1 Hz), 70.06, 51.12, 49.08, 43.15, 41.35, 41.17, 36.31, 36.29, 36.26, 31.22, 30.64, 29.73.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -89.80 (d, J = 43.3 Hz, 1F), -92.78 (d, J = 43.3 Hz, 1F).
HRMS (ESI) m/z calcd. for C₂₈H₃₃F₂O [M+H]⁺ : 423.2494, found: 423.2498.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **70** as a white solid (39.8 mg, 63% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.50 – 7.45 (m, 2H), 7.42 (t, *J* = 7.3 Hz, 2H), 7.36 (dd, *J* = 8.4, 5.8 Hz, 1H), 7.27 (dd, *J* = 8.7, 1.2 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 5.08 (s, 2H), 2.34 (t, *J* = 2.4 Hz, 2H), 0.85 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 157.78, 154.35 (dd, *J* = 289.2, 286.9 Hz), 136.97, 129.55 (t, *J* = 2.9 Hz), 128.05 (dd, *J* = 4.7, 3.2 Hz), 128.01, 127.98, 127.52, 114.68, 90.56 (dd, *J*=21.5, 13.1 Hz), 70.08, 41.23, 32.66, 29.77.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -90.64 (d, *J* = 43.3 Hz, 1F), -93.17 (d, *J* = 43.2 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{20}H_{23}F_2O \ [M+H]^+$: 317.1711, found: 317.1716.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **71** as a white solid (37.0 mg, 55% yield)

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.39 (q, *J* = 7.9 Hz, 4H), 7.34 (d, *J* = 6.9 Hz, 1H), 7.25 (d, *J* = 7.3 Hz, 2H), 7.18 (t, *J* = 9.3 Hz, 5H), 6.90 (d, *J* = 8.5 Hz, 2H), 5.02 (s, 2H), 3.71 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ = 157.92, 154.30 (dd, *J* = 290.9, 288.1 Hz), 138.57 (t, *J* = 2.7 Hz), 136.87, 129.42 (t, *J* = 3.5 Hz), 128.58, 128.46, 128.28, 127.99, 127.46, 126.35, 125.98 (t, *J* = 3.6 Hz), 114.73, 91.13 (dd, *J* = 21.3, 13.9 Hz), 69.99, 33.99.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ = -91.32 (dd, *J* = 42.4 Hz, 3.8 Hz, 1F), -91.75 (dd, *J* = 42.4 Hz, 3.8 Hz, 1F).

HRMS (ESI) m/z calcd. for $C_{22}H_{19}F_2O \ [M+H]^+$: 337.1398, found: 337.1398.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 50/1, v/v) afforded **72** as a white solid (42.0 mg, 51% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.58 (d, *J* = 7.6 Hz, 2H), 7.50 (t, *J* = 7.1 Hz, 2H), 7.43 (dd, *J* = 15.0 Hz, 8.4 Hz, 6H), 7.34 (t, *J* = 7.3 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 4H), 6.93 (d, *J* = 8.7 Hz, 2H), 5.05 (s, 2H), 3.77 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ = 157.94, 154.33 (dd, *J* = 290.9, 287.2 Hz), 140.84, 139.29, 137.66 (t, *J* = 2.7 Hz), 136.86, 129.43 (t, *J* = 3.5 Hz), 128.71, 128.68, 128.58, 127.99, 127.46, 127.19, 127.12, 126.96, 125.94, 114.78, 91.06 (dd, *J* = 21.2, 14.0 Hz), 70.00, 33.64.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ = -91.14 (d, *J* = 42.2 Hz, 1F), -91.55 (d, *J* = 42.2 Hz, 1F). HRMS (ESI) m/z calcd. for C₂₈H₂₃F₂O [M+H]⁺ : 413.1711, found: 413.1710.

Purification by column chromatography on silica gel (hexane/ethyl acetate = 20/1, v/v) afforded **73** as a white solid (46.9 mg, 62% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.84 (d, *J* = 8.1 Hz, 2H), 7.39 (t, *J* = 7.9 Hz, 4H), 7.34 – 7.29 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J*=8.4 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 5.01 (s, 2H), 3.75 (s, 2H), 2.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 197.70, 158.04, 154.31 (dd, *J* = 291.2, 287.5 Hz), 136.77, 135.57, 134.01, 129.35 (t, *J* = 3.5 Hz), 128.63, 128.58, 128.50, 128.02, 127.45, 125.41, 114.86, 90.63 (dd, *J* = 21.2, 14.6 Hz), 69.99, 33.99, 26.51.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ = -90.75 (d, *J* = 41.2 Hz, 1F), -91.09 (d, *J* = 41.1 Hz, 1F). **HRMS** (ESI) m/z calcd. for C₂₄H₂₁F₂O₂ [M+H]⁺ : 379.1504, found: 379.1500.

3. NMR spectra for the products

NMR spectrum of 1

7.6449 7.6410 7.6410 7.6214 7.6201 7.6201 7.4824 7.34824 7.3748 7.3748 7.3748 35600 3.5248 3.5248 3.5248 2.9465 2.9411 2.9411 2.9338 2.29288 2.29288 2.29288 2.29169 2.9111

NMR spectrum of 2

100 90 f1 (ppm)

NMR spectrum of 5

3.5175 3.4997 3.4819 3.4819 2.9097 2.9097 2.9097 2.9097 2.8920 2.8920 2.8850 2.8850 2.8742 2.8690

NMR spectrum of 6

CF₂

ſ

 $\mathcal{L}^{7.3233}_{7.3021}$ $\mathcal{L}^{7.3021}_{7.2455}$

NMR spectrum of 7

2.8267 2.8566 2.8666 2.8666 2.8666 2.8658 2.8588 2.8588 2.858840 2.828480 2.8321 2.8321 2.8267 2.8267 2.8267

NMR spectrum of 8

NMR spectrum of 10

3,4979 3,4804 3,4628 3,4628 2,8591 2,8549 2,8491 2,8491 2,8416 2,8416 2,8416 2,8416 2,8416 2,8416 2,8142 2,8141

CF₂ OPh

2.9580 [2.9580] [2.95

Ph

NMR spectrum of 16

9921 9729 9729 9520 9520 9449 9449 9449 9449 144800 1448000 14480000000000	

3.5350 3.5175 3.5175 3.5175 3.1418 3.1317 3.1317 3.1137 3.1137 3.1137 3.1137 3.1172 3.1172 3.1172

3.4897 (3.4731 (3.4562 (3.0103 (2.9927 (2.9742

-3.5185 -3.5185 -3.5185 -3.5015 -3.5042 -2.9989 -2.9989 -2.9989 -2.9989 -2.9983 -2.9983 -2.9983 -2.9583 -2.9583

NMR spectrum of 24

NMR spectrum of 26

NMR spectrum of 28

100 90 f1 (ppm)

8.5 4.0 f1 (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

130 120 110 100 f1 (ppm)

NMR spectrum of 36

Z7.3005 Z7.2808 Z7.0979 Z7.0405

5 3812 5 3812 5 440179 5 440179 3 55634 3 55634 3 55634 3 55634 3 55330 3 55634 3 55330 3 55634 3 55330 3 55330 3 55330 1 9677 1 19677 1 19677 1 19672 1 19672 1 19672 1 19672 1 19672 1 19672 1 19672 1 19672 1 19672 1 18860 1 19672 1 18860 1 19672 1 18860 1 19672 1 18860 1 18826

100 90 f1 (ppm) Ó -10

90 80 f1 (ppm) -10

100 90 f1 (ppm) -10

10.0 9.5 9.0 8.5 1.0 0.5 0.0 -0.5 -1.0

-45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

f1 (ppm) -10

-88 -89 -90 -91 -92 -93 -94 -95 -96 -97 -98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 f1 (ppm)

--5.0907

BnO

NMR spectrum of 54

4.5 4.0 f1 (ppm)

3.5

3.0

2.5

2.0

1.0

0.5

0.0

-0.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

NMR spectrum of 58

NMR spectrum of 62

