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1 Mechanism and Workflow of FABO

In a comprehensive search, costly simulations and experiments would be required to deter-

mine the properties of interest for each candidate material in the dataset M , generating pairs

{(m,F (m)) : m ∈ M} to identify the optimal material (m∗) with the desired characteristics.

However, rather than conducting this exhaustive approach, our goal is to efficiently pinpoint

the m∗ while performing these expensive simulations or experiments on only a small subset

of candidates. Bayesian optimization optimizes decision making concerning which candidate

needs to be set next for iteration.

1.1 Initialization

We initialize BO campaign with 10 initial materials selected randomly from the original

pool M = {(mi, F (mi)) | i = 1, 2, . . . , N} without replacement, then they are labelled.

This process is repeated 20 times, with the selected materials added to the selected points

collection Ms = {(mi, F (mi)) | i = 1, 2, . . . , 10}. Repeating the initial selection stage 20

times accounts for the uncertainty in the dataset and its influence on the search direction

in Bayesian optimization. Multiple initialization helps reduce the risk of the optimization

process becoming overly dependent on a single, potentially unrepresentative starting set.

1.2 Feature engineering

To proceed with the Bayesian optimization, each material structure must be represented as

a vector, composed of structural and chemical features. We integrate two feature selection

methods into the BO loop to identify the most important features from the prior labeled

dataset (Ms). The feature set size can vary between 5 and 40, aiming to find the optimal

set of features (Dselected) from the feature pool (D). The first method, Maximum Relevancy

Minimum Redundancy (mRMR), selects features by balancing relevance to the target vari-

able y and redundancy with respect to the already selected features ({dj, dk, . . . }). For a
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given candidate feature di, the mRMR score is computed as:

mRMR Score(di) =
Relevance(di | y)

Redundancy(di | {dj, dk, . . . })
(1)

Relevance measures how strongly the candidate feature di is related to the target y. This

is calculated using the F-statistic, which quantifies the statistical relationship between the

feature and the target. A higher relevance value indicates that the feature has significant

explanatory power for y. Redundancy represents the average correlation of the candidate

feature di with the already selected features ({dj, dk, . . . }). By minimizing redundancy, the

algorithm ensures that newly selected features add unique and non-overlapping information.

Initially, the first two features are selected purely based on their relevance to the target.

Subsequent the algorithm iteratively selects features by maximizing the mRMR score for

each candidate feature di, continuing until the desired number of features is selected. To

implement this process, we use the mrmr Python package.

The second method, Spearman ranking, is a univariate, ranking-based method. It eval-

uates each feature based on its Spearman rank correlation coefficient ρ with the target

variable. Spearman’s rank correlation measures the strength and direction of the monotonic

relationship between two variables. The Spearman correlation coefficient for a feature di is

calculated as:

ρ(di, y) = 1− 6
∑n

i=1 γ
2
i

n(n2 − 1)
(2)

where γi represents the difference between the ranks of di and y, and n denotes the number

of observations. Features are ranked by the magnitude of their correlation coefficients, with

the top-ranking features being selected.
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1.3 Surrogate Model

Gaussian process regressor (GPR) which models the objective function (F (m)) as a distri-

bution over possible functions, is used as surrogate model of FABO. The model is defined by

a mean function and a covariance function (kernel), which control the behavior and smooth-

ness of the function. A GPR approximates the relationship between input features and the

target variable and provides uncertainty estimates. Given a set of featurized materials (Ms)

and corresponding outputs (y), the GP computes the posterior distribution at any new point

based on the prior distribution and observed data. This enables predictions on unseen points

while providing uncertainty estimates, which are crucial for determining the next sampling

point in Bayesian optimization.

1.4 Acquisition function

The next critical step in Bayesian optimization is determining the next sampling location

based on the inferences drawn from the fitted model. This is achieved using acquisition func-

tions, which assess the potential value of information gained by sampling at a specific point.

For deterministic responses, the Expected Improvement (EI) acquisition function is one of

the most commonly used methods and performs well across various problems. EI strikes a

balance between exploitation (choosing points where the model predicts optimal values) and

exploration (sampling in areas of high uncertainty). In our context, the GP model is first

fitted to the labeled materials, with the fitted mean prediction ŷ(m). Instead of selecting the

point that optimizes ŷ(m), EI incorporates model uncertainty to guide the selection of the

next sampling point. Mathematically, EI quantifies the expected improvement at a given

point by combining both the predicted mean and the uncertainty σ̂(m).

EI(m) = (ŷbest − ŷ(m))Φ

(
ŷbest − ŷ(m)

σ̂(m)

)
+ σ̂(m)ϕ

(
ŷbest − ŷ(m)

σ̂(m)

)
(3)

Where ŷbest is the best observed material so far for a specific task, ŷ(m) is the GP’s
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predicted mean at point m, and σ̂(m) represents the uncertainty (standard deviation) at

point m. Here, Φ(·) is the cumulative distribution function, and ϕ(·) is the probability

density function of the standard normal distribution.

The Upper Confidence Bound (UCB) is another commonly used acquisition function

that prioritizes exploration by considering uncertainty more explicitly in its formulation.

Unlike EI, which balances exploration and exploitation, UCB emphasizes areas with higher

uncertainty, making it particularly useful in the early stages of optimization when gathering

more information is critical. The UCB acquisition function selects points that maximize a

linear combination of the GP’s predicted mean ŷ(m) and a multiple of the uncertainty σ̂(m),

encouraging exploration of regions where the model is less certain.

UCB(m) = ŷ(m) + κσ̂(m) (4)

Here, κ is a tunable parameter that controls the balance between exploration and ex-

ploitation. A larger κ value encourages more exploration by giving greater weight to the

uncertainty term σ̂(m), while a smaller κ value focuses more on exploitation by prioritizing

the GP’s predicted mean ŷ(m). UCB is particularly effective in problems where the search

space is large, and gaining more information about uncertain regions is crucial for finding

the global optimum. In some cases, using a hybrid acquisition strategy that combines both

exploitation and exploration, such as alternating between EI and UCB, can enhance per-

formance by balancing the need to refine predictions in known regions while still exploring

uncertain areas. This approach is particularly useful in scenarios where both gathering new

information and honing in on optimal solutions are crucial.

1.5 Labeling

In practice, the CoRE-2019 and QMOF datasets provide precomputed simulations for CO2

adsorption and electronic properties of MOFs, respectively. Consequently, we retrieve band
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gap or CO2 uptake capacity data directly from these datasets, eliminating the need for

additional costly molecular simulations. This approach allows us to prioritize optimizing

the selection process, leveraging existing simulation results as proxies for otherwise resource-

intensive calculations.
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2 Further Analysis on FABO

2.1 BO with Random Feature Selection

a)

b)

c)

Figure S. 1| Search efficiency curves for FABO, illustrating performance against
BO campaigns with random feature selection. (a) CO2 uptake at low pressure, (b)
CO2 uptake at high pressure, and (c) band gap. The quality of the acquired set of MOFs
is shown in three panels: (left) the highest rank relative to the entire dataset; (middle) the
optimum value of the objective function; and (right) the number of top 100 MOFs (based
on the property of interest) included in acquired MOF set.
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2.2 BO with Features Selected from Labeled Dataset

c)

b)

a)

Min-sized mRMR-selected features from labeled data
Max-sized mRMR-selected features from labeled data

Min-sized Spearman-selected features from labeled data

FABO

Max-sized Spearman-selected features from labeled data

Figure S. 2| Search efficiency curves for FABO, illustrating performance in com-
parison to BO campaigns with two feature set sizes selected from a labeled
dataset using the relevance criterion and Spearman ranking methods. (a) CO2

uptake at low pressure, (b) CO2 uptake at high pressure, and (c) band gap. The quality of
the acquired set of MOFs is shown in three panels: (left) the highest rank relative to the
entire dataset; (middle) the optimum value of the objective function; and (right) the number
of top 100 MOFs (based on the property of interest) included in acquired MOF set. For CO
uptake, the lower and upper feature counts are 5 and 40, respectively, while for band gap
optimization, they are 5 and 20.
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2.3 FABO with Different Feature Selection Method

a)

b)

c)

Figure S. 3| Search efficiency curves for FABO operated by different feature se-
lection methods (a) CO2 uptake at low pressure, (b) CO2 uptake at high pressure, and
(c) band gap. The quality of the acquired set of MOFs is shown in three panels: (left) the
highest rank relative to the entire dataset; (middle) the optimum value of the objective func-
tion; and (right) the number of top 100 MOFs (based on the property of interest) included
in acquired MOF set.
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2.4 Benchmarking FABO against BO with random forest as surro-

gate model

b)

c)

a)

Figure S. 4| Search efficiency curves for FABO, illustrating performance in com-
parison to BO campaign with random forest as surrogate model (a) CO2 uptake
at low pressure, (b) CO2 uptake at high pressure, and (c) band gap. The quality of the
acquired set of MOFs is shown in three panels: (left) the highest rank relative to the entire
dataset; (middle) the optimum value of the objective function; and (right) the number of
top 100 MOFs (based on the property of interest) included in acquired MOF set.
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2.5 Random Embedding Bayesian Optimization (REMBO)

Previous studies suggested using stochastic random search, as uniform sampling from the

feature space can densely cover low-dimensional subspaces without prior knowledge of which

dimensions are important.1,2 Building on this idea, Wang et al. proposed Random Em-

bedding Bayesian Optimization (REMBO), which combines randomization with Bayesian

optimization.3 Specifically, REMBO reduces the dimensionality of the optimization problem

by mapping the original high-dimensional feature space (RD) to a lower-dimensional embed-

ding (Rd) using a random projection matrix A ∈ Rd×D. Each high-dimensional point x ∈ RD

is represented in the low-dimensional space as:

z = Ax (5)

where z ∈ Rd is the lower-dimensional representation. Bayesian optimization is then

performed in this reduced space, and the objective function in the high-dimensional space

is evaluated by mapping points back using the projection. This method leverages the as-

sumption that the optimal solution lies within a linear subspace of the original feature space,

allowing efficient optimization in reduced dimensions.

While REMBO performs well in the CO2 uptake optimization task at high pressure, it

does not outperform FABO and fails to find the best material in the other optimization

tasks. This disparity can be attributed to key limitations in REMBO. First, REMBO relies

on random projection matrices to reduce dimensionality, which inherently assumes that the

optimal solution lies within a linear subspace of the original feature space. However, when

features are independent and each carries unique value, such linear combinations may fail to

preserve the critical information needed for effective optimization. Second, REMBO lacks a

mechanism to adaptively identify or prioritize the most relevant feature dimensions, instead

depending on the prior assumption that low effective dimensionality exists. In contrast,

FABO dynamically adapts to the data and systematically identifies the most informative

12



features.

b)

a)

c)

Figure S. 5| Search efficiency curves for FABO, illustrating performance in com-
parison to Random Embedding Bayesian Optimization (REMBO) (a) CO2 uptake
at low pressure, (b) CO2 uptake at high pressure, and (c) band gap. The quality of the
acquired set of MOFs is shown in three panels: (left) the highest rank relative to the entire
dataset; (middle) the optimum value of the objective function; and (right) the number of
top 100 MOFs (based on the property of interest) included in acquired MOF set.
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2.6 Benchmarking FABO on Molecular Datasets: CHEMBL and

Delaney

b)

a)

Figure S. 6| FABO benchmarking on molecular datasets (a) Delaney dataset (pre-
dicting solubility) and (b) CHEMBL KI 2034 dataset (predicting inhibition constant). In
both sub figures, Bayesian Optimization campaign is run using the full feature set generated
by the MORDRED Python package, with only zero-variance and highly correlated features
(correlation > 0.9) excluded. For the Delaney dataset, FABO is additionally benchmarked
against DIONYSUS, a BO model developed by Tom et al., which adjusts the search space
dimension via an RBF kernel length parameter to optimize the process.

14



2.7 Comparative Summary of Material Representation Approaches

in Bayesian optimization

Table 1: Comparison of available approaches for identifying the optimal material represen-
tation in Bayesian optimization. The FABO achieves superior performance across all cases.
The DIONYSUS method shows limited accuracy in CO2 uptake optimization at high pres-
sure and band gap minimization. Feature selection on fully labeled datasets performs well
for mature projects involving MOFs, though it is not applicable to early-stage material dis-
covery, where labeled data is unavailable. Transfer learning is beneficial in specific cases,
such as band gap optimization, where a similar, well-characterized property exists. Feature
selection based on expert intuition is prone to errors and may be affected by bias.

Dataset Random Expert Intuition Transfer Learning Feature Selection DIONYSUS FABO
CO2 High pressure ✗ ✓ ✗ ✓ ✗ ✓

CO2 Low Pressure ✗ ✗ ✗ ✓ ✓ ✓

Band gap ✗ ✗ ✓ ✓ ✗ ✓

Practical for new discovery ✓ ✓ ✗ ✗ ✓ ✓

Bias free ✓ ✗ ✗ ✗ ✓ ✓

Water Solubility ✗ ✗ ✗ ✓ ✓ ✓

15



2.8 Benchmarking FABO on Molecular Datasets: CHEMBL and

Delaney

b)

a)

c)

Figure S. 7| Search efficiency curves for different representation methods, includ-
ing uncertainty. Results show the average across 20 trials for each method, evaluated using
two performance metrics: best rank and best value. The shaded area indicates the standard
deviation of results: (a) CO2 uptake at low pressure, (b) CO2 uptake at high pressure, and
(c) bandgap.
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3 Compute resources

The experiments were conducted on a personal workstation equipped with the following

resources:

• System RAM: 32 GB

The runtime for each experimental run, conducted over 250 iterations in the FABO

framework, varied depending on the type of feature selector used in the FABO framework

and the dataset being processed:

• Feature Selector: Spearman

– band gap Optimization: Average runtime of 9 minutes.

– Low-Pressure CO2 Uptake: Average runtime of 20 minutes.

– High-Pressure CO2 Uptake: Average runtime of 30 minutes.

• Feature Selector: mRMR

– The runtime for mRMR is approximately double that of Spearman ranking, mak-

ing it 18 minutes for band gap optimization, 40 minutes for low-pressure CO2

uptake, and 60 minutes for high-pressure CO2 uptake.
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