Electronic Supplementary Information

Palladium-based coordination cages as dynamic crosslinks in acrylamide hydrogels

Chaolei Hu, Damien W. Chen, Sylvain Sudan, and Kay Severin*

Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Table of Contents

Table of Contents	2
1 Materials and methods	3
1.1 Materials	3
1.2 Methods	3
2 Synthesis and characterizations	4
2.1 Synthesis and characterization of ligand L1 and L2	4
Synthesis of compounds 3 and 4	4
Synthesis of compounds 6 and 7	6
Synthesis of compound 10	8
Synthesis of compound 11	9
Synthesis of compounds L1 and L2	10
2.2 Synthesis of hydrogel HG0 by Pd ²⁺ -mediated crosslinking of a polymeric ligand	12
2.3 Synthesis and characterization of cage [Pd ₂ (L1) ₄](NO ₃) ₄	13
2.4 Synthesis and characterization of cage $[Pd_4(L1)_8]$ (BF ₄) ₈	16
2.5 Synthesis and characterization of cage [Pd ₁₂ (L2) ₂₄](NO ₃) ₂₄	19
2.6 Synthesis and characterization of the hydrogels HG1–HG3	22
2.7 Synthesis and characterization of hydrogels HG4 and HG5	25
2.8 Synthesis and characterization of the hydrogels HG6 and HG7	27
3 Chloride-triggered rearrangement of [Pd4(L1)8] ⁸⁺ into [Pd2(L1)4Cl] ³⁺	29
4 Chloride-triggered topology changes of HG4	30
5 Modeling details	33
6 References	37

1 Materials and methods

1.1 Materials

Octaethylene glycol (IVALUA, 99%), hexaethylene glycol (Sigma-Aldrich, 99%), *p*-toluolsulfonylchlorid (Sigma-Aldrich, 99%), KI (Sigma-Aldrich, 99%), Ag₂O (Sigma-Aldrich, 99%), 3,5-dibromophenol (Sigma-Aldrich, 97%), Cs₂(CO₃) (Sigma-Aldrich, 99%), 3-pyridineboronic acid pinacol ester (Sigma-Aldrich, 97%), 4pyridineboronic acid pinacol ester (Sigma-Aldrich, 97%), Pd(PPh₃)₄ (Sigma-Aldrich, 99%), K₂CO₃ (Sigma-Aldrich, 99%), acryloyl chloride (Sigma-Aldrich, 97%), triethylamine (Sigma-Aldrich, 99%), Pd(NO₃)₂ × 2 H₂O (abcr, 99.9%, 41%Pd), [Pd(CH₃CN)₄](BF₄)₂ (abcr, 98%), *N*,*N*-dimethylacrylamide (DMA, Sigma-Aldrich, 99%), *N*-hydroxyethyl acrylamide (HEAA, Sigma-Aldrich, 97%), and photo-initiator VA-86 (Fujifilm, 98%) were used as received. *N*-Isopropylacrylamid (NIPAM, Sigma-Aldrich, 97%) was distilled and recrystallized from hexane before use. The polymeric ligand L1'-PEG₄₆₀₀-L1' was synthesized following literature procedures.¹

1.2 Methods

NMR spectra were measured on a Bruker Avance Neo spectrometer (1 H: 500 MHz, ${}^{13}C{}^{1}$ H}: 125 MHz) equipped with a CPTCl_{xyz} 5 mm cryoprobe, a Bruker Avance III spectrometer (1 H: 400 MHz) equipped with a BBFO_z 5 mm probe and a Bruker Avance III spectrometer (1 H: 400 MHz) equipped with a Prodigy BBO 5 mm cryoprobe. The chemical shifts are reported in part per million (ppm) using the solvent residual signal as a reference.

High-resolution mass spectrometry experiments were carried out using a hybrid ion trap-Orbitrap Fourier transform mass spectrometer, Orbitrap Elite (Thermo Scientific) equipped with a TriVersa Nanomate (Advion) nano-electrospray ionization source. Mass spectra were acquired with a minimum resolution setting of 120,000 at 400 m/z. To reduce the degree of analyte gas phase reactions leading to side products unrelated to solution phase, the transfer capillary temperature was lowered to 50 °C. Experimental parameters were controlled via standard and advanced data acquisition software.

UV irradiation for the photoinitiated polymerization was performed using a UV lamp (CAMAG UV Lamp, 365 nm, 40 W), and the irradiation distance was kept at 1 cm for all reactions.

Rheology was performed on a DHR-3 TA Instrument with an 8 mm diameter parallel plate steel geometry. The amplitude sweep measurements were performed from 0.1% to 200% strain at a constant frequency of 1 rad s⁻¹. Frequency sweeps were performed from 1 to 100 rad s⁻¹ at 1% strain. For all measurements, the loaded hydrogel samples were immersed in mineral oil to reduce solvent evaporation and hydrogel de-swelling by adsorbing moisture, and the gap was kept constant at 800 μ m.

The swelling ability of synthesized hydrogels were measured as follows. To each gel was added 1 mL water, and the gels were allowed to equilibrate at RT for 3 d, at which time the excess water was removed via syringe, and any residual water was wicked away by gently dabbing the gels in the vials. The hydrogels in the vials were weighed, and the dry mass of the gels were weighted after lyophilization. The swelling ratio for each hydrogel was determined by diving the mass of the swollen hydrogel by the dry mass of the hydrogel.

SEM measurements were carried out with freeze-dried hydrogel samples using a scanning electron microscope (Zeiss Merlin). The samples were coated with about 6 nm of iridium to make them conductive before measurements. The SEM electron beam accelerating voltage used was 30 kV.

2 Synthesis and characterizations

2.1 Synthesis and characterization of ligand L1 and L2

Scheme S1. Chemical structures of ligands L1 and L2.

Scheme S2. Synthesis of the ligands L1 and L2.

Synthesis of compounds 3 and 4

The synthesis of compounds **3** and **4** was adapted from a reported procedure.² Octaethylene glycol (**1**) or hexaethylene glycol (**2**) (1.0 equiv, 20 mmol) was dissolved in dry dichloromethane (150 mL), and the solution was cooled to 0 °C. Under vigorous stirring, Ag₂O (1.5 equiv, 30 mmol), *p*-toluolsulfonylchlorid (1.05 equiv, 21.0 mmol), and KI (0.2 equiv, 0.40 mmol) were added under inert conditions. After stirring for 2 h, the precipitated silver salts were removed by filtration through a pad of Celite, which was washed thoroughly with ethyl acetate. The combined filtrate was concentrated under vacuum, and the residue was purified by column chromatography (**3**: hexane: ethyl acetate, 1:20; **4**: hexane: ethyl acetate, 1:20). Compound **3** was obtained as a colorless oil (9.70 g, 92%). Compound **4** was obtained as a colorless oil (8.21 g, 94%).

Compound 3: ¹H NMR (400 MHz, CD₃CN) δ 7.79 (d, *J*=8.4, 2H), 7.44 (d, *J*=8.2, 2H), 4.15 – 4.09 (m, 2H), 3.62 – 3.46 (m, 30H), 2.76 (t, *J*=5.8, 5.8, 1H), 2.44 (s, 3H). ¹³C{¹H} NMR (101 MHz, CD₃CN) δ 146.33, 133.80,

130.97, 128.74, 73.28, 71.13, 71.11, 71.09, 71.00, 70.96, 70.93, 69.14, 61.92, 21.60. HRMS (APCI/QTOF) m/z: [M + Na]⁺ calcd. for C₂₃H₄₀NaO₁₁S⁺ 547.2184, found 547.2181.

Compound 4: ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.76 (d, 2H), 7.47 – 7.41 (dt, 2H), 4.14 – 4.07 (m, 2H), 3.64 – 3.44 (m, 22H), 2.44 (s, 3H). ¹³C{¹H} NMR (101 MHz, CD₃CN) δ 146.32, 133.78, 130.96, 128.73, 73.24, 73.22, 71.11, 71.07, 71.05, 71.02, 70.96, 70.94, 70.91, 69.13, 61.92, 21.59. HRMS (ESI/QTOF) *m/z*: [M + Na]⁺ calcd. for C₁₉H₃₂NaO₉S⁺ 459.1659, found 459.1676.

Figure S3. ¹H NMR spectrum (400 MHz, CD₃CN) of compound 4.

Synthesis of compounds 6 and 7

A solution of 3,5-dibromophenol (5, 2.29 g, 1.20 equiv, 9.15 mmol) and Cs_2CO_3 (5.00 g, 2.00 equiv, 15.24 mmol) in DMF (30 mL) was stirred at 100 °C for 2 h under a nitrogen atmosphere. Compound **3** or **4** (1.0 equiv, 7.62 mmol) was then added and the resulting mixture was stirred for 24 h at 100 °C. The reaction was quenched with 30 mL of deionized water and the organic layer was extracted with DCM (3×60 mL). The organic phases were combined and washed with water (2×60 mL) and brine (3×60 mL) before being dried over anhydrous magnesium sulfate and concentrated under vacuum. The residue was purified by chromatography (**6**: ethyl acetate: methanol, 10:1; **7**: ethyl acetate: methanol, 15:1). Compound **6** was obtained as a colorless oil (3.73 g, 81%).

Compound 6: ¹H NMR (400 MHz, CD₃CN) δ 7.32 (t, *J*=1.6, 1.6, 1H), 7.13 (d, *J*=1.6, 2H), 4.13 – 4.08 (m, 2H), 3.78 – 3.73 (m, 2H), 3.63 – 3.52 (m, 26H), 3.50 – 3.46 (m, 2H), 2.80 – 2.73 (m, 1H). ¹³C{¹H} NMR (101 MHz, CD₃CN) δ 161.32, 127.03, 123.81, 118.11, 73.27, 71.33, 71.15, 71.11, 71.00, 69.91, 69.33, 61.92. HRMS (APCI/QTOF) *m*/*z*: [M + H]⁺ calcd. for C₂₂H₃₇Br₂O₉⁺ 603.0799, found 603.0793.

Figure S6. ¹³C{¹H} NMR spectrum (101 MHz, CD₃CN) of compound **6**.

Compound 7: ¹H NMR (400 MHz, CD₃CN) δ 7.32 (q, *J*=1.5, 1.5, 1.4, 1H), 7.12 (t, *J*=1.4, 1.4, 2H), 4.13 – 4.07 (m, 2H), 3.78 – 3.72 (m, 2H), 3.63 – 3.52 (m, 18H), 3.50 – 3.45 (m, 2H), 2.80 (d, *J*=5.5, 1H). ¹³C{¹H} NMR (101 MHz, CD₃CN) δ 161.29, 127.01, 123.79, 118.08, 73.28, 71.31, 71.14, 71.12, 71.09, 70.98, 69.90, 69.30, 61.92. HRMS (ESI/QTOF) *m/z*: [M + Na]⁺ calcd. for C₁₈H₂₈Br₂NaO₇⁺ 537.0094, found 537.0114.

Compound **6** (1.81 g, 1.0 equiv, 3.0 mmol), 3-pyridineboronic acid pinacol ester (**8**) (1.48 g, 2.4 equiv, 7.2 mmol), Pd(PPh₃)₄ (0.35 g, 0.1 equiv, 0.3 mmol), and K₂CO₃ (4.14 g, 10 equiv, 30 mmol) were added into a 50 mL singleneck round-bottom flask equipped with a magnetic stir bar and capped with a septum. Under a nitrogen atmosphere, DMF (20 mL) along with H₂O (1 mL) were added and the resulting mixture was stirred for 60 h at 100 °C. After cooling to room temperature, the mixture was diluted with chloroform/methanol (10/1, v/v) and filtered through Celite. The filtrate was washed with brine, dried over anhydrous magnesium sulfate, and purified by column chromatography (methanol: ethyl acetate, 1:3). Compound **10** was obtained as a colorless oil (1.42 g, 79%).

δ (ppm) **Figure S8.** ¹³C{¹H} NMR spectrum (101 MHz, CD₃CN) of compound **7**.

90

85

80 75 70 65 60

55

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95

¹H NMR (400 MHz, CD₃CN) δ 8.94 (d, *J*=1.8, 2H), 8.59 (dd, *J*=4.8, 1.6, 2H), 8.08 (dt, *J*=7.9, 1.7, 1.7, 2H), 7.54 (t, *J*=1.5, 1.5, 1H), 7.44 (ddd, *J*=7.9, 4.8, 0.7, 2H), 7.27 (d, *J*=1.5, 2H), 4.28 (dd, *J*=5.4, 3.8, 2H), 3.94 – 3.79 (m, 2H), 3.65 (dt, *J*=3.9, 2.4, 2.4, 2H), 3.62 – 3.45 (m, 26H), 2.84 (t, *J*=5.7, 5.7, 1H). ¹³C{¹H} NMR (101 MHz, CD₃CN) δ 160.99, 149.84, 149.21, 140.98, 136.73, 135.48, 124.60, 119.45, 113.90, 73.29, 71.33, 71.13, 71.09,

71.07, 71.05, 70.95, 70.26, 68.82, 61.88. HRMS (APCI/QTOF) m/z: [M + Na]⁺ calcd. for C₃₂H₄₄N₂NaO₉⁺ 623.2939, found 623.2942.

Figure S10. ¹³C{¹H} NMR spectrum (101 MHz, CD₃CN) of compound 10.

Synthesis of compound 11

Compound **11** was synthesized following a similar procedure as used for compound **10**. Specifically, compound **7** (1.28 g, 1.0 equiv, 3.0 mmol), 4-pyridineboronic acid pinacol ester (**9**) (1.48 g, 2.4 equiv, 7.2 mmol), Pd(PPh₃)₄ (0.35 g, 0.1 equiv, 0.3 mmol), and K₂CO₃ (4.14 g, 10 equiv, 30 mmol) were added into a 50 mL single-neck round-bottom flask equipped with a magnetic stir bar and capped with a septum. Under a nitrogen atmosphere, DMF (20 mL) along with H₂O (1 mL) were added and the resulting mixture was stirred for 60 h at 100 °C. After cooling to room temperature, the mixture was diluted with chloroform/methanol (10/1, v/v) and filtered through Celite. The filtrate was washed with brine, dried over anhydrous magnesium sulfate, and purified by column chromatography (methanol: ethyl acetate, 1:3). Compound **11** was obtained as a colorless oil (1.32 g, 86%).

¹H NMR (400 MHz, CD₃CN) δ 8.70 – 8.59 (m, 4H), 7.71 – 7.63 (m, 4H), 7.60 (t, *J*=1.5, 1.5, 1H), 7.32 (d, *J*=1.5, 2H), 4.30 – 4.22 (m, 2H), 3.86 – 3.79 (m, 2H), 3.67 – 3.61 (m, 2H), 3.61 – 3.48 (m, 16H), 3.45 (dd, *J*=5.5, 4.1, 2H), 3.13 (s, 1H). ¹³C{¹H} NMR (101 MHz, CD₃CN) δ 160.99, 151.16, 148.16, 141.15, 122.67, 119.13, 114.72, 73.30, 71.31, 71.10, 71.07, 71.05, 71.04, 70.92, 70.21, 68.86, 61.86. HRMS (ESI/QTOF) *m*/*z*: [M + H]⁺ calcd. for C₂₈H₃₇N₂O₇⁺ 513.2595, found 513.2606.

Synthesis of compounds L1 and L2

Compound **10** or **11** (1.0 equiv, 2.0 mmol) and triethylamine (1.15 mL, 4.0 equiv, 8.0 mmol) were dissolved in DCM (25 mL) and the resulting mixture was stirred at 0 °C for 1 h under a nitrogen atmosphere. Subsequently, acryloyl chloride (0.24 mL, 1.5 equiv, 3.0 mmol) was added. The solution was stirred at 0 °C for 3 h. After that, the solution was allowed to stand at room temperature for 36 h. The solution was then concentrated under vacuum and the residue was purified by chromatography on silica (L1: hexane: ethyl acetate, 1:20; L2: hexane: ethyl acetate, 1:30). Compound L1 was obtained as a yellowish oil (1.14 g, 87%). Compound L2 was obtained as a yellowish oil (1.03 g, 91%).

Compound L1: ¹H NMR (400 MHz, CD₃CN) δ 8.93 (dd, *J*=2.5, 0.9, 2H), 8.58 (dd, *J*=4.8, 1.6, 2H), 8.06 (ddd, *J*=7.9, 2.4, 1.6, 2H), 7.52 (t, *J*=1.5, 1.5, 1H), 7.43 (ddd, *J*=7.9, 4.8, 0.9, 2H), 7.25 (d, *J*=1.5, 2H), 6.34 (dd, *J*=17.3,

1.5, 1H), 6.13 (dd, J=17.3, 10.4, 1H), 5.85 (dd, J=10.4, 1.5, 1H), 4.28 – 4.24 (m, 2H), 4.24 – 4.20 (m, 2H), 3.86 – 3.79 (m, 2H), 3.67 – 3.62 (m, 4H), 3.61 – 3.47 (m, 22H). ¹³C{¹H} NMR (101 MHz, CD₃CN) δ 166.73, 160.96, 149.80, 149.17, 140.94, 136.70, 135.45, 131.60, 129.21, 124.59, 119.41, 113.87, 71.32, 71.12, 71.06, 71.05, 71.04, 71.00, 70.26, 69.54, 68.79, 64.52. HRMS (ESI/QTOF) m/z: [M + H]⁺ calcd. for C₃₁H₃₉N₂O₈⁺ 567.2701, found 567.2711.

Compound L2: ¹H NMR (400 MHz, CD₃CN) δ 8.68 – 8.62 (m, 4H), 7.73 – 7.68 (m, 4H), 7.64 (t, *J*=1.6, 1.6, 1H), 7.36 (d, *J*=1.5, 2H), 6.34 (dd, *J*=17.3, 1.6, 1H), 6.13 (dd, *J*=17.3, 10.4, 1H), 5.85 (dd, *J*=10.4, 1.5, 1H), 4.32 – 4.26 (m, 2H), 4.24 – 4.19 (m, 2H), 3.87 – 3.82 (m, 2H), 3.68 – 3.61 (m, 4H), 3.61 – 3.57 (m, 2H), 3.57 – 3.49 (m, 12H). ¹³C{¹H} NMR (101 MHz, CD₃CN) δ 166.75, 161.07, 151.23, 148.19, 141.31, 131.58, 129.22, 122.71, 119.23, 118.26, 114.77, 71.35, 71.14, 71.13, 71.11, 71.09, 71.07, 71.01, 70.25, 69.55, 68.93, 64.53. HRMS (APCI/QTOF) *m/z*: [M + Na]⁺ calcd. for C₃₅H₄₆N₂NaO₁₀⁺ 677.3045, found 677.3039.

Figure S15. ¹H NMR spectrum (400 MHz, CD₃CN) of compound L2.

2.2 Synthesis of hydrogel HG0 by Pd²⁺-mediated crosslinking of a polymeric ligand

The hydrogel **HG0** was synthesized according to a modified literature procedure.¹ Specifically, 20 mg of the polymeric ligand **L1'-PEG₄₆₀₀-L1'** was dissolved in 460 μ L of D₂O. Subsequently,40 μ L of a 100 mM Pd(NO₃)₂ stock solution in D₂O was added. The mixture was vortexed till they were mixed well before it was annealed at 70 °C for 4 h to obtain hydrogel **HG0**.

Scheme S3. Synthesis of supramolecular hydrogel HG0.

Figure S17. Picture of the supramolecular hydrogel HG0. The strong coloration indicates partial decomposition of the Pd complexes.

2.3 Synthesis and characterization of cage [Pd2(L1)4](NO3)4

Cage $[Pd_2(L1)_4](NO_3)_4$ was synthesized by stirring a mixture of ligand L1 (50 µmol, 1000 µL of a 50 mM stock solution of L1 in CD₃CN) and Pd(NO₃)₂ (25 µmol, 500 µL of a 50 mM stock solution in CD₃CN) in CD₃CN (1000 µL) at 80 °C for 2 h to give 2500 µL of a 5 mM solution of $[Pd_2(L1)_4](NO_3)_4$. The cage was characterized by NMR spectroscopy and mass spectrometry. Subsequently, the solvent was removed under reduced pressure and the residue was dissolved in D₂O (2500 µL) to give a 5 mM solution of $[Pd_2(L1)_4](NO_3)_4$. The structural integrity of the cage after solvent exchange was verified by ¹H NMR spectroscopy.

¹H NMR (400 MHz, CD₃CN) δ 10.26 (d, *J*=2.0, 2H), 9.49 (dd, *J*=5.8, 1.3, 2H), 8.79 (t, *J*=1.6, 1.6, 1H), 8.30 (dt, *J*=8.3, 1.6, 1.6, 2H), 7.66 (dd, *J*=8.1, 5.7, 2H), 7.24 (d, *J*=1.5, 2H), 6.28 (dd, *J*=17.3, 1.5, 1H), 6.07 (dd, *J*=17.3, 10.4, 1H), 5.80 (dd, *J*=10.4, 1.5, 1H), 4.19 – 4.10 (m, 4H), 3.76 - 3.69 (m, 2H), 3.60 - 3.54 (m, 4H), 3.51 - 3.39 (m, 22H). ¹³C{¹H} NMR (126 MHz, CD₃CN) δ 166.66, 161.48, 151.49, 151.35, 139.96, 139.41, 138.02, 131.58, 129.14, 128.16, 120.18, 114.98, 71.25, 71.08, 71.04, 71.02, 70.99, 70.98, 70.96, 70.07, 69.50, 68.99, 64.47. HRMS (APCI/QTOF) *m*/*z*: [M - 3(NO₃)]³⁺ calcd. for Pd₂C₁₄₀H₁₈₄N₉O₄₃³⁺ most abundant 964.35412, found 964.35407.

Scheme S4. Synthesis of cage [Pd₂(L1)₄](NO₃)₄.

Figure S20. High-resolution ESI-MS spectrum of cage [Pd₂(L1)₄](NO₃)₄.

2.4 Synthesis and characterization of cage [Pd4(L1)8] (BF4)8

Cage $[Pd_4(L1)_8](BF_4)_8$ was synthesized by stirring a mixture of ligand L1 (25 µmol, 500 µL of a 50 mM stock solution of L1 in CD₃CN) and $[Pd(CH_3CN)_4](BF_4)_2$ (12.5 µmol, 250 µL of a 50 mM stock solution in CD₃CN) in CD₃CN (500 µL) at 80 °C for 2 h. Subsequently, the solvent was removed under reduced pressure and the residue was dissolved in D₂O (1250 µL) to give a 2.5 mM solution of $[Pd_2(L1)_8]$ (BF₄)₈. ¹H NMR (500 MHz, D₂O) δ 10.45 (s, 1H), 10.20 (s, 1H), 9.84 (dd, J = 10.2, 5.7 Hz, 3H), 9.69 (s, 1H), 9.49 (d, J = 24.2 Hz, 3H), 9.29 – 9.16 (m, 3H), 9.10 (d, J = 5.5 Hz, 1H), 8.70 (d, J = 5.5 Hz, 1H), 8.61 (d, J = 8.1 Hz, 1H), 8.53 (d, J = 8.3 Hz, 1H), 8.41 (dd, J = 21.6, 8.2 Hz, 3H), 7.87 (s, 1H), 7.86 – 7.79 (m, 2H), 7.78 – 7.70 (m, 3H), 7.66 (s, 1H), 7.62 – 7.56 (m, 1H), 7.42 (s, 1H), 7.40 (s, 1H), 7.33 (s, 2H), 7.28 (s, 1H), 6.94 (s, 1H), 6.89 (s, 1H), 6.49 (s, 1H), 6.12 – 5.98 (m, 5H), 5.93 – 5.78 (m, 4H), 5.72 – 5.57 (m, 4H), 4.40 (s, 2H), 4.24 (d, J = 7.7 Hz, 5H), 4.04 (s, 3H), 4.00 – 3.93 (m, 7H), 3.92 – 3.81 (m, 10H), 3.76 (t, J = 4.4 Hz, 3H), 3.73 – 3.32 (m, 127H), 3.02 (d, J = 31.5 Hz, 2H), 2.91 – 2.76 (m, 2H). HRMS (APCI/QTOF) m/z: [M - 3(NO₃)]³⁺ calcd. for Pd₄C₂₈₀H₃₆₈N₁₆O₈₀B₃F₁₂⁵⁺ most abundant 1184.62928, found 1184.62919.

Figure S26. ¹³C{¹H} NMR spectrum (151 MHz, D₂O) of cage $[Pd_4(L1)_8](BF_4)_8$. The poor quality of the spectrum is related to the low apparent symmetry of the cage and its limited solubility in D₂O.

 $\label{eq:Figure S27.} Figure \ S27. \ High-resolution \ ESI-MS \ spectrum \ of \ cage \ [Pd_4(L1)_8](BF_4)_8.$

Figure S28. DOSY NMR spectrum of cage [Pd4(L1)8](BF4)8.

2.5 Synthesis and characterization of cage [Pd₁₂(L2)₂₄](NO₃)₂₄

Cage $[Pd_{12}(L2)_{24}](NO_3)_{24}$ was synthesized by stirring a mixture of ligand L2 (25 µmol, 500 µL of a 50 mM stock solution of L2 in DMSO-d₆) and Pd(NO₃)₂ (12.5 µmol, 250 µL of a 50 mM stock solution in DMSO-d₆) in DMSO-d₆ (500 µL) at 80 °C for 6 h to give 1250 µL of a 0.83 mM solution of $[Pd_{12}(L2)_{24}](NO_3)_{24}$. The cage was characterized by NMR spectroscopy. Attempts to obtain a mass spectrum of the cage were not successful. Subsequently, the solution was diluted five times with D₂O and then lyophilized. The residue was dissolved in D₂O (1250 µL) to give 1250 µL of a 0.83 mM solution of $[Pd_{12}(L2)_{24}](NO_3)_{24}$. ¹H NMR (400 MHz, DMSO-d₆) δ 9.64 – 9.38 (m, 4H), 8.30 (d, *J* = 5.9 Hz, 4H), 8.02 (s, 1H), 7.55 (s, 2H), 6.20 (dd, *J* = 17.3, 1.6 Hz, 1H), 6.02 (dd, *J* = 17.3, 10.3 Hz, 1H), 5.76 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.22 (s, 2H), 4.18 – 3.98 (m, 2H), 3.75 (s, 2H), 3.69 – 3.31

(m, 18H).¹³C{¹H} NMR (151 MHz, DMSO) δ 171.51, 165.31, 159.96, 151.05, 149.16, 136.30, 131.48, 128.02, 124.39, 118.28, 115.38, 69.89, 69.76, 69.72, 69.69, 69.66, 69.63, 68.77, 68.11, 67.76, 63.31.

Figure S34. 1 H NMR spectrum (400 MHz, DMSO-d₆) of cage [Pd₁₂(L2)₂₄](NO₃)₂₄ and L2.

2.6 Synthesis and characterization of the hydrogels HG1-HG3

The cage-crosslinked hydrogels **HG1–HG3** were synthesized via photoinitiated radical copolymerization. Specifically, monomer DMA (19.83 mg, 200 µmol), initiator VA-86 (3.0 µmol, 1.5 mol%) and different amounts of cage $[Pd_2(L1)_4](NO_3)_4$ (1.25 mol%, 0.63 mol%, or 0.31 mol%,) were dissolved in D₂O (500 µL) in a 1.5 mL glass vial. The mixture was purged with N₂ for 30 min, then irradiated by a UV lamp for 1 h. After 12 h of incubating at RT, stable hydrogels were obtained. The hydrogels were characterized by ¹H NMR spectroscopy. The mechanical properties of the hydrogels were examined by rheometry. The swelling capability of the hydrogels was examined as described in section 1.2.

Scheme S7. Synthesis of the cage-crosslinked hydrogels HG1, HG2, and HG3.

Figure S36. Pictures of the cage-crosslinked hydrogels HG1, HG2, and HG3.

Figure S37. ¹H NMR spectrum (400 MHz, D₂O) of cage-crosslinked hydrogel HG1.

Figure S40. SEM images of HG1 (a), HG2 (b), and HG3 (c), scale bar 50 $\mu m.$

Figure S41. Amplitude sweeps in oscillatory rheology from 0.1% to 200% strain at frequency of 1 rad s⁻¹ for **HG1–HG3** at 25 °C. The gel **HG1** was re-measured after standing at RT for one week (**HG1_Re**).

Table S1. Synthesis and characterization of HG1, HG2, and HG3.

	Monomer	Cage-crosslinker	Storage moduli (G')	Swelling capacities
HG1	DMA (200 µmol)	$[Pd_2(\textbf{L1})_4](NO_3)_4(2.50\;\mu mol)$	742.8 Pa	42
HG2	DMA (200 µmol)	$[Pd_2({\bm L1})_4](NO_3)_4(1.25\;\mu mol)$	331.9 Pa	35
HG3	DMA (200 µmol)	$[Pd_2(L1)_4](NO_3)_4(0.63 \ \mu mol)$	129.7 Pa	31

2.7 Synthesis and characterization of hydrogels HG4 and HG5

For the synthesis of **HG4**, DMA (200 µmol) was used as monomer and cage $[Pd_4(L1)_8]$ (BF₄)₈ (1.25 µmol, 0.63 mol%) was used as crosslinker. For the synthesis of **HG5**, DMA (200 µmol) was used as monomer and cage $Pd_{12}(L2)_{24}](NO_3)_{24}$ (0.42 µmol, 0.21 mol%) was used as crosslinker. The polymerization was carried out as described for **HG1–HG3**. The hydrogels were characterized by ¹H NMR spectroscopy. The mechanical properties of the hydrogels were examined by rheometry. The swelling capability of the hydrogels was examined as described in section 1.2.

Scheme S8. Synthesis of the cage-crosslinked hydrogels HG4 and HG5.

Figure S42. Pictures of cage-crosslinked hydrogels HG4 and HG5.

Figure S44. ¹H NMR spectrum (400 MHz, D₂O) of cage-crosslinked hydrogel HG5.

Figure S45. SEM images of HG4 (a, c) and HG5 (b, d), scale bar 50 µm.

Figure S46. Amplitude sweeps in oscillatory rheology from 0.1% to 200% strain at frequency of 1 rad s⁻¹ for **HG4** and **HG5** at 25 °C.

	Monomer	Cage-crosslinker	Storage moduli (G')	Swelling capacities
HG4	DMA (200 µmol)	[Pd4(L1)8] (BF4)8 (1.25 µmol)	325.9 Pa	34
HG5	DMA (200 µmol)	$[Pd_{12}(\textbf{L2})_{24}](NO_3)_{24}(0.42 \ \mu mol)$	136.4 Pa	36

Table S2. Synthesis and characterization of HG4 and HG5.

2.8 Synthesis and characterization of the hydrogels HG6 and HG7

For the synthesis of **HG6** and **HG7**, cage $Pd_2(L1)_4](NO_3)_4$ (2.50 µmol, 1.25 mol%) was used as crosslinker, while HEAA (200 µmol) and NIPAm (200 µmol) were used as monomers, respectively. The polymerization was carried out as described for **HG1–HG3**. The hydrogels were characterized by ¹H NMR spectroscopy. The mechanical properties of the hydrogels were examined by rheometry. The swelling capability of the hydrogels was examined as described in section 1.2.

Scheme S9. Synthesis of the cage-crosslinked hydrogels HG6 and HG7.

Figure S48. ¹H NMR spectrum (400 MHz, D₂O) of cage-crosslinked hydrogel HG6.

δ (ppm)

Figure S49. ¹H NMR spectrum (400 MHz, D₂O) of cage-crosslinked hydrogel HG7.

Figure S50. SEM images of HG6 (a, c) and HG7 (b, d), scale bar 40 μ m.

Figure S51. Amplitude sweeps in oscillatory rheology from 0.1% to 200% strain at frequency of 1 rad s⁻¹ for **HG6** and **HG7** at 25 °C.

Figure S52. Frequency sweeps in oscillatory rheology from 1 to 100 rad s⁻¹ at 1.0 % strain amplitude for **HG7** at different temperatures.

	Monomer	Cage-crosslinker	Storage moduli (G')	Swelling capacities
HG6	HEAA (200 µmol)	$[Pd_2(L1)_4](NO_3)_4(2.50 \ \mu mol)$	1021.8 Pa	25
HG7	NIPAm (200 µmol)	$[Pd_2(L1)_4](NO_3)_4(2.50\;\mu mol)$	358.1 Pa	22

3 Chloride-triggered rearrangement of [Pd4(L1)8]⁸⁺ into [Pd2(L1)4Cl]³⁺

The chloride-triggered rearrangement of $[Pd_4(L1)_8](BF_4)_8$ was performed in an NMR tube and was tracked by ¹H NMR spectroscopy. Specifically, an NMR tube was filled with a solution of cage $[Pd_4(L1)_8](BF_4)_8$ in D₂O (500 μ L, 2.5 mM), then 25 μ L of a stock solution of NaCl (100 mM in D₂O, 2.0 eq.) was added and the mixture was equilibrated at RT for 30 min. ¹H NMR spectra were recorded before and after addition of NaCl.

Scheme S10. Chloride-induced rearrangement of [Pd4(L1)8]⁸⁺ into [Pd2(L1)4Cl]³⁺.

Figure S53. Aromatic region of the ¹H NMR spectrum (400 MHz, D₂O) of cage $[Pd_4(L1)_8](BF_4)_8$ before (top) and after addition of chloride (bottom).

4 Chloride-triggered topology changes of HG4

An aliquot (12.5 μ L) of a NaCl stock solution (100 mM in D₂O, 2.0 eq.) was added to an NMR tube containing half of the hydrogel **HG4** synthesized as described in Section 2.7 (theoretically a content of 0.625 μ mol of [Pd₄(L1)₈] (BF₄)₈). The mixture was incubated at room temperature for 2 d. Subsequently, a ¹H NMR spectrum of the hydrogel was recorded, and the mechanical properties of the hydrogel were examined by rheometry.

Scheme S11. Chloride-induced rearrangement of $[Pd_4(L1)_8]^{8+}$ into $[Pd_2(L1)_4Cl]^{3+}$ in HG4.

Figure S54. ¹H NMR spectrum (400 MHz, D₂O) of cage-crosslinked hydrogels **HG4** before (bottom) and after addition of chloride (top).

Figure S55. Aromatic region of the ¹H NMR spectrum (400 MHz, D₂O) of cage-crosslinked hydrogels **HG4** (middle), **HG4** after adding Cl^{-} (top), and cage [Pd₄(**L1**)₈](BF₄)₈ after adding Cl^{-} (bottom). The signal at ~ 11 ppm is indicative of the chloride-bound cage [Pd₂(**L1**)₄Cl]³⁺.

Figure S56. Amplitude sweeps in oscillatory rheology from 0.1% to 200% strain at frequency of 1 rad s⁻¹ for **HG4** after treatment with chloride at 25 °C.

Figure S57. Amplitude sweeps in oscillatory rheology from 0.1% to 200% strain at frequency of 1 rad s⁻¹ for **HG1** before and after incubation with NaCl (1 eq.) for 2 days at 25 °C.

5 Modeling detail

The starting geometry of $[Pd_4(L1^*)_8]^{8+}$ was constructed using software Avogadro 1.2.0,³ with L1* being the nonpegylated analogue of ligand L1. The cage was then optimized at the GFN2-xTB⁴ level using software xTB⁴ in implicit acetonitrile treated with the analytical linearized Poisson-Boltzmann solvent model (ALPB).⁵

Table S4. Coordinates of the xTB-optimized structure of $[Pd_4(L1^*)_8]^{8+}$.

244			
energy	: -385.836591022043	gnorm: 0.000198069062	xtb: 6.6.1 (8d0f1dd)
Pd	5.44928992918874	-3.91758957675503	20.54286474274040
Ν	7.06437217722883	-3.73427479119156	19.37857952840802
Ν	7.94692231368368	3.63965389760521	21.12125368370700
С	8.48957051564496	-2.25217944116620	18.15345537787119
С	8.09320273495480	2.60317845332153	20.29369282463562
C	9.84670662034506	3.71833003527273	19.12797957172804
C	8.82813116760566	0.16404707945312	18.69723750488991
Н	8.67010018369306	-0.05750694286336	19.74063602730463
С	9.37342796046793	1.73536196827801	16.96039877119301
č	7.64310671874557	-4.78687268114234	18.80279734036851
Č	8.68548483678100	-4.63617071719890	17.90103879832332
C	9 09040010996313	1 47448880021570	18 30190632773355
Č	8 71101946467786	4 72004986535032	20 97616586323489
C	9 68651087671932	4 78694314895412	19 99323870574316
C	8 83787490710742	-0 87450528945683	17 76876177433669
C	0.03707420710742	2 59/29/15093389	10 25/66381671038
C	0 110806/0501280	2.37427413073387	17 56853342805202
C	0 120/5038800011	0.50352656314056	16 /23830/07772878
C	9.12943938809911	0.70442481650120	16.02970622002110
C	9.39733402030344	2 50204170060620	10.03679033903119
U U	6 05225066807204	-2.30204170909020	19.07451501551297
н П	0.95225000897594	-1.08410192028552	19.50/55052400590
Pu	0.53055140004271	3.51110411937000	22.341000430/330/
IN N	4.29240041399783	-3.2/9/1314999038	19.05505277191291
N	5.1242/880362321	3.832/0/2//93226	21.15090095608/10
N	5.07570343444842	3.25964881797485	23.89422439743139
N	3.83859431273723	-3.9/94220/453895	21.73877795426278
C	3.55068955151835	1.77226161020821	24.98399245693231
C	3.95163155479186	-4.0858/511//3308	18.03263947278278
C	2.55003634729939	-2.3925160/959628	17.09095232981256
С	3.72371351976820	-2.99411687761878	22.63219521331645
Н	4.50870889230395	-2.23891761372292	22.62366141912215
С	1.71230256802463	-3.93223050235930	23.49456048829676
С	3.09582830699598	-0.58029962972662	24.29681435285547
Н	3.35579801990870	-0.31262281764114	23.28508875062021
С	2.25410878415609	-2.18238584803273	25.88167845555138
С	1.00393484614171	0.05344753925259	17.99253685223465
С	4.37640497713100	2.88719438150740	20.58806788367766
Н	4.54617369481541	1.87417597060719	20.93922698083926
С	3.79015043772236	-2.04861374954804	19.09568258459544
С	4.42503163693462	4.30943982943635	24.39220351064944
С	4.95654687207940	5.10849195883428	20.80175666229966
С	3.31790249385951	4.15459128816773	25.21266676752136
С	2.58244439078717	2.09570206886327	19.04648253700582
С	3.24369607754115	4.50424721473930	19.25126969567285
С	3.40740444243538	3.16714785877296	19.62472089648053
С	2.66574195290346	-1.87459162350569	24.58498365929152
С	2.92236210456572	-4.94333116962408	21.69390669589928
С	2.33848234791818	-0.19813511060444	18.30752167142821
С	1.83336619212255	-4.94140616738329	22.55392278088291
С	3.10852943891968	0.39989656931844	25.28605346514717
С	2.68567022261650	-2.92875207206573	23.55729299295497
С	2.87324279805483	2.87760563841743	25.50882316645889

С	2.90054043195032	-1.54765692018393	18.14814979217936
С	1.24218763137790	2.32623971676175	18.73567593392884
С	3.12125094285755	0.83137028346079	18.82401593750111
H	4 17345178051036	0.66574666009383	18,99155070161751
C	2 60283285410325	0.07378860070050	26 57680008600470
C	2.09203203410323	1.01170259106461	20.37089098000479
C	2.2/2322/9/36156	-1.211/9358126461	26.86/3/203/883/3
С	4.65994978318847	2.02256802324154	24.17782327271151
С	0.46610568092926	1.31038494763575	18.20637981955304
С	4.02276226515551	5.48146003724109	19.84880575285109
С	3.08325409472909	-3.67005933761552	17.03477920450368
й	9.54906050886675	2 74509728915510	16 623/080781300/
11	9.54767240477500	5.54(01724766600	10.02547877815004
н	8.54757542477529	5.54691/34/66600	21.00055240275180
Н	9.12090471794370	-1.37853936848013	15.69368216129414
Н	9.61632054365228	0.91662413082187	15.00332415005963
Н	4.38053505466632	-5.08369518741977	18.02478215163678
Н	1.93601964872595	-3.18345533755181	26.12602923948914
н	0 37603191196893	-0 73301631355479	17 60333657055746
u u	1 78710623332705	5 20058/32856065	24 12054068285106
11	4.70719023332703	2 28001067056650	24.12934008283100
н	0.79408938762099	3.28991907030039	18.92299429143150
Н	2.71429756717542	0.81858957209401	27.35704929596589
Н	1.95231763263350	-1.45645286742108	27.86827599408855
Н	-0.56888163380628	1.49827526248143	17.96443452132596
н	2.82486762876824	-4.33603644230474	16.22717680009286
н	1 87912896091477	-2 05118388267717	16 31823004451709
11	1.07712070071477	1 44644267250050	10.05021120220725
п	4.08932313429080	-1.44044207239030	19.93031129329723
Н	5.58423247298171	5.8511/483224800	21.29062603200062
Н	2.52604235166249	4.77547103617523	18.49289621875768
Н	9.92110313316745	-3.22465685307050	16.86941038586420
Н	7.26618610555623	-5.76989001621612	19.06870804469558
Н	7.42222636664036	1.76236749816953	20.46276158372289
н	10 61030377736606	3 75300780768831	18 36686552688678
u u	5 25737601350584	1 21075870501155	23 76304660704856
п	1.0002(020740104	1.210/38/0301133	23.70394009704830
H	1.99826038748194	2.73994787811622	26.12506813825760
Н	0.86587998124500	-3.91608035013547	24.16334928227386
Н	3.05933370958677	-5.72918777380579	20.95828989856678
Н	1.09395953116256	-5.72333460629659	22.48832881923632
Н	2.80936629464441	5.02075833098078	25.60453185482076
н	10 30661228485406	5 66439284986873	19 90444701444096
U U	0 15050086276007	5 50168015726454	17 45718622780046
п	9.13039060270907	-5.50106915750454	17.43718022789940
н	5.90775971404954	0.51814945972427	19.57584701313651
Н	17.63925574275745	-5.36796394298702	27.66228320435668
Н	15.92507922844414	-3.67868253250582	28.30750781670153
Н	12.54957869307414	-0.83502199078410	29.32952735851863
Н	15.63434793834459	-2.43644947265333	33.12540453553671
н	14 70508331789025	-2 20889713677283	30 82327671453475
C	16 61076040655647	5 66140005014770	27 70705071768750
C	10.010/004003304/	-5.001499953914770	21.19195011108159
C .	15.058//505950994	-4.72071351019448	28.16233088276342
Н	10.72062924649877	0.59886663362319	30.21745046326880
С	11.65399031076803	-1.27259546403246	29.75955664989144
С	14.50036835013659	-3.08881564283221	31.42777024883043
С	15.01837375361031	-3.21611603476055	32.70686835873976
Ĉ	10 64029139239573	-0.47499800248353	30.26668308626068
C	16 22/13/23/25/5/3	6 07925111179790	27 61440701606002
U U	16.22422/098/404/	-0.97823111178789	27.01449701000902
H	16.95830345044193	-7.72368330500600	27.35111704170960
Pd	13.01738258503678	-3.77575842097331	29.04074797462599
Ν	14.38665118082488	-5.06097464797774	28.34901313276449
Ν	13.73252324854044	-4.03611031104024	30.89151223212684
Ν	11.56805579879792	-2.60237993466464	29.78021189942487
C	14 73102971606584	-4 35563706775371	33 44066112830000
č	0 5262/012202720	1 07502001727744	20 8/61622002/024
с П	7.33034013320730	-1.0/373701/3//00	30.04010330824024
н	15.1089/58680/501	-4.462601/9464505	54.445581420/516/
Н	8.73365667147488	-0.47118206919662	31.23779747182983
C	14 88280360886704	-7.33675649245530	27.79182043907959
C	14.00209309000794	1100010010101010000	
C	14.00276991030514	-6.32737251847644	28.17397472890251
С Н	14.00276991030514 15.71891734392754	-6.32737251847644 -9.01446511019745	28.17397472890251 25.86684088355230
С Н С	14.08289309880794 14.00276991030514 15.71891734392754 13.45708256744651	-6.32737251847644 -9.01446511019745 -5.13759050695683	28.17397472890251 25.86684088355230 31 58419885361101
C H C	14.00276991030514 15.71891734392754 13.45708256744651	-6.32737251847644 -9.01446511019745 -5.13759050695683 3 19335176707222	28.17397472890251 25.86684088355230 31.58419885361101 30.33770272860052

С	13.93324526552335	-5.35493925963421	32.87585173112312
С	9.46537942642453	-2.47215193556010	30.91578383052589
Н	12.94458724686100	-6.53776129943385	28.32644886555089
С	14.96803889707154	-9.45203614144741	26.50596957075223
C	14 41657630446348	-8 71341493164527	27 55330054777811
ч	15 53010605832130	-6 76530012508057	34 551/8707315374
11	12.22012022022120	5 99275907026159	21.07001112001701
н	12.84908691772720	-5.883/589/920158	31.07991112091701
H	10.51338858196350	-4.281/58/5333482	30.33802834843213
Н	8.25551637567274	-1.62338935781651	33.14696061876310
С	13.61090742634219	-6.59882839652526	33.58991183312163
С	14.55224871846181	-7.20271822525703	34.42259460907191
С	8.36519493771222	-3.14530620096890	31.62572933052122
C	7 85334055784796	-2 55577991750595	32,78295435266604
Č	14 54154863377557	-10 74508600201432	26 26253974953698
U U	14.07270260540456	11 20040412000780	25.45056117005227
п	14.97370300349430	-11.30949413099789	25.45050117005557
C	13.42380016732805	-9.2913/1819/82/9	28.3433/109605186
Н	13.03016541424380	-8./533/5435/4632	29.19131326933889
С	12.36760545122995	-7.20289341394380	33.42074722887963
С	7.85762296624849	-4.37343018253336	31.20545382561103
С	14.24801408038119	-8.38633135815737	35.07166779634906
Н	11.60729540039173	-6.70711494666961	32.83870787879866
Н	8.20670731121685	-4.81282647948520	30.28438463630507
C	6 85053817353165	-3 18083497227302	33 50080971456420
с u	14 08128005308602	8 84805784686613	35.71537630722700
II C	14.90120003390002	11 221 22200645495	27.05022006222056
C	13.30897708913018	-11.52182889043483	27.03922892052830
C	13.00000391265770	-10.59694023082927	28.10603225013341
Н	6.46383613281878	-2.72128369072295	34.39756492173174
С	12.06245466844968	-8.39877255693696	34.06377795611363
С	13.01387489467052	-8.98701565172827	34.89617571836929
С	6.85457404285125	-5.01003963976827	31.93310156956757
Н	13.23976099650830	-12.32878767716089	26.85437611328520
С	6.35165866475649	-4.40124420822808	33.08370600872733
Ĥ	10 64077959971200	-9 50540808374811	29 00519405365561
н	10.66161100152752	-8 5713/705370020	31 73300134473877
C II	11.05750710464002	11 22907969540670	29 02440210206797
U U	9.07054726952974	-11.22807808340070	20.93440310300787
П	8.2/054/508528/4	-7.12/91500500/49	30.92967754241175
C	10.80591490021501	-10.54055433391/14	29.30774784053092
Н	12.8042316/5/5//1	-9.92309485583424	35.39040077237166
С	10.76426862796824	-9.05288854503292	33.84167707226606
С	10.17933076231480	-9.05760080768141	32.57615714658977
С	6.35235456452651	-6.34512082007369	31.56690735470590
С	7.21689112671953	-7.33707770186564	31.10897542079298
Н	5.59399251027766	-4.89221041683776	33.67435497409021
С	12.07205833411596	-12.55964063082912	29.34922539619657
й	12 95329313868528	-13 13211683460341	29 10419443907213
N	0.82865517613146	11 10850087238802	30 020/202/705133
D4	9.02003317013140	0.02601959009490	20 49420209540065
ru N	0.20030407909299	-9.93001838908489	20.21824142044017
N	9.02801043843392	-9.0/43/9041/8180	32.31834142944017
C	10.08510518867966	-9./16/8855611116	34.86663636168785
Ν	6.82182262235438	-8.59663906355762	30.89885255013893
С	5.00994392003836	-6.69664319187313	31.74788599747938
Н	10.48419592913392	-9.72607870106916	35.86890928839696
Н	4.29083357985871	-5.95918531041803	32.06860579663243
С	11.05518267936437	-13.13458258562355	30.09163649180419
Ĉ	9 93759046073078	-12 37566926871537	30 40747664746003
C	5 5/10/0888176186	-8 93/062/3989910	31 10206005108380
C	9 2976 400 21967 47	10 21701 422080677	22 20612608046760
C	0.30/04992100/4/	-10.31/014239890//	55.29015098940700
C	4.00/91938549039	-1.998/333/636891	31.50/0//09518044
C	8.88523805624969	-10.35145637802685	34.58884918392040
Н	11.12511433621794	-14.15849266723584	30.42179340224845
TT	9.12019900207780	-12.79675474753259	30.98355761095492
н	,		
н Н	3.58005932640172	-8.29330205410340	31.64527258871128
H H H	3.58005932640172 5.26942755365172	-8.29330205410340 -9.96913900297256	31.64527258871128 30.93685156252052
H H H H	3.58005932640172 5.26942755365172 7.45137790163387	-8.29330205410340 -9.96913900297256 -10.81159160164480	31.64527258871128 30.93685156252052 33.04371759215411
H H H H	3.58005932640172 5.26942755365172 7.45137790163387 8.34566834679101	-8.29330205410340 -9.96913900297256 -10.81159160164480 -10.86931545015331	31.64527258871128 30.93685156252052 33.04371759215411 35.36548308008766
H H H H H	3.58005932640172 5.26942755365172 7.45137790163387 8.34566834679101 11 28117801901594	-8.29330205410340 -9.96913900297256 -10.81159160164480 -10.86931545015331 -5.20080165561427	31.64527258871128 30.93685156252052 33.04371759215411 35.36548308008766 27.08137159696895
H H H H H H	3.58005932640172 5.26942755365172 7.45137790163387 8.34566834679101 11.28117801901594 10.18092172402275	-8.29330205410340 -9.96913900297256 -10.81159160164480 -10.86931545015331 -5.20080165561427 4.57832112042021	31.64527258871128 30.93685156252052 33.04371759215411 35.36548308008766 27.08137159696895 24.92513304600218

C	11.46017063809498	-4.24077584604717	26.60531270888234
С	10.83233582570420	-3.88043938389128	25.42472926072504
Ν	12.31941058844026	-3.42106076731172	27.21496569901004
С	11.04603960148697	-2.61419878283644	24.90304885789395
Н	10.55036060546947	-2.29014701377536	24.00171778907078
С	12.58800152661854	-2.22765734148379	26.68576002969989
Ĉ	11,93995597231110	-1.75799563191534	25.54592832213444
Ĥ	14 30389583259526	-0 57853389365872	24 94426250649826
н	13 32886134397270	-1 60974475327059	27 19091779544989
C	12 16929856241292	-0 37438377743694	25.09321564777633
c	13 46050716614407	0.08023320465925	23.07321304777033
c	11 08540730724140	0.08725320405725	24.05045040142757
п	10.08040750724149	0.46910367233607	24.90133366701343
С	12 66225484287012	1 40676448040828	23.17709110079337
п	13.00323464287913	1.400/0446049636	24.40020273097920
п	14.00132420021039	1.70301937120180	24.26394370770000
C	11.29499469079116	1.82683225098022	24.64394665893924
C	12.59205410661693	2.27780174624551	24.39/89610943146
C	8.98140690875092	2.543009/2399986	23.95915941337571
H	12.76453039960554	3.30/5290601/64/	24.12444104474235
C	10.18339102555327	2.79362332815147	24.61931640684216
N	7.99989354668679	3.4448260/135295	23.90297095123406
С	10.32981066545125	4.02634888504959	25.26149/31/68131
Н	11.24022020345962	4.25853420164498	25.79208269039568
С	8.14378871022512	4.62218411329221	24.51969929172642
С	9.29312460022029	4.94297309839096	25.22287177533083
Н	7.31817184903698	5.33110327113996	24.45605589472439
Н	9.37975118844298	5.89704752998983	25.71760296432034
Н	8.17848851270488	-8.98630708412485	27.52868347274730
Н	8.01321562642646	-5.86628290387504	25.35843051647992
Ν	7.40544068933515	-10.44719483355845	28.75326119322299
С	7.56819530209910	-9.88334417851256	27.55883863652152
Н	8.00103885193055	-10.67561191979347	21.90706064730990
Н	7.84808686353094	-3.42175686360378	24.91906129982461
С	7.74371717178258	-10.04520210016720	22.74426110087757
Н	7.64648713047146	-11.67798233958745	24.11660238390008
С	7.53890362579567	-10.61178346021851	23.98959893296719
С	7.59965254736181	-5.49977889282573	24.43244519843723
С	7.61573387292074	-8.67933644906356	22.56969351851874
Н	7.79984280673092	-8.25572592715532	21.59534453120196
С	7.51481154236448	-4.13847287266912	24.18545943234218
С	7.22332156443131	-9.80394819740150	25.08155142140404
С	6.67537130258420	-11.56047991683993	28.87076085590720
С	7.00719861898654	-10.42048320064605	26.40051289644297
Н	6.57000661143046	-11.99345954873722	29.86747095118327
С	7.28966348305097	-7.85921954215256	23.65032497741987
Č	7.10678525363563	-8.42890430630259	24.90840541603834
Ĉ	7.16338552069802	-6.40674645299516	23,46338994941031
Ĥ	6.80960774581928	-7.81515939439773	25,74445313545887
C	6.07338027336947	-12.15566653684998	27.77503125607956
Ĉ	6 98790565844280	-3 70594073472772	22.98139526556644
č	6.24434640529919	-11.58361269107093	26.52511932034087
н	6 93289109846337	-2 65177252187253	22 71753774371191
C	6 60266146230633	-5 88204130147967	22.71733774371171
й	5 48481197701264	-13 05081307840400	22.27732727333438
N	6 523404/5811855	-4 5720680/070006	27.0755400/120604
н	5 77938678757730	-12 02608604387408	22.07.554774120004
н	6 188003/7058/10	-6 53874840737611	21 53341574472105
н	8.80796343095279	1.60584821882974	23.43972122471354
	0.00,,,00,00,00,00,00,00		

6 References

- 1. R.-J. Li, C. Pezzato, C. Berton and K. Severin, *Chem. Sci.*, 2021, **12**, 4981–4984.
- S. Ursuegui, J. P. Schneider, C. Imbs, F. Lauvoisard, M. Dudek, M. Mosser and A. Wagner, *Org. Biomol. Chem.*, 2018, 16, 8579–8584.
- 3. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *J. Cheminform*. 2012, **4**, 17.
- 4. C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput., 2019, 15, 1652–1671.
- 5. S. Ehlert, M. Stahn, S. Spicher and S. Grimme, J. Chem. Theory Comput., 2021, 17, 4250–4261.