Unraveling the Effect of Alkali Cation on Fe Single Atom Catalyst with High Coordination Number

Yecheng Li $\ensuremath{\S^a}$, Songjie Meng $\ensuremath{\S^b}$, Zihong Wangc, Hehe Zhangd, Xin Zhaoc, Qingshun

Nian^c, Digen Ruan^c, Lianfeng Zou^{*d}, Zhansheng Lu^{*b,e}, and Xiaodi Ren^{*a,c}

^a Y. Li, Prof. X. Ren

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Anhui 230026, China.

^b S. Meng, Prof. Z. Lu

School of Physics, Henan Normal University, Xinxiang 453007, China.

^c Z. Wang, X. Zhao, Q. Nian, D. Ruan, Prof. X. Ren

School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China.

^d H. Zhang, Prof. L. Zou

Clean Nano Energy Center, State Key Laboratory of Metastable Material Science and Technology, Yanshan University, Qinhuangdao, 066004 China.

^e Prof. Z. Lu

College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China. *Corresponding author

E-mail address: zoulf@ysu.edu.cn, zslu@buct.eud.cn, xdren@ustc.edu.cn

Figures and Tables

Figure S1. (a) The TEM image of FeN_6 . (b) – (c) HADDF-STEM image of FeN_6 . (d) EDS mapping image of FeN_6 , corresponding to C, Fe, N, and O element.

Figure S2. (a) The XRD image of FeN_6 . (b) The Raman image of FeN_6 . (c) The N_2 adsorption/desorption isotherms of FeN_6 . (d) The pore size distribution of FeN_6 .

Figure S3. The morphology of catalyst. (a) SEM image of FeN_5 . (b) TEM image of FeN_5 . (c) - (d) HADDF-STEM image of FeN_5 . (e₁) – (e₄) EDS mapping image of FeN_5 , corresponding to C, Fe, N, and O element. (f) AC-HADDF-STEM image of FeN_5 (red circles are the Fe single atom sites).

Figure S4. (a) The XRD image of FeN_5 . (b) The Raman image of FeN_5 . (c) The N_2 adsorption/desorption isotherms of FeN_5 . (d) The pore size distribution of FeN_5 .

Figure S5. FT-EXAFS fitting curves of Fe k-edge FeN_5 and FeN_6 , related to Figure 2. (a) - (b) FT-EXAFS fitting curves at R spaces. (c) - (d) FT-EXAFS fitting curves at k spaces.

Figure S6. The WT-EXAFS spectra of (a) FeN_6 , (b) FeN_5 and (c) Fe foil.

Figure S7. Fe K-edge XANES spectra and Fe valence state.

the valence state of Fe in FeN₅ and FeN₆ can be calculated to be 2.58 and 2.70 respectively. This result is consistent with our XPS analysis (Table S3), which shows that the valence state of Fe in FeN_x is between +2 and +3, and the valence state of Fe in FeN₅.

Figure S8. (a) The O spectrum of FeN_6 . (b) The O spectrum of FeN_5 .

Figure S9. (a) The Fe spectrum of FeN_6 . (d) The Fe spectrum of FeN_5 .

Figure S10. The H-type three-electrode system cell for electrochemical measurement.

Figure S11. The selectivity of FeN_6 . (a) The total FE in 0.1 M NaHCO₃. (b) The H NMR spectroscopy in 0.1 M NaHCO₃ (After all selectivity tests).

Figure S12. The GC of FeN₆ in CO₂ atmosphere (0.1 M RbHCO₃, -0.60 V vs. RHE). (a) The FID curve. (b) The TCD curve.

Figure S13. The GC of FeN₅ in CO₂ atmosphere (0.1 M RbHCO₃, -0.60 V vs. RHE). (a) The FID curve. (b) The TCD curve.

Figure S14. The I-t curves in 0.1 M RbHCO₃. (a) The FeN₆ SAC. (b) The FeN₅ SAC.

Figure S15. The FE_{CO} of FeN_6 in different electrolyte. (a) 0.1 M and (b) 0.3 M with different cation. (c) KHCO₃ and (d) RbHCO₃ with different concentration.

Figure S16. The LSV curves of FeN_6 in different electrolyte. (a) - (c) 0.1 M, 0.3M, and 0.5 M with different cation. (d) – (f) NaHCO₃, KHCO₃, and RbHCO₃ in different concentration respectively.

Figure S17. The J_{CO} of FeN₆ in different electrolyte. (a) - (c) 0.1 M, 0.3M, and 0.5 M with different cation. (d) – (f) NaHCO₃, KHCO₃, and RbHCO₃ in different concentration respectively.

Figure S18. The J_{H2} of FeN₆ in different electrolyte. (a) - (c) 0.1 M, 0.3M, and 0.5 M with different cation. (d) – (f) NaHCO₃, KHCO₃, and RbHCO₃ in different concentration respectively.

Figure S19. The performance of FeN_5 with different concentration. (a) The LSV curves of FeN_5 in RbHCO₃. (b) The FE_{CO} of FeN_5 in RbHCO₃. (c) The J_{CO} of FeN_5 in RbHCO₃. (d) The J_{H2} of FeN_5 in RbHCO₃.

Figure S20. The performance of FeN_5 with different cation. (a) The LSV curves of FeN_5 in 0.5 M. (b) The FE_{CO} of FeN_5 in 0.5 M. (c) The J_{CO} of FeN_5 in 0.5 M. (d) The J_{H2} of FeN_5 in 0.5 M.

Figure S21. Cyclic voltammetry curves for (a) FeN_6 and (b) FeN_5 with the scan rate from $20mV/s \sim 120mV/s$. (c) The C_{dl} for FeN_6 and FeN_5 .

Figure S22. The performance comparison between FeN_5 and FeN_6 in 0.3 M RbHCO₃ (the current density is normalized by ECSA, Figure S20). (a) The FE_{CO}. (b) The LSV curves. (c) The J_{CO}.

Figure S23. The LSV curves of FeN_5 and FeN_6 in Ar atmosphere with different electrolyte. (a) Different concentration. (b) Different cations.

Figure S24. The GC of FeN₆ in Ar atmosphere (0.1 M RbHCO₃, -0.60 V vs. RHE). (a) The FID curve. (b) The TCD curve.

Figure S25. The CO₂ electroreduction performance of FeN_6 in constant cation and anion concentration. (a₁) The LSV, (a₂) FE_{CO} , (a₃) J_{CO} and (a₄) J_{H2} in constant concentration of HCO_3^- . (b₁) The LSV, (b₂) FE_{CO} , (b₃) J_{CO} and (b₄) J_{H2} in constant concentration of Na⁺.

Figure S26. The CO₂ electroreduction performance of FeN_6 in constant cation and anion concentration. (a₁) J_{CO} and (a₂) J_{H2} in constant concentration of HCO₃⁻. (b₁) J_{CO} and (b₂) J_{H2} in constant concentration of Rb⁺.

Figure S27. The CO₂ electroreduction performance of FeN_6 in constant cation and anion concentration. (a₁) The LSV, (a₂) FE_{CO} , (a₃) J_{CO} and (a₄) J_{H2} in constant concentration of HCO_3^- . (b₁) The LSV, (b₂) FE_{CO} , (b₃) J_{CO} and (b₄) J_{H2} in constant concentration of K⁺.

Figure S28. The CO₂ electroreduction performance of FeN₅ in constant cation and anion concentration. (a₁) The LSV, (a₂) FE_{CO}, (a₃) J_{CO} and (a₄) J_{H2} in constant concentration of HCO_3^- . (b₁) The LSV, (b₂) FE_{CO}, (b₃) J_{CO} and (b₄) J_{H2} in constant concentration of Na⁺.

Figure S29. (a) The experimental setup for *in situ* SR-FTIR measurement. (b) The schematic of electrochemical cell for *in situ* SR-FTIR measurement.

Figure S30. The *in-situ* SR-FTIR spectrum of FeN₆. (a) The background spectrum. (b) The OCP spectrum. (c) The spectrum at different potential (0.5 M NaHCO₃). The peak around 1700 cm⁻¹, 2360 cm⁻¹ and 3150 cm⁻¹ belong to *COOH, CO₂ and H₂O respectively, * denotes the adsorption site.¹⁻²

Figure S31. The top and side view of (a_1) - (a_2) FeN₅ (FeN₄ + pyridinic N), (b_1) - (b_2) FeN₅ (FeN₄ + pyrrolic N), (c_1) - (c_2) FeN₆ (FeN₄ + double pyrrolic N), (d_1) - (d_2) FeN₆ (FeN₄ + double pyridinic N).

Figure S32. The top view of (a) pyrrolic N and (b) pyridinic N.

Figure S33. Optimized structures of FeN_5 and FeN_6 with adsorbed $(a_1, b_1) *CO_2$, $(a_2, b_2) *COOH$, $(a_3, b_3) *CO$.

Figure S34. Calculated Gibbs free energy diagrams for CO_2 electroreduction to CO over FeN₅ and FeN₆ (vacuum condition).

Figure S35. The top, side and charge density difference view of FeN_5 with adsorbed $*CO_2$ in different condition. (a) Na⁺ and (b) pure water.

Figure S36. The top, side and charge density difference view of FeN_6 with adsorbed *COOH in different condition. (a) Na⁺ and (b) pure water.

Figure S37. The top and side view of (a) FeN_5 with adsorbed $*\text{CO}_2$ in Rb^+ and (b) FeN_6 with adsorbed *COOH in Rb^+ .

Figure S38. The LSV curve of FeN₅ under flow cell condition, 1 M KOH.

Figure S39. The GC of FeN₅ in CO₂ atmosphere (1 M NaOH, 100 mA cm⁻²). (a) The FID curve. (b) The TCD curve.

Sample	FeN ₆	FeN ₅
$S_{BET} / m^2/g$	766.5351	922.5563
Pore Volume / cm ³ /g	1.837236	1.910247
Pore Size / nm	9.5872	8.2824

 Table S1. The BET results of different Fe SAC.

Sample	FeN ₆	FeN ₅
C (at%)	82.32%	88.57%
O (at%)	10.07%	4.72%
N (at%)	7.26%	6.22%
Fe (at%)	0.35%	0.49%
Fe (wt%)	1.90%	2.18%

Table S2. The elements' content of different Fe SAC. The atom ratio and weight ratiowere measured by XPS and ICP-AES respectively.

Sample	Path	C.N.	R (Å)	σ ² ×10 ⁻³ (Å ²)	ΔE (eV)	R factor
Fe foil	Fe-Fe	8*	2.47±0.01	4.9±1.6	-2.9±2.4	0.008
	Fe-Fe	6*	2.85±0.01	5.6±2.7	-3.3±3.8	
FeN ₆	Fe-N/O	6.0±0.7	2.01±0.01	7.1±2.0	-0.6±1.1	0.018
FeN ₅	Fe-N/O	5.5±0.5	2.01±0.01	7.3±1.6	-0.4±0.9	0.012

Table S3. EXAFS fitting parameters at the Fe K-edge. ($S_0^2=0.73$)

C.N.: coordination numbers; R: bond distance; σ^2 : Debye-Waller factors; ΔE : the inner potential correction. R factor: goodness of fit. * Fitting with fixed parameter.

The obtained XAFS data was processed in Athena (version 0.9.26) for background, pre-edge line and post-edge line calibrations. Then Fourier transformed fitting was carried out in Artemis (version 0.9.26). The k² weighting, k-range of 3 – ~12 Å⁻¹ and R range of 1 - ~3 Å were used for the fitting of standards; k-range of 2 – ~10 Å⁻¹ and R range of 1 - ~3 Å were used for Fe samples. The four parameters, coordination number, bond length, Debye-Waller factor and E₀ shift (CN, R, σ^2 , ΔE_0) were fitted without anyone was fixed, constrained, or correlated. For Wavelet Transform analysis, the $\chi(k)$ exported from Athena was imported into the Hama Fortran code. The parameters were listed as follow: R range, 1 - 4 Å, k range, 0 - 13 Å⁻¹ for standards and 0 - 11 Å⁻¹ for Fe samples; k weight, 2; and Morlet function with κ =10, σ =1 was used as the mother wavelet to provide the overall distribution.

Sample	FeN ₆	FeN ₅
Pyridinic N	33.82%	31.04%
Fe-N	6.61%	15.23%
Pyrrolic N	23.03%	4.49%
Graphitic N	28.56%	42.46%
Oxidized N	7.98%	7.09%

 Table S4. Different kinds of N content based on high-resolution N element XPS

 result.

Sample	FeN ₆	FeN ₅
Fe ²⁺	57.87%	63.35%
Fe ³⁺	42.13%	36.65%

 Table S5. Different valence of Fe content of Fe SAC (calculated from XPS).

Electrolyte	Before saturate CO ₂	After saturate CO ₂	After saturate Ar
0.1 M NaHCO ₃	8.28	6.62	None
0.1 M KHCO ₃	8.77	6.65	None
0.05 M Rb ₂ CO ₃	11.37	6.62	8.87
0.3 M NaHCO ₃	8.11	7.08	None
0.3 M KHCO ₃	8.46	7.15	None
0.15 M Rb ₂ CO ₃	11.45	7.09	8.82
0.5 M NaHCO ₃	8.00	7.26	None
0.5 M KHCO ₃	8.37	7.31	None
0.25 M Rb ₂ CO ₃	11.53	7.34	9.11

 Table S6. The pH of different electrolyte.

T=298K

NaHCO ₃	NaClO ₄	рН
0.1 M	0 M	6.62
0.1 M	0.2 M	6.62
0.1 M	0.4 M	6.62

Table S7. The pH of different electrolyte (constant HCO₃⁻ concentration, change Na⁺ concentration).

NaHCO ₃	NaClO ₄	рН
0.5 M	0 M	7.26
0.3 M	0.2 M	7.15
0.1 M	0.4 M	6.62

Table S8. The pH of different electrolyte (constant Na^+ concentration, change HCO_3^- concentration).

KHCO ₃	K ₂ SO ₄	рН
0.1 M	0 M	6.65
0.1 M	0.1 M	6.65
0.1 M	0.2 M	6.65

Table S9. The pH of different electrolyte (constant HCO_3^- concentration, change K^+ concentration).

KHCO ₃	K ₂ SO ₄	рН
0.5 M	0 M	7.31
0.3 M	0.1 M	7.15
0.1 M	0.2 M	6.65

Table S10. The pH of different electrolyte (constant K^+ concentration, change HCO_3^- concentration).

Rb ₂ CO ₃	Rb ₂ SO ₄	pH (after saturate CO ₂)
0.05 M	0 M	6.62
0.05 M	0.1 M	6.62
0.05 M	0.2 M	6.62

Table S11. The pH of different electrolyte (constant HCO₃⁻ concentration, change Rb⁺ concentration).

Rb ₂ CO ₃	Rb ₂ SO ₄	pH (after saturate CO ₂)
0.25 M	0 M	7.34
0.15 M	0.1 M	7.09
0.05 M	0.2 M	6.62

Table S12. The pH of different electrolyte (constant Rb^+ concentration, change HCO_3^- concentration).

FeN ₅ configuration	E _{for} (eV)
FeN ₄ + pyrrolic N	-2.10
FeN ₄ + pyridinic N	-0.97

Table S13. The formation energy of two different FeN₅ structure ($E_{for} = E_{total} - E_{sub} - E_{mol}$, the lower E_{for} represent the more stable structure).

Solution condition	FeN ₅ - *CO ₂	FeN ₆ - *COOH
Pure water	-16.72 eV	-19.73 eV
Na ⁺	-18.06 eV	-21.30 eV
Rb^+	-19.11 eV	-23.62 eV

Table S14. The adsorption energy of $*CO_2$ adsorbed on FeN₅ and *COOH adsorbed on FeN₆ under different cation condition.

Intermediate	Na^+	Rb ⁺
FeN ₅ - *CO ₂	1.69 Å	1.82 Å
FeN ₆ - *COOH	1.74 Å	1.90 Å

Table S15. The bond length between H atom in H_2O and O atom in intermediates.

Reference

(1)Liu, X.-C.; Wei, C.; Wu, Y.; Fang, Y.; Li, W.-Q.; Ding, R.-R.; Wang, G.; Mu, Y. ACS Catal. 2021, 11, 14986-14994.

(2)Pei, J.; Wang, T.; Sui, R.; Zhang, X.; Zhou, D.; Qin, F.; Zhao, X.; Liu, Q.; Yan, W.; Dong, J.; Zheng,

L.; Li, A.; Mao, J.; Zhu, W.; Chen, W.; Zhuang, Z. Energy Environ. Sci. 2021, 14, 3019-3028.