Synthesis of α-Substituted Cyclic Boronates via Titanium-

Catalyzed Cyclization of Vinyl Boronates with Dichloroalkanes

Ximei Tian,^{*a,b*} and Lipeng Wu^{**a,c*}

^aState Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (P. R. China)

E-mail: lipengwu@licp.cas.cn

^bUniversity of Chinese Academy of Sciences, Beijing, 100049 (P. R. China)

^cCollege of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 (P. R. China)

Table of Contents

General Information	S2
Synthetic Procedures	S2
Synthetic Derivatization	S5
Condition Optimization Tables	S9
Supplementary Figures and Schemes	S15
Substrates and Products Characterization	S19
NMR Spectra	S54
References	S185

General Information

Manipulations were carried out under an atmosphere of dry and deoxygenated argon using Schlenk line or in a glovebox (H₂O and O₂ < 0.01 ppm). Glassware was pre-dried in an oven at 130 °C for several hours and cooled prior to use. Solvents were purchased as super dry solvent or purified via standard purification operations. Titanium complexes (such as Cp₂TiCl₂, Cp*TiCl₃ and InTiCl₃) and manganese, lithium chloride, aluminum chloride were purchased from Sigma-Aldrich, Energy, Adamas, Macklin and AllyChem company. Dihaloalkanes were purchased from Sigma-Aldrich, Energy, Adamas, Bidepharm, Macklin company or synthesized via known procedures. Vinyl boronates were synthesized according to literature. ¹H NMR, ¹³C NMR, ¹¹B NMR, ¹⁹F spectra were recorded on Bruker Advance Neo 400 MHz NMR at room temperature using CDCl₃ as a solvent. Chemical shifts (δ) are given in parts per million (ppm). Coupling constants (*J*) are given in Hertz (Hz). Thin-layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 °C). High-resolution MS analyses were performed on Waters Micromass Q-TOF Premier mass spectrometer. Electron impact (EI) mass spectra were recorded on Shimadzu GCMS-QP2010 SE mass spectrometer.

Synthetic Procedures

Synthesis of vinyl boronates-Procedure A

Following a reported procedure.^[1] To a solution of Ni(dppp)Cl₂ in THF was added 1M solution of DIBAL in heptane at 25 °C and the mixture was cooled to 0 °C. Alkyne was added dropwise, the reaction mixture was allowed to warm to 25 °C and stirred for 2 hours. Then, methoxyboronic acid pinacol ester (2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred at 80 °C for additional 15 hours. The reaction mixture was cooled to 0 °C, quenched with H₂O (50 mL) and stirred at 25 °C for additional 1 hour, then it was poured into a saturated solution of Rochelle salt (100 mL), and the mixture was extracted with Ethyl acetate (4 × 150 mL). The organic extracts were washed with brine (200 mL), dried over Na₂SO₄, filtered, and the solvent was evaporated. The residue was purified by column chromatography (PE and EA as eluent) to afford the desired product.

Synthesis of vinyl boronates-Procedure B

Following a reported procedure.^[2] An oven-dried 100 mL screw cap reaction tube with magnetic stir bar was charged with *NHC*-Cu, NaO'Bu and THF under Ar atmosphere. The mixture was sealed with cap and allowed to stir for 10 min. Bis(pinacolato)diboron (1.1 equiv) was added to the solution, causing it to turn dark brown immediately. The mixture was allowed to stir at rt for 30 min under an atmosphere of Ar. After this time, the mixture was allowed to cool to 0 °C (ice bath). A solution of alkynes and MeOH (1.1 eq) were added (syringe). The tube was placed in ice bath After 24 h, the reaction was quenched by H₂O, extracted with ethyl acetate (100 mL) and washed with water (3 times).The filtrate was concentrated in vacuo, the residue was purified by silica gel chromatography (PE and EA as eluent) to afford the desired product.

Synthesis of alkynes

Step 1: Sonogashira coupling

Following a reported procedure.^[2a] A magnetic stir-bar, Pd(PPh₃)₂Cl₂ (5 mol%), Cul (10 mol%) and aryl bromide were charged into an oven-dried screw cap reaction tube under an atmosphere of argon gas. Then dry THF followed by triethylamine was added. After stirring for 15 min, TMSA was added to the reaction mixture slowly. Gradually, the reaction turned dark. The reaction was stirred continuously for 24 h at 60 °C. After cooling to room temperature, the reaction mixture diluted with 25 mL EtOAc and filtered through the celite. The filtrate was evaporated under reduced pressure and the crude material was purified by column chromatography using petroleum ether/ethyl acetate as eluent to give pure silylated product.

Step 2: Desilylation

To an oven dried 100 mL round bottom flask, the crude silylated product was added using THF and then TBAF (2.0 eq) was added portion-wise into the flask under Ar atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 1 h. After completion (judged by GC-

MS), the reaction mixture was extracted with ethyl acetate (100 mL) and washed with water (100 mL). After drying over Na₂SO₄, the solvent was evaporated under reduced pressure and chromatographic separation with silica gel (PE and EA as eluent) to give pure alkyne product.

Synthesis of dihaloalkanes

$$\bigcup_{x}^{O} \qquad \qquad \underbrace{WCl_{6} (2 \text{ equiv})}_{DCM, -78 \text{ °C}, 2 \text{ h}} \qquad \bigcup_{x}^{CI}$$

Following a reported procedure.^[3] Cyclohexanone, CH₂Cl₂, and a magnetic stir bar were added to a round bottom flask. The solution was cooled to -78 °C, and stirring was commenced. WCl₆ (2.00 equiv) was added in portions. The reaction was allowed to warm to room temperature, and stirring was continued for an additional 2 h. After the 2 h, Et₂O (200 mL) was added, and the reaction was quenched with 1 M NaOH, added dropwise until bubbling ceased. The organic phase was separated, and the aqueous phase was extracted with Et₂O (100 mL). The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography.

Synthetic Derivatization

Procedure for the Synthesis of 13a from 3h

The literature procedure was followed with modification.^[4] An oven-dried 10 mL vial with magnetic stir bar was charged with **3h** (139 mg, 0.5 mmol) and anhydrous THF (5.0 mL) under argon. Vinyl magnesium bromide (1.0 M in THF, 2 mL,2 mmol) was added to this solution and stirred for 0.5 h. Then the reaction mixture was cool to –78 °C and a solution of iodine (0.52 g, 2 mmol) in MeOH (6 mL) was added. The mixture was stirred at –78 °C for 0.5 h, then a solution of NaOMe (216 mg, 4 mmol) in MeOH (5.0 mL) was added. The reaction mixture was allowed to warm to room temperature and stirred for 1 h. Upon completion, sat. Na₂S₂O₃ solution (4 mL) was added, and the crude mixture was diluted with pentane, washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. After evaporation under reduced pressure, the crude reaction mixture was purified by column chromatography on silica gel (PE) to afford a colorless oil (36.5 mg, 41% yield).

Procedure for the Synthesis of 13b from 3h

The literature procedure was followed with modification.^[4] An oven-dried 10 mL vial with magnetic stir bar was charged with furan (48.0 µL,0.66 mmol) and anhydrous THF (2.0 mL) under argon, then cooled to -78 °C. 1.6 M ^{*n*}BuLi (0.42 mL, 0.66 mmol) was added to this solution dropwise. The reaction mixture was warmed to room temperature and stirred for 1 h, then cooled to -78 °C. A solution of **3h** (139 mg, 0.5 mmol) in THF (1 mL) was added and stirred for 1 h, then a solution of NBS (106.8 mg, 0.6 mmol) in THF (2.0 mL) was added to the mixture and stirred for 2 h at -78 °C. The reaction was quenched with sat. Na₂S₂O₃ solution (2 mL) and the reaction mixture was allowed to warm to room temperature. Upon completion, the crude mixture was diluted with Et₂O, washed with brine, dried over Na₂SO₄, filtered, and concentrated

in vacuo. After evaporation under reduced pressure, the crude reaction mixture was purified by column chromatography on silica gel (PE:EA = 100:1) to afford a colorless oil (74.1 mg, 68% yield).

Procedure for the Synthesis of 13c from 3h

Following a reported procedure.^[5] A magnetic stir-bar, $Pd_2(dba)_3$ (4.6 mg, 1 mol%), XPhos (2.4 mg, 2 mol%), NaOAc (49.2 mg, 1.2 equiv), Bis(pinacolato)diboron (133.4mg, 1.02 equiv) and **3h** (139 mg, 0.5 mmol) were charged into an oven-dried screw cap reaction tube under an atmosphere of argon gas, heated to 110 °C for 11 h. Upon completion, the crude mixture was diluted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. After evaporation under reduced pressure, the crude reaction mixture was purified by column chromatography on silica gel (PE:EA = 20:1) to afford a white solid (115.3 mg, 62% yield).

Procedure for the Synthesis of 13d from 3a

The literature procedure was followed with modification.^[6] To a solution of **3a** (139 mg, 0.5 mmol) in THF (10 mL) was added with NaOH (2M aq., 1 mL). The mixture was then cooled to 0 °C and H₂O₂ (30% aq., 0.5 mL) was added dropwise with constant stirring in 5 minutes. The cooling bath was removed and the reaction mixture was allowed to warmed up to room temperature and further stirred for 30 minutes. Then the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give product **13d** as colourless oil (48.9 mg, 73% yield). **Procedure for the Synthesis of 13e from 3a**

The literature procedure was followed with modification.^[4] In glovebox, an oven-dried 10 mL vial with magnetic stir bar was charged with Pd(OAc)₂ (11.3 mg, 0.05 mmol), RuPhos (46.7 mg, 0.1 mmol) and anhydrous THF (4.0 mL). **3a** (139 mg, 0.5 mmol), 1-Bromo-4-(trans-4-propylcyclohexyl)benzene (281 mg, 1 mmol) and KOH (112 mg, 2 mmol) were added to the reaction mixture. The reaction vessel was moved out of the glovebox, 0.5 mL DI-water was added. Then the reaction was heat to 80 °C and stirred for 16 h. Upon completion, the crude mixture was diluted with Et₂O, washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. After evaporation under reduced pressure, the crude reaction mixture was purified by column chromatography on silica gel (PE) to afford a yellow solid (70.9 mg, 41% yield).

Procedure for the Synthesis of 13f from 3a

Following a reported procedure.^[7] In a 1 mL glass vial equipped with a magnetic stir bar $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %), 4-Bromobenzyl alcohol (1.0 equiv, 0.5 mmol), **3a** (2.0 equiv, 1.0 mmol) and morpholine (1.5 equiv) were dissolved in DMF (0.2 M). In a second 1 mL glass vial NiCl₂·glyme (5 mol %) and dtbbpy (5 mol %) were dissolved in DMF (0.2 M). The Ni-complex stock solution was sonicated for 5 min and then heated to 100 °C (heat gun) to ensure complete complexation. Afterwards both solutions were combined, and the reaction mixture was irradiated by blue LEDs (445 nm; 100 mW) for 2 h. Upon completion, the crude mixture was diluted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. After evaporation under reduced pressure, the crude reaction mixture was purified by column chromatography on silica gel (PE:EA = 10:1) to afford a yellow oil (76.2 mg, 68% yield). **Procedure for the Synthesis of 13g and 13h from 13f**

Following a reported procedure.^[8] To a stirred solution of carboxylic acid (0.5 mmol) and DMAP (0.05 mmol) in 2 mL anhydrous DCM, **13f** (0.75 mmol) was added. After 15 minutes of stirring, DCC (0.55 mmol) was added to the reaction mixture at 0°C, and then allowed to stir overnight

at room temperature. Upon completion of reaction, precipitated urea is then filtered off. Filtrate is evaporated and the residue was dissolved in DCM and washed with saturated NaHCO₃ solution, and then dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE and EA as eluent) to afford the desired ester.

Condition Optimization Tables

Bpin 1a	+ CI ~~ 2;	Bpir 3a		
	entries	catalysts	3a yield (%) ^b	
	1	Rosenthal	27	
	2	Cp_2TiCl_2	35	
	3	Cp*2TiCl2	8	
	4	InTiCl₃	14	
	5	CpTiCl₃	16	
	6	Cp*TiCl₃	17	
	7	TiO ₂	NR	
	8	TiH ₂	NR	

Table S1. Titanium-catalyzed cyclization of vinyl boronate 1a with DCM: effect of catalysts^a

^aReaction conditions: 0.2 mmol **1a**, 1 mmol **2a**, Mn (2 equiv), various titanium catalysis (10 mol%) and I mL THF in 15 mL pressure tube and heated at 80 °C for 20 h; ^{*b*}yields were determined by GC with dodecane as internal standard.

Bpin 1a	+ CI^^ 2a	Cl <u>Cp2</u> 7 Cl <u>M</u> So 8	T <mark>iCl₂ (10 mol%)</mark> In (2 equiv) Ivent (1 mL) 0 °C, 20 h	Bpin 3a
	entries	solvents	3a yield (%) ^b	
	1	THF	35	
	2	Toluene	NR	
	3	MTBE	NR	
	4	MeOH	NR	
	5	DMA	2	
	6	DMF	12	
	7	DME	trace	

Table S2. Titanium-catalyzed cyclization of vinyl boronate 1a with DCM: effect of solvents^a

^aReaction conditions: 0.2 mmol **1a**, 1 mmol **2a**, Cp₂TiCl₂ (10 mol%), and Mn (2 equiv), 1 mL different solvent in 15 mL pressure tube and heated at 80 °C for 20 h; ^byields were determined by GC with dodecane as internal standard.

Bpin 1a	+ CI ^^ 2a	CI <u>Addit</u> 80 °C	Bpin 3a	
	entries	additives	3a yield (%) ^b	
	1	-	35	
	2	ZnCl ₂	9	
	3	MgCl ₂	40	
	4	LiCl	48	
	5	TMS-CI	23	

Table S3. Titanium-catalyzed cyclization of vinyl boronate 1a with DCM: effect of additives^a

^aReaction conditions: 0.2 mmol **1a**, 1 mmol **2a**, Cp₂TiCl₂ (10 mol%), Mn (2 equiv), different additives and 1mL THF in 15 mL pressure tube heated at 80 °C for 20 h; ^{*b*}yields were determined by GC with dodecane as internal standard.

Table S4. Titanium-catalyzed cycliza	ation of vinyl boronate 1a with l	DCM: effect of manganes	se
amount ^a			
1	Cp ₂ TiCl ₂ (10 mol%) Mn (x equiv)		

Bpin +	CI CI 2a		Mn (x equiv) LiCl (1 equiv) 80 °C, THF, 20 h	Bpin 3a
	entries	х	3a yield (%) ^b	
	1	1	16	
	2	2	48	
	3	3	54	
	4	4	53	
	5	5	62	
	6	6	50	

^aReaction conditions: 0.2 mmol **1a**, 1 mmol **2a**, Cp₂TiCl₂ (10 mol%), Mn (x equiv), LiCl (1 equiv), and 1mL THF in 15 mL pressure tube heated at 80 °C for 20 h; ^byields were determined by GC with dodecane as internal standard.

Bpin 1a	+	CI CI 2a y equiv	Cp ₂ TiCl ₂ (10 mol%) Mn (5 equiv) LiCl (1 equiv) 80 °C, THF, 20 h		Bpin 3a
		entries	у	3a yield (%) ^b	
		1	2	40	
		2	4	67	
		3	5	62	
		4	6	63	
		5	8	72	
		6	10	80	
		7	12	68	

Table S5. Titanium-catalyzed cyclization of vinyl boronate **1a** with DCM: effect of dichloromethane amount^a

^aReaction conditions: 0.2 mmol **1a**, **2a** (y equiv), Cp₂TiCl₂ (10 mol%), Mn (5 equiv), LiCl (1 equiv) and 1mL THF in 15 mL pressure tube heated at 80 °C for 20 h; ^byields were determined by GC with dodecane as internal standard.

Bpin 4	- CI ~ (2a	Cp ₂ I CI <u> </u>	Bpin 3a	
	entries	T (°C)	3a yield (%) ^b	
	1	R.T.	0.5	
	2	40	35	
	3	60	68	
	4	80	78	
	5	100	69	
	6	120	87	

Table S6. Titanium-catalyzed cyclization of vinyl boronate 1a with DCM: effect of temperature^a

^aReaction conditions: 0.2 mmol **1a**, 2 mmol **2a**, Cp₂TiCl₂ (10 mol%), Mn (5 equiv), LiCl (1 equiv) and 1mL THF in 15 mL pressure tube heated at the temperature shown in the table for 20 h; ^byields were determined by GC with dodecane as internal standard.

Supplementary Figures and Schemes

¹H NMR of 14b (400 MHz, Chloroform-*d*) δ 7.21 (dd, *J* = 4.4, 2.2 Hz, 2H), 7.15 (dd, *J* = 4.0, 2.4 Hz, 2H), 5.96 (tt, *J* = 4.6, 1.2 Hz, 1H), 3.70 – 3.62 (m, 2H), 2.92 (ddd, *J* = 8.6, 7.1, 1.2 Hz, 2H), 2.78 – 2.72 (m, 2H), 2.31 – 2.24 (m, 2H). ¹³C NMR of 14b (101 MHz, CDCl₃) δ 136.76, 133.88, 132.90, 127.88, 127.72, 127.02, 126.52, 122.16, 43.30, 36.32, 28.18, 23.08.

Figure S1. ¹H and ¹³C NMR spectra and data of **14b**.

 $\label{eq:HRMS} \text{(ESI)} \text{ m/z: } [\text{M+H}]^{+} \text{ calcd for } C_{12}H_{14}\text{CI}^{+} \text{: } 193.0779 \text{; found: } 193.0783 \text{.}$

Figure S2. HRMS spectrum of 14b.

Figure S3. Tentatively proposed reaction pathway for the generation of **14b**. Cp₂TiHCl could (re)generate Cp₂Ti(III)X (X = H or Cl) via (0.5) H₂ release or with the help of Mn.

Scheme S1. reaction results with aliphatic alkenyl-B(pin).

Substrates and Products Characterization

4,4,5,5-tetramethyl-2-(1-(p-tolyl)vinyl)-1,3,2-dioxaborolane 1b

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 1.76 g, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.22 (m, 2H), 7.05 (d, *J* = 7.8 Hz, 2H), 6.01 – 5.89 (m, 2H), 2.25 (s, 3H), 1.24 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 138.58, 136.70, 130.04, 128.92, 127.09, 83.76, 24.82, 21.14. ¹¹B NMR (128 MHz, CDCl₃) δ 30.65. Spectroscopic data are in agreement with those previously reported.^[1a]

4,4,5,5-tetramethyl-2-(1-(*m*-tolyl)vinyl)-1,3,2-dioxaborolane 1c

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 1.29 g, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 7.7 Hz, 2H), 7.12 (td, *J* = 7.4, 1.0 Hz, 1H), 6.97 (d, *J* = 7.5 Hz, 1H), 6.03 – 5.90 (m, 2H), 2.26 (s, 3H), 1.23 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 141.46, 137.64, 130.70, 128.11, 127.85, 124.48, 83.80, 24.84, 21.59. ¹¹B NMR (128 MHz, CDCl₃) δ 30.63. Spectroscopic data are in agreement with those previously reported.^[1a]

2-(1-(4-ethylphenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1d

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 1.75 g, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.2 Hz, 2H), 7.10 – 7.00 (m, 2H), 5.98 – 5.90 (m, 2H), 2.53 (q, *J* = 7.6 Hz, 2H), 1.25 – 1.19 (m, 12H), 1.13 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.08, 138.85, 130.13, 127.78, 127.20,

83.77, 77.48, 77.16, 76.84, 28.63, 24.88, 15.65. ¹¹**B** NMR (128 MHz, CDCl₃) δ 30.42. Spectroscopic data are in agreement with those previously reported.^[1a]

2-(1-(4-(tert-butyl)phenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1e

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow solid, 2.31 g, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 2H), 7.36 – 7.31 (m, 2H), 6.07 (d, *J* = 3.1 Hz, 1H), 6.02 (d, *J* = 3.0 Hz, 1H), 1.32 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 149.88, 138.41, 130.19, 126.81, 125.17, 83.75, 34.47, 31.37, 24.83. ¹¹B NMR (128 MHz, CDCl₃) δ 30.40. Spectroscopic data are in agreement with those previously reported.^[1a]

2-(1-([1,1'-biphenyl]-4-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1f

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, white solid, 2.61 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 6H), 7.44 – 7.40 (m, 2H), 7.35 – 7.31 (m, 1H), 6.11 (dd, *J* = 19.5, 3.0 Hz, 2H), 1.34 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 141.11, 140.46, 139.89, 130.92, 128.76, 127.64, 127.14, 127.06, 127.02, 83.90, 24.87. ¹¹B NMR (128 MHz, CDCl₃) δ 30.39. Spectroscopic data are in agreement with those previously reported.^[1a]

2-(1-(4-methoxyphenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1g

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow solid, 2.37 g, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.36 (m, 2H), 6.93 – 6.80 (m, 2H), 5.99 (dd, *J* = 19.4, 3.0 Hz, 2H), 3.80 (s, 3H), 1.32 (s, 12H). ¹³C NMR

(101 MHz, CDCl₃) δ 158.90, 133.95, 129.02, 128.29, 113.64, 83.75, 55.26, 24.82. ¹¹**B NMR** (128 MHz, CDCl₃) δ 30.38. Spectroscopic data are in agreement with those previously reported.^[1a]

2-(1-(4-chlorophenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1h

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow solid, 1.87 g, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 2H), 7.22 – 7.17 (m, 2H), 5.99 (q, *J* = 2.8 Hz, 2H), 1.24 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 139.85, 132.89, 131.37, 128.54, 128.30, 83.94, 24.81. ¹¹B NMR (128 MHz, CDCl₃) δ 30.54. Spectroscopic data are in agreement with those previously reported.^[1a]

2-(1-(4-bromophenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1i

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow solid, 1.61 g, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.21 – 7.14 (m, 2H), 6.02 – 5.92 (m, 2H), 1.22 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 139.88, 132.92, 131.40, 128.57, 128.33, 83.95, 24.84. ¹¹B NMR (128 MHz, CDCl₃) δ 30.20. Spectroscopic data are in agreement with those previously reported.^[1a]

4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)vinyl)-1,3,2-dioxaborolane 1j

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow solid, 1.28 g, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 4H), 6.15 (dd, *J* = 20.3, 2.8 Hz, 2H), 1.32 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 145.10, 132.99, 129.11, 128.79, 127.50, 125.78, 125.17, 125.13, 125.09, 125.06, 84.07, 24.78. ¹¹B NMR (128 MHz,

CDCl₃) δ 30.28. ¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -62.41. Spectroscopic data are in agreement with those previously reported.^[1a]

trimethyl(4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)silane 1k

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, white solid, 1.78 g, 59% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 4H), 6.06 – 5.94 (m, 2H), 1.25 (s, 12H), 0.18 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.96, 139.90, 134.38, 132.17, 127.58, 84.88, 25.90, 0.00. ¹¹B NMR (128 MHz, CDCl₃) δ 30.32. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₂₇BNaO₂Si⁺: 325.1766; found: 325.1756.

N,*N*-dimethyl-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)aniline 11

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, white solid, 1.15 g, 42% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 6.74 – 6.70 (m, 2H), 6.00 (d, *J* = 3.0 Hz, 1H), 5.89 (d, *J* = 3.0 Hz, 1H), 2.95 (s, 6H), 1.33 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 149.93, 129.73, 127.92, 127.03, 112.48, 83.61, 40.70, 24.85. ¹¹B NMR (128 MHz, CDCl₃) δ 30.80. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₂₇BNaO₂Si⁺: 325.1766; found: 325.1756. Spectroscopic data are in agreement with those previously reported.^[1a]

4-(4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)morpholine 1m

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (5:1), Rf = 0.5, yellow solid, 1.54 g, 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 6.89 – 6.85 (m, 2H), 6.01 (d, *J* = 3.0 Hz, 1H), 5.94 (d, *J* = 3.0 Hz, 1H), 3.87 – 3.84 (m, 4H),

3.16 – 3.14 (m, 4H), 1.32 (s, 12H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.39, 133.09, 128.51, 127.97, 115.41, 83.71, 66.94, 49.34, 24.82. ¹¹**B NMR** (128 MHz, CDCl₃) δ 31.09. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₇BNO₃⁺: 316.2079; found: 316.2087.

methyl 4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate 1n

The compound was prepared according to procedure B. Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, white solid, 1.32 g, 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.97 (m, 2H), 7.55 – 7.52 (m, 2H), 6.16 (t, *J* = 2.2 Hz, 2H), 3.90 (s, 3H), 1.33 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 167.16, 146.14, 132.79, 129.55, 128.55, 127.19, 84.01, 52.00, 24.80. ¹¹B NMR (128 MHz, CDCl₃) δ 30.59. Spectroscopic data are in agreement with those previously reported.^[2a]

4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzonitrile 1o

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, yellow solid, 1.63 g, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 4H), 6.21 (d, *J* = 2.7 Hz, 1H), 6.15 (d, *J* = 2.7 Hz, 1H), 1.33 (d, *J* = 3.7 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 146.12, 133.84, 132.03, 129.78, 127.90, 119.22, 110.46, 84.19, 24.80. ¹¹B NMR (128 MHz, CDCl₃) δ 30.25. Spectroscopic data are in agreement with those previously reported.^[1a]

2-(1-(4-methoxy-3,5-dimethylphenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1p

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, yellow solid, 1.76 g, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (s, 2H), 5.99 (d, *J* = 3.1 Hz, 1H), 5.96 (d, *J* = 3.0 Hz, 1H), 3.71 (s, 3H), 2.28 (d, *J* = 0.6 Hz, 6H), 1.32 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 156.32, 136.94, 130.34, 129.79, 127.67, 83.76, 59.64, 24.79, 16.23. ¹¹B NMR (128 MHz, CDCl₃) δ 30.33. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₆BO₃⁺: 289.1970; found: 289.1971.

4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)vinyl)-1,3,2-dioxaborolane 1q

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, white solid, 2.18 g, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 1.8 Hz, 1H), 7.86 – 7.71 (m, 3H), 7.62 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.47 – 7.31 (m, 2H), 6.18 (dd, *J* = 18.5, 3.0 Hz, 2H), 1.32 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 138.95, 133.64, 132.78, 131.32, 128.35, 127.72, 127.60, 126.26, 125.92, 125.65, 83.95, 77.49, 77.17, 76.85, 24.92. ¹¹B NMR (128 MHz, CDCl₃) δ 30.40. Spectroscopic data are in agreement with those previously reported.^[1a]

2-(1-(benzo[d][1,3]dioxol-5-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1r

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, white solid, 1.18 g, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.94 – 6.91 (m, 2H), 6.69 (d, *J* = 8.0 Hz, 1H), 5.91 (d, *J* = 2.9 Hz, 1H), 5.89 (d, *J* = 2.8 Hz, 1H), 5.85 (s, 2H), 1.24 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 147.51, 146.77, 135.64, 129.56, 120.84, 108.08, 107.64, 100.85, 83.83, 24.80. ¹¹B NMR (128 MHz, CDCl₃) δ 30.41. Spectroscopic data are in agreement with those previously reported.^[9]

2-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1s

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, white solid, 1.18 g, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, *J* = 2.1 Hz, 1H), 7.00 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.00 (d, *J* = 3.0 Hz, 1H), 5.96 (d, *J* = 2.9 Hz, 1H), 4.24 (s, 4H), 1.31 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 143.08, 142.93, 134.95, 129.50, 120.42, 116.95, 116.07, 83.78, 64.45, 64.39, 24.81. ¹¹B NMR (128 MHz, CDCl₃) δ 29.76. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₂BO₄⁺: 289.1606; found: 289.1606.

2-(1-(dibenzo[b,d]thiophen-4-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1t

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow solid, 2.10 g, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.13 (m, 1H), 8.07 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.88 – 7.83 (m, 1H), 7.49 – 7.43 (m, 3H), 7.40 (dd, *J* = 7.4, 1.2 Hz, 1H), 6.40 (dd, *J* = 22.8, 2.9 Hz, 2H), 1.35 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 139.60, 138.06, 137.33, 135.94, 135.88, 134.03, 126.59, 126.55, 124.72, 124.21, 122.61, 121.65, 120.09, 84.12, 24.85. ¹¹B NMR (128 MHz, CDCl₃) δ 30.04. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₂₁BNaO₂S⁺: 359.1248; found: 359.1254.

2-(1-(benzofuran-5-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1u

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, white solid, 1.38 g, 51% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (t, *J* = 1.3 Hz, 1H), 7.49 (t, *J* = 2.2 Hz, 1H), 7.35 (s, 2H), 6.68 – 6.65 (m, 1H), 5.99 (q, *J* = 3.0 Hz, 2H), 1.25 (s, 2H), 6.68 – 6.65 (m, 2H), 5.99 (q, *J* = 3.0 Hz, 2H), 1.25 (s, 2H), 6.68 – 6.65 (m, 2H), 5.99 (q, *J* = 3.0 Hz, 2H), 1.25 (s, 2H), 6.68 – 6.65 (m, 2H), 5.99 (q, *J* = 3.0 Hz, 2H), 1.25 (s, 2H), 5.99 (q, *J* = 3.0 Hz, 2H), 5.99 (q, J = 3.0 Hz, 2H), 5

12H). ¹³**C NMR** (101 MHz, CDCl₃) δ 154.47, 145.09, 136.50, 130.45, 127.45, 123.92, 119.78, 110.92, 106.86, 106.77, 83.86, 24.84. ¹¹**B NMR** (128 MHz, CDCl₃) δ 30.45. **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₉BNaO₃⁺: 293.1319; found: 293.1325.

4,4,5,5-tetramethyl-2-(1-(4-((1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)phenyl)vinyl)-1,3,2-dioxaborolane 1v

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, yellow solid, 1.49 g, 39% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 2H), 6.87 – 6.85 (m, 2H), 5.97 (dd, *J* = 25.5, 3.0 Hz, 2H), 3.84 (d, *J* = 1.7 Hz, 1H), 2.03 (dddd, *J* = 12.4, 9.0, 5.8, 2.2 Hz, 1H), 1.80 – 1.71 (m, 2H), 1.61 – 1.41 (m, 3H), 1.32 (s, 12H), 1.18 (s, 4H), 1.08 (s, 3H), 0.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.70, 133.30, 128.65, 128.12, 115.41, 90.04, 83.71, 49.60, 49.13, 41.44, 40.04, 30.50, 26.42, 25.90, 24.83, 20.44, 19.94. ¹¹B NMR (128 MHz, CDCl₃) δ 30.90. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₆BO₃⁺: 383.2752; found: 383.2762.

2-(1-(4-(((2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)phenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1w

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, white solid, 1.81 g, 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.34 (m, 2H), 6.78 – 6.76 (m, 2H), 5.90 (dd, *J* = 23.2, 3.0 Hz, 2H), 3.94 (td, *J* = 10.5, 4.1 Hz, 1H), 2.17 – 2.06 (m, 3H), 1.67 – 1.59 (m, 3H), 1.41 (dddt, *J* = 13.5, 10.5, 7.2, 3.1 Hz, 3H), 1.24 (s, 12H), 0.85 – 0.82 (m, 6H), 0.69 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.71, 133.57, 128.78, 128.30, 115.46, 83.71, 77.35, 48.06, 40.35, 34.58, 31.46, 26.10, 24.83, 23.79, 22.18, 20.80, 16.66. ¹¹B NMR (128 MHz, CDCl₃) δ 30.10. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₄H₃₇BNaO₃⁺: 407.2728; found: 407.2744.

4,4,5,5-tetramethyl-2-(1-(4-((1s,4r)-4-propylcyclohexyl)phenyl)vinyl)-1,3,2-dioxaborolane 1x

The compound was prepared according to procedure A. Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow solid, 2.55 g, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 2H), 7.11 – 6.99 (m, 2H), 5.94 (dd, *J* = 15.4, 3.1 Hz, 2H), 2.35 (tt, *J* = 12.2, 3.2 Hz, 1H), 1.77 (ddd, *J* = 14.8, 12.5, 3.5 Hz, 4H), 1.41 – 1.25 (m, 4H), 1.21 (s, 12H), 1.15 – 1.08 (m, 3H), 1.00 – 0.89 (m, 2H), 0.81 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.58, 137.77, 129.03, 125.99, 125.63, 82.60, 43.29, 38.73, 36.00, 33.27, 32.56, 23.74, 19.01, 13.42. ¹¹B NMR (128 MHz, CDCl₃) δ 30.34. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₃₅BNaO₂⁺: 377.2622; found: 377.2623.

CI CI S 4,4-dichlorotetrahydro-2*H*-thiopyran 2h

Eluent: petroleum ether/ethyl acetate (50:1), Rf = 0.5, brown solid, 952 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 2.88 – 2.73 (m, 4H), 2.65 – 2.56 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 90.07, 46.67, 26.20. Spectroscopic data are in agreement with those previously reported.^[3]

4,4-dichlorotetrahydro-2*H*-pyran 2i

Eluent: petroleum ether/ethyl acetate (50:1), Rf = 0.5, black liquid, 662 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.82 (dd, *J* = 5.8, 4.4 Hz, 4H), 2.46 – 2.39 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 87.22, 64.91, 46.24. Spectroscopic data are in agreement with those previously reported.^[3]

ethyl 4,4-dichloropiperidine-1-carboxylate 2j

Eluent: petroleum ether/ethyl acetate (5:1), Rf = 0.5, colorless oil, 1.53 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 4.14 (q, *J* = 7.1 Hz, 2H), 3.63 (t, *J* = 5.5 Hz, 4H), 2.35 (t, *J* = 5.5 Hz, 4H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.11, 88.22, 61.74, 41.37, 14.65, 14.59. Spectroscopic data are in agreement with those previously reported.^[3]

4,4,5,5-tetramethyl-2-(1-phenylcyclopropyl)-1,3,2-dioxaborolane 3a

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 29.8 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.14 (m, 4H), 7.09 – 7.02 (m, 1H), 1.14 (s, 12H), 1.03 (q, *J* = 3.5 Hz, 2H), 0.84 (q, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.82, 128.94, 128.00, 125.26, 83.34, 24.62, 13.39. ¹¹B NMR (128 MHz, CDCl₃) δ 33.33. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₂₁BNaO₂⁺: 267.1527; found: 267.1521.

4,4,5,5-tetramethyl-2-(1-(p-tolyl)cyclopropyl)-1,3,2-dioxaborolane 3b

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 40.8 mg, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.14 (m, 2H), 7.05 (d, *J* = 7.9 Hz, 2H), 2.29 (s, 3H), 1.21 (s, 12H), 1.07 (q, *J* = 3.5 Hz, 2H), 0.89 – 0.86 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.78, 134.65, 128.89, 128.77, 83.31, 24.62, 21.07, 13.25. ¹¹B NMR (128 MHz, CDCl₃) δ 33.35. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₄BO₂⁺: 259.1864; found: 259.1880.

4,4,5,5-tetramethyl-2-(1-(*m*-tolyl)cyclopropyl)-1,3,2-dioxaborolane 3c

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 30.4 mg, 59% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.04 (m, 3H), 6.96 – 6.92 (m, 1H), 2.31 (s, 3H), 1.21 (s, 12H), 1.08 (q, *J* = 3.5 Hz, 2H), 0.89 (q, *J* = 3.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.36, 129.66, 127.87, 126.25, 126.13, 83.31, 24.61, 21.56, 13.21. ¹¹B NMR (128 MHz, CDCl₃) δ 33.76. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₄BO₂⁺: 259.1864; found: 259.1871.

2-(1-(4-ethylphenyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3d

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 39.2 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.09 (m, 2H), 7.01 – 6.98 (m, 2H), 2.53 (q, *J* = 7.5 Hz, 2H), 1.16 – 1.12 (m, 15H), 1.01 (q, *J* = 3.5 Hz, 2H), 0.81 (h, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.95, 140.88, 128.78, 127.50, 83.29, 28.39, 24.83, 24.61, 15.45, 13.35, 1.05. ¹¹B NMR (128 MHz, CDCl₃) δ 33.78. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₆BO₂⁺: 273.2020; found: 273.2025.

2-(1-(4-(tert-butyl)phenyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3e

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 25.2 mg, 42% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 7.9 Hz, 2H), 7.21 – 7.16 (m, 2H), 1.29 (s, 12H), 1.22 (s, 9H), 1.08 (p, *J* = 3.8 Hz, 2H), 0.89 (p, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.63, 141.54, 128.18, 124.91, 83.26, 34.27, 31.43, 31.40, 24.60, 13.62. ¹¹B NMR (128 MHz, CDCl₃) δ 33.86. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₃₀BO₂⁺: 301.2333; found: 301.2328.

2-(1-([1,1'-biphenyl]-4-yl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3f

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, white solid, 42.9 mg, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.58 (m, 2H), 7.51 – 7.48 (m, 2H), 7.47 – 7.40 (m, 3H), 7.38 – 7.35 (m, 2H), 1.26 (s, 12H), 1.17 (q, *J* = 3.5 Hz, 2H), 1.00 – 0.95 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.06, 141.31, 138.10, 129.28, 128.69, 127.03, 126.86, 126.83, 83.45, 24.87, 24.65, 13.66. ¹¹B NMR (128 MHz, CDCl₃) δ 33.33. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₂₅BNaO₂⁺: 343.1840; found: 343.1855.

2-(1-(4-methoxyphenyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3g

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, white solid, 24.1 mg, 44% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.16 (m, 2H), 6.80 – 6.77 (m, 2H), 3.77 (s, 3H), 1.21 (s, 12H), 1.06 (q, *J* = 3.5 Hz, 2H), 0.85 (q, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.27, 136.94, 129.88, 113.44, 83.31, 55.20, 24.61, 13.29. ¹¹B NMR (128 MHz, CDCl₃) δ 33.72. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₃BNaO₃⁺: 297.1632; found: 297.1636.

2-(1-(4-chlorophenyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3h

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, coloeless oil, 41.7 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 4H), 1.21 (s, 12H), 1.11 (q, *J* = 3.5 Hz, 2H), 0.86 (q, *J* = 3.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.41, 130.88, 130.37, 128.10, 83.51, 24.61, 13.52. ¹¹B NMR (128 MHz, CDCl₃) δ 33.11. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₂₁BClO₂⁺: 279.1318; found: 279.1319.

2-(1-(4-bromophenyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3i

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 37.4 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.26 (m, 2H), 7.08 – 7.06 (m, 2H), 1.14 (d, *J* = 2.0 Hz, 12H), 1.04 (q, *J* = 3.6 Hz, 2H), 0.80 (dt, *J* = 6.2, 3.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.94, 131.02, 130.80, 118.97, 83.51, 24.61, 13.49, 1.06. ¹¹B NMR (128 MHz, CDCl₃) δ 33.65. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₂₀BBrNaO₂⁺: 345.0632; found: 345.0646.

4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)cyclopropyl)-1,3,2-dioxaborolane 3j

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 38.1 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.47 (m, 2H), 7.38 – 7.36 (m, 2H), 1.22 (s, 12H), 1.17 (q, *J* = 3.6 Hz, 2H), 0.93 (q, *J* = 3.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.10, 129.15, 127.50, 124.96, 124.92, 124.89, 83.61, 24.82, 24.61, 13.77. ¹¹B NMR (128 MHz, CDCl₃) δ 33.25. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -62.19. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₀BF₃NaO₂⁺: 335.1401; found: 335.1402.

trimethyl(4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropyl)phenyl)silane 3k

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 43.6 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.32 (m, 2H), 7.20 – 7.17 (m, 2H), 1.15 (s, 12H), 1.03 (q, *J* = 3.5 Hz, 2H), 0.85 (q, *J* = 3.6 Hz, 2H), 0.16 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 146.43, 137.43,

134.17, 129.22, 84.35, 25.60, 25.57, 14.51, 0.00. ¹¹**B NMR** (128 MHz, CDCl₃) δ 33.69. **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₉BNaO₂Si⁺: 339.1922; found: 339.1935.

N,N-dimethyl-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropyl)aniline 3I

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 43.6 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.09 – 7.06 (m, 2H), 6.61 – 6.58 (m, 2H), 2.82 (s, 6H), 1.14 (s, 12H), 0.96 (q, *J* = 3.5 Hz, 2H), 0.77 (q, *J* = 3.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 129.54, 112.88, 83.19, 41.00, 24.61, 13.13. ¹¹B NMR (128 MHz, CDCl₃) δ 34.04. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₇BNO₂⁺: 288.2129; found: 288.2115.

4-(4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropyl)phenyl)morpholine 3m Eluent: petroleum ether/ethyl acetate (5:1), Rf = 0.5, yellow oil, 43.4 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.5 Hz, 2H), 3.85 (q, *J* = 4.7 Hz, 4H), 3.12 (q, *J* = 4.4 Hz, 4H), 1.21 (s, 12H), 1.06 (q, *J* = 3.5 Hz, 2H), 0.85 (q, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 129.56, 115.68, 83.27, 67.00, 49.75, 24.61, 13.28. ¹¹B NMR (128 MHz, CDCl₃) δ 34.12. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₉BNO₃⁺: 330.2235; found: 330.2252.

methyl 4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropyl)benzoate 3n

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, yellow oil, 35.0 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.83 (m, 2H), 7.27 – 7.25 (m, 2H), 3.81 (s, 3H), 1.15 (s, 12H), 1.10 (q, *J* = 3.7 Hz, 2H), 0.87 (q, *J* = 3.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.29, 150.65,

129.39, 128.79, 127.09, 83.54, 51.90, 24.81, 24.60, 13.92. ¹¹**B NMR** (128 MHz, CDCl₃) δ 33.66. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₄BO₄⁺: 303.1762; found: 303.1768.

4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropyl)benzonitrile 30

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, yellow oil, 36.6 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.51 (m, 2H), 7.37 – 7.34 (m, 2H), 1.22 (s, 14H), 0.93 (q, *J* = 3.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.84, 131.87, 129.54, 119.43, 108.81, 83.73, 24.60, 14.20. ¹¹B NMR (128 MHz, CDCl₃) δ 33.39. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₀BNNaO₂⁺: 292.1479; found: 292.1489.

2-(1-(4-methoxy-3,5-dimethylphenyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3p

Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, yellow oil, 24.8 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 2H), 3.68 (s, 3H), 2.23 (s, 6H), 1.22 (s, 12H), 1.04 (q, *J* = 3.4 Hz, 2H), 0.84 (q, *J* = 3.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.57, 139.85, 129.93, 129.24, 83.28, 59.58, 24.58, 16.20, 13.26. ¹¹B NMR (128 MHz, CDCl₃) δ 33.89. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₈BO₃⁺: 303.2126; found: 303.2132.

4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)cyclopropyl)-1,3,2-dioxaborolane 3q

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 41.7 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 3H), 7.67 – 7.63 (m, 1H), 7.49 – 7.37 (m, 3H), 1.23 (s, 12H), 1.19 (q, *J* = 3.5 Hz, 2H), 1.02 (q, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.57, 133.57, 131.84, 128.88, 127.51, 127.37, 126.35, 125.62, 124.91, 83.43, 24.64, 13.25, 1.07. ¹¹B

NMR (128 MHz, CDCl₃) δ 33.61. **HRMS** (ESI) m/z: [M+K]⁺ calcd for C₁₉H₂₃BKO₂⁺: 333.1423; found: 333.1438.

2-(1-(benzo[d][1,3]dioxol-5-yl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3r

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.6, yellow oil, 39.2 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.78 (d, *J* = 1.7 Hz, 1H), 6.73 – 6.64 (m, 2H), 5.89 (s, 2H), 1.21 (s, 12H), 1.05 (q, *J* = 3.5 Hz, 2H), 0.83 (q, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.11, 145.17, 138.84, 121.59, 110.02, 107.81, 100.66, 83.38, 24.80, 24.59, 13.42. ¹¹B NMR (128 MHz, CDCl₃) δ 33.75. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₁BNaO₄⁺: 311.1425; found: 311.1443.

2-(1-(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3s Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.6, yellow oil, 35.0 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.77 (dd, *J* = 1.8, 0.8 Hz, 1H), 6.73 (t, *J* = 1.3 Hz, 2H), 4.23 – 4.19 (m, 4H), 1.21 (s, 12H), 1.04 (q, *J* = 3.5 Hz, 2H), 0.83 (q, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 121.88, 117.60, 116.70, 83.32, 64.40, 64.31, 24.59, 13.45. ¹¹B NMR (128 MHz, CDCl₃) δ 33.86. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₄BO₄⁺: 303.1762; found: 303.1757.

2-(1-(dibenzo[b,d]thiophen-4-yl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3t

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 54.6 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.12 (m, 1H), 7.99 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.45 – 7.42 (m, 2H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.32 (dd, *J* = 7.4, 1.2 Hz, 1H), 1.30 (q, *J* = 3.5 Hz, 2H), 1.20 (s, 12H), 1.05 (q, *J* = 3.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.64, 139.85,

139.33, 136.36, 135.15, 126.90, 126.31, 124.61, 124.05, 122.70, 121.68, 119.10, 83.59, 24.86, 24.58, 12.88. ¹¹**B** NMR (128 MHz, CDCl₃) δ 33.84. **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₂₃BNaO₂⁺: 373.1404; found: 373.1395.

4,4,5,5-tetramethyl-2-(1-phenylcyclopropyl-2,2-*d*₂)-1,3,2-dioxaborolane 3u

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 22.6 mg, 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 4H), 7.15 – 7.11 (m, 1H), 1.22 (s, 12H), 1.10 (d, *J* = 3.5 Hz, 1H), 0.90 (d, *J* = 3.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.81, 128.94, 127.99, 125.24, 83.33, 24.83, 24.61, 13.21. ¹¹B NMR (128 MHz, CDCl₃) δ 33.98. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₂₀D₂BO₂⁺: 247.1833; found: 247.1827.

2-(2,2-dimethyl-1-phenylcyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3v

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 37.5 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.11 (m, 4H), 7.06 – 7.01 (m, 1H), 1.23 (s, 3H), 1.12 (s, 6H), 1.07 (s, 6H), 1.06 (s, 1H), 0.89 (d, *J* = 3.9 Hz, 1H), 0.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.93, 130.31, 127.49, 124.88, 83.30, 24.92, 24.65, 24.52, 24.40, 23.51, 23.46. ¹¹B NMR (128 MHz, CDCl₃) δ 32.49. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₂₅BNaO₂⁺: 295.1840; found: 295.1846.

4,4,5,5-tetramethyl-2-(1-phenylcyclopentyl)-1,3,2-dioxaborolane 4a

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 37.0 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.16 (m, 4H), 7.06 – 7.01 (m, 1H), 2.30 – 2.22 (m, 2H), 1.65 – 1.57 (m, 6H), 1.06 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 147.16, 127.93, 127.01, 124.76, 83.30, 35.18, 24.55, 24.39. ¹¹B NMR (128 MHz, CDCl₃) δ 33.96. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₆BO₂⁺: 273.2020; found: 273.2019.

2-(1-(4-(tert-butyl)phenyl)cyclopentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4b

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 24.9 mg, 38% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.17 (m, 2H), 7.13 – 7.09 (m, 2H), 2.22 (pd, *J* = 7.8, 2.0 Hz, 2H), 1.62 – 1.56 (m, 6H), 1.22 (s, 9H), 1.07 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 146.27, 142.88, 125.49, 123.77, 82.20, 34.28, 33.18, 30.39, 23.61, 23.38. ¹¹B NMR (128 MHz, CDCl₃) δ 34.94. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₃₄BO₂⁺: 329.2646; found: 329.2652.

4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)cyclopentyl)-1,3,2-dioxaborolane 4c

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 29.6 mg, 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.60 (m, 4H), 7.40 – 7.28 (m, 3H), 2.36 – 2.32 (m, 2H), 1.76 – 1.61 (m, 6H), 1.05 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 144.76, 133.62, 131.51, 127.73, 127.40, 127.27, 126.88, 125.56, 124.78, 124.29, 83.41, 35.25, 24.60, 24.44. ¹¹B NMR (128 MHz, CDCl₃) δ 33.99. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₂₇BNaO₂⁺: 345.1996; found: 345.2000.

4-(4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentyl)phenyl)morpholine 4d
Eluent: petroleum ether/ethyl acetate (5:1), Rf = 0.5, colorless oil, 34.3 mg, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.17 (m, 2H), 6.86 – 6.81 (m, 2H), 3.86 – 3.84 (m, 4H), 3.13 – 3.10 (m, 4H), 2.29 – 2.26 (m, 2H), 1.70 – 1.61 (m, 7H), 1.13 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 148.47, 138.83, 127.65, 115.59, 83.22, 67.05, 49.75, 35.28, 24.56, 24.42. ¹¹B NMR (128 MHz, CDCl₃) δ 34.70. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₃₃BO₃⁺: 358.2548; found: 358.2554.

4,4,5,5-tetramethyl-2-(3-phenyltetrahydrothiophen-3-yl)-1,3,2-dioxaborolane 5a

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 27.3 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 4H), 7.20 – 7.13 (m, 1H), 3.39 (d, *J* = 10.0 Hz, 1H), 3.03 – 2.91 (m, 2H), 2.85 (ddd, *J* = 10.3, 7.3, 4.1 Hz, 1H), 2.67 (ddd, *J* = 11.2, 6.7, 4.2 Hz, 1H), 2.04 (dt, *J* = 12.0, 8.0 Hz, 1H), 1.17 (d, *J* = 8.3 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 143.12, 128.30, 126.80, 125.78, 83.89, 38.48, 38.46, 30.19, 24.45, 24.34. ¹¹B NMR (128 MHz, CDCl₃) δ 33.69. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₄BO₂⁺: 297.1585; found: 297.1577.

2-(3-(4-chlorophenyl)tetrahydrothiophen-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5b Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 50.5 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (s, 4H), 3.36 (d, *J* = 10.1 Hz, 1H), 2.98 – 2.91 (m, 2H), 2.82 (ddd, *J* = 10.2, 7.3, 4.5 Hz, 1H), 2.65 – 2.58 (m, 1H), 2.07 – 1.98 (m, 1H), 1.17 (d, *J* = 7.7 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 141.65, 131.57, 128.40, 128.20, 84.05, 38.48, 38.42, 30.11, 24.47, 24.35. ¹¹B NMR (128 MHz, CDCl₃) δ 33.02. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₂BCINaO₂S⁺: 347.1014; found: 347.1015.

4,4,5,5-tetramethyl-2-(3-(naphthalen-2-yl)tetrahydrothiophen-3-yl)-1,3,2-dioxaborolane 5c

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 35.4 mg, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.75 (m, 4H), 7.51 – 7.42 (m, 3H), 3.50 (d, *J* = 10.0 Hz, 1H), 3.12 (d, *J* = 10.1 Hz, 1H), 3.02 (ddd, *J* = 10.1, 8.3, 6.6 Hz, 1H), 2.88 (ddd, *J* = 10.2, 7.3, 4.3 Hz, 1H), 2.77 (ddd, *J* = 11.4, 6.6, 4.3 Hz, 1H), 2.17 (dt, *J* = 12.0, 7.8 Hz, 1H), 1.18 (d, *J* = 9.3 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 140.64, 133.56, 131.86, 127.86, 127.74, 127.43, 125.99, 125.89, 125.35, 124.67, 84.00, 38.55, 38.48, 30.25, 24.49, 24.38. ¹¹B NMR (128 MHz, CDCl₃) δ 33.77. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₆BO₂S⁺: 347.1741; found: 347.1744.

2-(3-(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)tetrahydrothiophen-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5d

Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, colorless oil, 36.2 mg, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.83 (d, *J* = 1.9 Hz, 1H), 6.81 – 6.76 (m, 2H), 4.23 (s, 4H), 3.31 (s, 1H), 2.88 (d, *J* = 32.9 Hz, 3H), 2.57 (ddd, *J* = 11.4, 6.6, 4.2 Hz, 1H), 2.03 – 1.95 (m, 1H), 1.18 (d, *J* = 6.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 143.17, 141.60, 136.43, 119.96, 116.92, 115.58, 83.86, 64.40, 64.34, 38.71, 38.64, 30.19, 24.48, 24.37. ¹¹B NMR (128 MHz, CDCl₃) δ 33.98. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₅BNaO₄S⁺: 371.1459; found: 371.1463.

2-(3-(benzofuran-5-yl)tetrahydrothiophen-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5e Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, colorless oil, 31.7 mg, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 2.2 Hz, 1H), 7.55 (d, *J* = 2.0 Hz, 1H), 7.41 (dt, *J* = 8.6, 0.8 Hz, 1H), 7.28 (dd, *J* = 8.6, 2.0 Hz, 1H), 6.72 (dd, *J* = 2.2, 0.9 Hz, 1H), 3.48 – 3.40 (m, 1H), 3.06 – 2.92 (m, 2H), 2.86 (ddd, J = 10.1, 7.3, 4.2 Hz, 1H), 2.76 – 2.66 (m, 1H), 2.09 (ddd, J = 11.9, 8.5, 7.3 Hz, 1H), 1.17 (d, J = 9.0 Hz, 12H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.42, 145.04, 137.65, 127.45, 123.66, 118.79, 110.96, 106.69, 83.89, 38.99, 38.91, 30.24, 24.46, 24.35. ¹¹B NMR (128 MHz, CDCl₃) δ 33.55. **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₃BNaO₃S⁺: 353.1353; found: 353.1369.

2-(3-(4-methoxy-3,5-dimethylphenyl)tetrahydrothiophen-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5f

Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, colorless oil, 34.1 mg, 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 2H), 3.69 (s, 3H), 3.38 – 3.22 (m, 1H), 2.99 – 2.89 (m, 2H), 2.85 (ddd, *J* = 10.1, 7.4, 4.0 Hz, 1H), 2.66 – 2.54 (m, 1H), 2.25 (s, 6H), 1.99 (ddd, *J* = 12.0, 8.8, 7.4 Hz, 1H), 1.18 (d, *J* = 8.1 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 155.00, 138.16, 130.35, 127.14, 83.84, 59.65, 38.65, 30.25, 24.45, 24.33, 16.24. ¹¹B NMR (128 MHz, CDCl₃) δ 34.08. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₃₀BO₃S⁺: 349.2003; found: 349.2007.

4,4,5,5-tetramethyl-2-(1-phenylcyclohexyl)-1,3,2-dioxaborolane 6a

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 24.6 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 7.6 Hz, 2H), 7.20 – 7.15 (m, 3H), 2.24 (d, *J* = 12.1 Hz, 2H), 1.74 – 1.67 (m, 2H), 1.34 – 1.29 (m, 3H), 1.24 – 1.20 (m, 3H), 1.07 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 128.06, 126.22, 124.94, 83.24, 34.84, 26.25, 25.76, 24.51. ¹¹B NMR (128 MHz, CDCl₃) δ 34.11. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₇BNaO₂⁺: 309.1996; found: 309.1987.

2-(6,6-dimethyl-1-phenylspiro[2.5]octan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 7a

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 35.4 mg, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 7.4 Hz, 2H), 7.22 (t, *J* = 7.5 Hz, 2H), 7.16 – 7.10 (m, 1H), 1.80 (ddd, *J* = 13.9, 9.5, 4.9 Hz, 2H), 1.40 (ddt, *J* = 20.4, 12.8, 6.0 Hz, 4H), 1.18 (d, *J* = 19.9 Hz, 14H), 1.07 (d, *J* = 3.9 Hz, 1H), 0.97 (d, *J* = 3.9 Hz, 1H), 0.91 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.29, 130.38, 127.35, 124.83, 83.26, 38.71, 30.67, 30.30, 29.92, 29.05, 24.89, 24.64, 22.24. ¹¹B NMR (128 MHz, CDCl₃) δ 33.15. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₃₃BNaO₂⁺: 363.2466; found: 363.2463.

4,4,5,5-tetramethyl-2-(1-phenyl-6-thiaspiro[2.5]octan-1-yl)-1,3,2-dioxaborolane 8a

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 51.5 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 4H), 7.21 – 7.16 (m, 1H), 2.78 – 2.75 (m, 2H), 2.56 – 2.50 (m, 2H), 2.09 (ddd, *J* = 12.9, 7.6, 5.3 Hz, 1H), 1.96 – 1.92 (m, 1H), 1.50 – 1.48 (m, 1H), 1.22 (d, *J* = 17.2 Hz, 12H), 1.16 – 1.06 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.92, 130.45, 127.59, 125.25, 83.50, 36.00, 34.31, 29.53, 28.15, 27.50, 24.85, 24.67, 21.84. ¹¹B NMR (128 MHz, CDCl₃) δ 32.18. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₇BNaO₂S⁺: 353.1717; found: 353.1731.

4,4,5,5-tetramethyl-2-(1-phenyl-6-oxaspiro[2.5]octan-1-yl)-1,3,2-dioxaborolane 9a

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, yellow oil, 46.5 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 4H), 7.15 – 7.13 (m, 1H), 3.90 (dt, *J* = 11.1, 4.1 Hz, 1H), 3.74 (dt, *J* = 11.2, 4.2 Hz, 1H), 3.62 (ddd, *J* = 11.2, 9.9, 2.8 Hz, 1H), 3.45 (ddd, *J* = 11.1, 9.9, 2.9 Hz, 1H), 2.01 – 1.92 (m, 1H), 1.64 – 1.56 (m, 1H), 1.48 – 1.38 (m, 1H), 1.18 (d, *J* = 17.4 Hz, 13H), 1.09 (dd, *J* = 4.1, 1.0 Hz, 1H), 0.57 (ddt, *J* = 13.6, 4.5, 2.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.36, 130.31, 127.60, 125.21, 83.48, 67.58, 67.45, 34.59, 33.54, 28.57, 24.86, 24.72, 21.94. ¹¹B NMR (128 MHz, CDCl₃) δ 32.44. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₇BNaO₃⁺: 337.1945; found: 337.1957.

4,4,5,5-tetramethyl-2-(1-(p-tolyl)-6-oxaspiro[2.5]octan-1-yl)-1,3,2-dioxaborolane 9b

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 33.5 mg, 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.12 (m, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 3.89 (dt, *J* = 11.2, 4.1 Hz, 1H), 3.73 (dt, *J* = 11.1, 4.2 Hz, 1H), 3.62 (ddd, *J* = 11.1, 9.9, 2.8 Hz, 1H), 3.45 (ddd, *J* = 11.0, 9.8, 2.9 Hz, 1H), 2.30 (s, 3H), 1.95 (ddd, *J* = 13.6, 9.6, 4.0 Hz, 1H), 1.59 (ddt, *J* = 13.3, 4.3, 2.3 Hz, 1H), 1.46 – 1.37 (m, 1H), 1.17 (d, *J* = 15.6 Hz, 13H), 1.06 (dd, *J* = 4.1, 1.0 Hz, 1H), 0.58 (ddt, *J* = 13.8, 4.4, 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.16, 134.52, 130.12, 128.38, 83.43, 67.61, 67.49, 34.58, 33.48, 28.46, 24.84, 24.75, 21.92, 21.06. ¹¹B NMR (128 MHz, CDCl₃) δ 32.25. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₃₀BO₃⁺: 329.2283; found: 329.2287.

2-(1-(4-chlorophenyl)-6-oxaspiro[2.5]octan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 9c Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 35.5 mg, 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.15 (m, 4H), 3.88 (dt, *J* = 11.1, 4.1 Hz, 1H), 3.73 (dt, *J* = 11.1, 4.2 Hz, 1H), 3.60 (ddd, *J* = 11.1, 9.9, 2.8 Hz, 1H), 3.45 (ddd, *J* = 11.1, 10.0, 2.9 Hz, 1H), 1.94 (ddd, *J* = 13.8, 9.9, 4.0 Hz, 1H), 1.59 (ddt, *J* = 13.4, 4.5, 2.4 Hz, 1H), 1.40 (ddd, *J* = 14.1, 10.1, 3.9 Hz, 1H), 1.17 (d, J = 17.9 Hz, 13H), 1.06 – 1.02 (m, 1H), 0.58 – 0.52 (m, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 139.99, 131.60, 130.93, 127.78, 83.65, 67.54, 67.37, 34.38, 33.53, 28.83, 24.87, 24.67, 22.17. ¹¹**B** NMR (128 MHz, CDCl₃) δ 32.14. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₆BCINaO₃⁺: 371.1556; found: 371.1565.

2-(1-(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)-6-oxaspiro[2.5]octan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 9d

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 43.2 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.72 (d, *J* = 2.6 Hz, 3H), 4.22 (s, 4H), 3.87 (dt, *J* = 11.1, 4.1 Hz, 1H), 3.74 (dt, *J* = 11.1, 4.2 Hz, 1H), 3.59 (ddd, *J* = 11.1, 9.8, 2.8 Hz, 1H), 3.45 (ddd, *J* = 11.0, 9.8, 2.9 Hz, 1H), 1.90 (ddd, *J* = 13.6, 9.7, 4.0 Hz, 1H), 1.57 (dp, *J* = 13.5, 2.3 Hz, 1H), 1.46 – 1.38 (m, 1H), 1.17 (d, *J* = 13.1 Hz, 12H), 1.12 (dd, *J* = 4.2, 1.1 Hz, 1H), 1.02 – 0.97 (m, 1H), 0.65 – 0.61 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.61, 141.21, 134.58, 123.38, 118.77, 116.25, 83.44, 67.58, 67.51, 64.37, 64.29, 34.50, 33.34, 28.63, 24.81, 24.77, 22.03. ¹¹B NMR (128 MHz, CDCl₃) δ 33.40. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₂₉BNaO₅⁺: 395.2000; found: 395.2010.

2-(1-(4-methoxy-3,5-dimethylphenyl)-6-oxaspiro[2.5]octan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 9e

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 46.9 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 2H), 3.89 (dt, *J* = 11.2, 4.1 Hz, 1H), 3.74 (dt, *J* = 11.0, 4.2 Hz, 1H), 3.68 (s, 3H), 3.60 (ddd, *J* = 11.1, 9.9, 2.8 Hz, 1H), 3.45 (ddd, *J* = 11.0, 9.9, 2.9 Hz, 1H), 2.23 (s, 6H), 1.93 (ddd, *J* = 13.7, 9.8, 4.0 Hz, 1H), 1.53 (ddt, *J* = 13.4, 4.5, 2.3 Hz, 1H), 1.46 – 1.37 (m, 2H), 1.17 (d, *J* = 13.4 Hz, 12H), 1.10 (dd, *J* = 4.1, 1.1 Hz, 1H), 1.03 – 0.99 (m, 1H), 0.66 – 0.51 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.61, 136.16, 130.52, 129.44, 83.38, 67.60, 67.53, 59.63, 34.73, 33.40, 28.27, 24.80, 24.76, 21.89, 16.17. ¹¹B NMR (128 MHz, CDCl₃) δ 32.66. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₃₃BNaO₄⁺: 395.2364; found: 395.2378.

2-(1-(benzofuran-5-yl)-6-oxaspiro[2.5]octan-1-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane 9f

Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, colorless oil, 43.9 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 2.2 Hz, 1H), 7.42 (d, J = 1.8 Hz, 1H), 7.39 – 7.33 (m, 1H), 7.23 (dd, J = 8.6, 1.8 Hz, 1H), 6.69 (dd, J = 2.2, 0.9 Hz, 1H), 3.92 (dt, J = 11.2, 4.0 Hz, 1H), 3.74 (dt, J = 11.1, 4.1 Hz, 1H), 3.63 (ddd, J = 11.1, 10.0, 2.8 Hz, 1H), 3.45 (ddd, J = 11.1, 10.0, 2.9 Hz, 1H), 2.04 – 1.93 (m, 1H), 1.61 (ddt, J = 13.4, 4.4, 2.4 Hz, 1H), 1.51 – 1.40 (m, 1H), 1.25 – 1.23 (m, 1H), 1.17 (d, J = 18.7 Hz, 12H), 1.12 (dd, J = 4.2, 1.0 Hz, 1H), 0.54 (ddt, J = 13.7, 4.5, 2.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.33, 144.72, 135.80, 127.18, 126.96, 122.11, 110.31, 106.53, 83.49, 67.62, 67.51, 34.61, 33.57, 28.51, 24.84, 24.72, 22.42. ¹¹B NMR (128 MHz, CDCl₃) δ 33.16. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₈BO₄⁺: 355.2075; found: 355.2067.

methyl 4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-oxaspiro[2.5]octan-1-yl)benzoate 9g

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 52.8 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.84 (m, 2H), 7.36 – 7.27 (m, 2H), 3.92 – 3.88 (m, 1H), 3.87 (s, 3H), 3.72 (dt, J = 11.2, 4.2 Hz, 1H), 3.61 (ddd, J = 11.1, 10.0, 2.8 Hz, 1H), 3.43 (ddd, J = 11.1, 9.9, 2.9 Hz, 1H), 1.96 (ddd, J = 13.8, 9.9, 4.1 Hz, 1H), 1.61 (ddt, J = 13.4, 4.3, 2.3 Hz, 1H), 1.40 (ddd, J = 14.1, 9.1, 4.2 Hz, 1H), 1.26 (dd, J = 4.3, 1.2 Hz, 1H), 1.16 (d, J = 20.2 Hz, 13H), 0.51 (dd, J = 13.7, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.32, 147.41, 130.32, 129.00, 127.19, 83.71, 67.51, 67.31, 51.90, 34.38, 33.58, 29.27, 24.87, 24.64, 22.25. ¹¹B NMR (128 MHz, CDCl₃) δ 32.41. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₃₀BO₅⁺: 373.2181; found: 373.2182.

4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-oxaspiro[2.5]octan-1-yl)benzonitrile 9h

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 29.2 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.46 (m, 2H), 7.39 – 7.30 (m, 2H), 3.90 (dt, *J* = 11.2, 4.0 Hz, 1H), 3.73 (dt, *J* = 11.2, 4.1 Hz, 1H), 3.61 (ddd, *J* = 11.2, 10.2, 2.8 Hz, 1H), 3.45 (ddd, *J* = 11.2, 10.1, 2.8 Hz, 1H), 2.03 – 1.90 (m, 1H), 1.64 (dt, *J* = 4.2, 2.3 Hz, 1H), 1.47 – 1.35 (m, 1H), 1.31 (dd, *J* = 4.4, 1.3 Hz, 1H), 1.18 (d, *J* = 20.1 Hz, 12H), 1.12 (dd, *J* = 4.3, 1.0 Hz, 1H), 0.48 (dd, *J* = 10.9, 6.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.71, 131.52, 131.05, 108.98, 83.93, 67.48, 67.24, 34.21, 33.69, 29.66, 24.88, 24.65, 22.36. ¹¹B NMR (128 MHz, CDCl₃) δ 32.72. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₂₆BNNaO₃⁺: 362.1898; found: 362.1909.

4,4,5,5-tetramethyl-2-(1-(4-((1_S,4*r*)-4-propylcyclohexyl)phenyl)-6-oxaspiro[2.5]octan-1-yl)-1,3,2-dioxaborolane 9j

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 44.7 mg, 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.09 (m, 2H), 7.10 – 7.00 (m, 2H), 3.89 (dt, *J* = 11.1, 4.1 Hz, 1H), 3.73 (dt, *J* = 11.0, 4.2 Hz, 1H), 3.61 (ddd, *J* = 11.1, 9.9, 2.8 Hz, 1H), 3.44 (ddd, *J* = 11.0, 9.8, 2.9 Hz, 1H), 2.41 (tt, *J* = 12.2, 3.3 Hz, 1H), 1.99 – 1.79 (m, 5H), 1.62 – 1.53 (m, 1H), 1.45 – 1.25 (m, 7H), 1.18 (d, *J* = 15.1 Hz, 14H), 1.10 – 0.99 (m, 3H), 0.90 (t, *J* = 7.2 Hz, 3H), 0.58 (ddt, *J* = 13.5, 4.3, 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.46, 138.38, 130.01, 125.97, 83.37, 67.58, 67.49, 44.09, 39.79, 37.11, 34.71, 34.38, 34.35, 33.69, 33.41, 28.47, 24.80, 24.79, 21.82, 20.03, 14.40. ¹¹B NMR (128 MHz, CDCl₃) δ 32.00. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₈H₄₃BNaO₃⁺: 461.3197; found: 461.3219.

4,4,5,5-tetramethyl-2-(1-(4-((1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)phenyl)-6oxaspiro[2.5]octan-1-yl)-1,3,2-dioxaborolane 9k

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 45.7 mg, 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.05 (m, 2H), 6.80 – 6.74 (m, 2H), 3.88 (dt, *J* = 11.1, 4.1 Hz, 1H), 3.81 (t, *J* = 1.3 Hz, 1H), 3.74 (dt, *J* = 11.1, 4.2 Hz, 1H), 3.61 (ddd, *J* = 11.1, 9.7, 2.8 Hz, 1H), 3.46 (dddd, *J* = 11.0, 9.7, 3.0, 1.2 Hz, 1H), 2.02 (dtd, *J* = 12.7, 6.0, 2.9 Hz, 1H), 1.92 (ddd, *J* = 13.6, 9.7, 3.9 Hz, 1H), 1.79 – 1.69 (m, 2H), 1.57 (dt, *J* = 7.7, 2.1 Hz, 2H), 1.50 – 1.40 (m, 2H), 1.17 (d, *J* = 15.5 Hz, 18H), 1.09 (s, 3H), 1.03 – 1.00 (m, 1H), 0.85 (s, 3H), 0.63 (dt, *J* = 13.9, 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.06, 132.72, 130.85, 115.24, 115.22, 90.30, 83.35, 67.57, 67.51, 67.50, 49.60, 49.11, 41.45, 34.73, 33.31, 33.29, 30.54, 28.37, 28.33, 26.40, 25.93, 24.82, 24.74, 21.90, 21.87, 20.53, 20.00. ¹¹B NMR (128 MHz, CDCl₃) δ 32.05. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₉H₄₃BNaO₄⁺: 489.3147; found: 489.3172.

2-(1-(4-(((2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)phenyl)-6-oxaspiro[2.5]octan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 9l

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 40.2 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.04 (m, 2H), 6.81 – 6.69 (m, 2H), 3.96 (tdd, *J* = 10.6, 4.2, 1.8 Hz, 1H), 3.88 (dt, *J* = 11.1, 4.1 Hz, 1H), 3.74 (dtd, *J* = 10.7, 4.3, 1.6 Hz, 1H), 3.61 (ddd, *J* = 11.1, 9.8, 2.9 Hz, 1H), 3.46 (dddd, *J* = 10.9, 9.7, 2.9, 1.0 Hz, 1H), 2.23 (qt, *J* = 7.0, 3.5 Hz, 1H), 2.15 (dtt, *J* = 12.4, 5.1, 2.5 Hz, 1H), 1.92 (ddd, *J* = 13.7, 9.8, 4.0 Hz, 1H), 1.74 – 1.67 (m, 2H), 1.56 (dddt, *J* = 13.5, 4.5, 3.0, 1.7 Hz, 1H), 1.44 (ddt, *J* = 12.4, 9.2, 4.2 Hz, 3H), 1.34 – 1.28 (m, 1H), 1.21 – 1.13 (m, 12H), 1.04 – 0.98 (m, 2H), 0.91 (dd, *J* = 6.8, 4.5 Hz, 8H), 0.76 (d, *J* = 6.9 Hz, 3H), 0.63 (dp, *J* = 14.4, 2.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.09, 133.04, 131.05, 115.27, 115.22, 83.37, 67.58, 67.52, 48.20, 40.55, 34.69, 34.60, 33.34, 31.45, 25.94, 24.81,

24.77, 24.75, 23.67, 22.15, 21.92, 20.84, 16.50. ¹¹**B NMR** (128 MHz, CDCl₃) δ 33.62. **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₂₉H₄₅BNaO₄⁺: 491.3303; found: 491.3334.

ethyl 1-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-azaspiro[2.5]octane-6-carboxylate 10a

Eluent: petroleum ether/ethyl acetate (5:1), Rf = 0.5, colorless oil, 48.5 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.17 (m, 4H), 7.12 (ddd, *J* = 8.6, 5.5, 2.5 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.94 – 3.77 (m, 1H), 3.66 (t, *J* = 8.9 Hz, 1H), 3.22 (ddd, *J* = 13.1, 9.8, 3.3 Hz, 1H), 3.00 (ddd, *J* = 13.1, 9.7, 3.4 Hz, 1H), 1.83 (ddd, *J* = 13.6, 9.4, 3.6 Hz, 1H), 1.61 (dt, *J* = 13.7, 4.4 Hz, 1H), 1.30 – 1.11 (m, 17H), 1.09 (d, *J* = 4.2 Hz, 1H), 0.65 (dt, *J* = 14.3, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.67, 141.24, 130.26, 127.62, 125.28, 83.53, 61.11, 43.83, 43.39, 29.09, 24.85, 24.69, 21.47, 14.72. ¹¹B NMR (128 MHz, CDCl₃) δ 32.11. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₃₂BNNaO₄⁺: 408.2317; found: 408.2333.

4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3,4-tetrahydronaphthalen-2-yl)-1,3,2-dioxaborolane 11a

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 44.1 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 1.4 Hz, 2H), 7.20 – 7.13 (m, 2H), 7.09 – 7.01 (m, 2H), 6.99 – 6.88 (m, 3H), 3.21 (d, *J* = 16.0 Hz, 1H), 2.94 – 2.82 (m, 2H), 2.64 (dt, *J* = 17.3, 5.7 Hz, 1H), 2.30 (dtd, *J* = 11.3, 5.9, 1.7 Hz, 1H), 1.91 (ddd, *J* = 13.0, 8.9, 6.0 Hz, 1H), 0.93 (d, *J* = 25.1 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 145.77, 136.75, 136.36, 129.30, 128.73, 128.29, 126.65, 125.55, 125.38, 125.31, 83.40, 37.47, 31.42, 27.21, 24.39, 24.23. ¹¹B NMR (128 MHz, CDCl₃) δ 33.26. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₂₇BNaO₂⁺: 357.1996; found: 357.1998.

4,4,5,5-tetramethyl-2-(2-(p-tolyl)-1,2,3,4-tetrahydronaphthalen-2-yl)-1,3,2-dioxaborolane 11b

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 32.7 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.22 – 7.17 (m, 1H), 7.14 – 7.01 (m, 5H), 3.32 (dd, *J* = 16.0, 1.7 Hz, 1H), 3.05 – 2.93 (m, 2H), 2.77 (dt, *J* = 17.3, 5.7 Hz, 1H), 2.42 (dddd, *J* = 13.3, 6.6, 5.3, 1.9 Hz, 1H), 2.32 (s, 3H), 2.01 (ddd, *J* = 13.1, 9.0, 6.1 Hz, 1H), 1.06 (d, *J* = 26.3 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 142.72, 136.87, 136.38, 134.63, 129.29, 129.02, 128.71, 126.49, 125.50, 125.33, 83.34, 37.63, 31.50, 27.25, 24.40, 24.24, 20.94. ¹¹B NMR (128 MHz, CDCl₃) δ 35.67. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₂₉BNaO₂⁺: 371.2153.1996; found: 371.2153.

2-(2-([1,1'-biphenyl]-4-yl)-1,2,3,4-tetrahydronaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 11c

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 50.0 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 2H), 7.56 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.50 – 7.39 (m, 4H), 7.37 – 7.29 (m, 1H), 7.25 – 7.20 (m, 1H), 7.15 – 7.04 (m, 3H), 3.38 (d, *J* = 15.9 Hz, 1H), 3.13 – 2.96 (m, 2H), 2.81 (dt, *J* = 17.3, 5.8 Hz, 1H), 2.53 – 2.42 (m, 1H), 2.08 (ddd, *J* = 13.5, 8.8, 6.2 Hz, 1H), 1.09 (d, *J* = 25.1 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 144.98, 141.06, 138.03, 136.70, 136.36, 129.33, 128.76, 128.70, 127.07, 126.97, 126.94, 125.60, 125.42, 83.48, 37.50, 31.45, 27.22, 24.42, 24.26. ¹¹B NMR (128 MHz, CDCl₃) δ 34.43. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₈H₃₁BNaO₂⁺: 433.2309; found: 433.2333.

2-(2-(4-chlorophenyl)-1,2,3,4-tetrahydronaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 11d

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 42.7 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 7.20 – 7.15 (m, 2H), 7.11 (dd, *J* = 6.3, 2.7 Hz, 1H), 7.06 – 6.99 (m, 2H), 6.98 – 6.93 (m, 1H), 3.29 – 3.16 (m, 1H), 2.97 – 2.83 (m, 2H), 2.65 (dt, *J* = 17.3, 6.0 Hz, 1H), 2.30 (dtd, *J* = 13.4, 6.0, 1.6 Hz, 1H), 1.94 (ddd, *J* = 13.0, 8.5, 6.1 Hz, 1H), 0.99 (d, *J* = 23.7 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 144.19, 136.25, 136.13, 131.03, 129.26, 128.75, 128.35, 128.13, 125.68, 125.48, 83.55, 37.20, 31.29, 26.92, 24.38, 24.23. ¹¹B NMR (128 MHz, CDCl₃) δ 34.05. HRMS (ESI) m/z: [M] calcd for C₂₂H₂₆BClO₂: 368.1714; found: 368.1710.

2-(3,4-dihydro-[2,2'-binaphthalen]-2(1*H*)-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 11e

Eluent: petroleum ether/ethyl acetate (20:1), Rf = 0.5, colorless oil, 27.6 mg, 36% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.71 (m, 4H), 7.63 – 7.56 (m, 1H), 7.46 – 7.37 (m, 2H), 7.23 (dd, *J* = 7.3, 1.7 Hz, 1H), 7.15 – 7.00 (m, 3H), 3.44 (d, *J* = 15.9 Hz, 1H), 3.13 (d, *J* = 15.9 Hz, 1H), 3.02 (ddd, *J* = 15.9, 8.9, 6.3 Hz, 1H), 2.78 (dt, *J* = 17.3, 5.7 Hz, 1H), 2.53 (dtd, *J* = 13.1, 6.0, 1.7 Hz, 1H), 2.12 (ddd, *J* = 13.0, 8.9, 6.1 Hz, 1H), 1.05 (d, *J* = 24.2 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 143.30, 136.66, 136.33, 133.73, 131.69, 129.31, 128.73, 127.88, 127.58, 127.37, 125.92, 125.64, 125.58, 125.41, 125.08, 124.60, 83.49, 37.48, 31.37, 27.24, 24.39, 24.23. ¹¹B NMR (128 MHz, CDCl₃) δ 34.56. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₆H₂₉BNaO₂⁺: 407.2153; found: 407.2157.

2-(2-(4-methoxy-3,5-dimethylphenyl)-1,2,3,4-tetrahydronaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 11f

Eluent: petroleum ether/ethyl acetate (15:1), Rf = 0.5, colorless oil, 44.7.6 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.14 (m, 1H), 7.13 – 6.97 (m, 5H), 3.70 (s, 3H), 3.28 (dd, *J* = 15.8, 2.0 Hz, 1H), 3.03 (ddd, *J* = 16.8, 10.1, 6.4 Hz, 1H), 2.92 (d, *J* = 15.8 Hz, 1H), 2.87 – 2.78 (m, 1H), 2.41 (dddd, *J* = 12.6, 6.2, 4.1, 2.0 Hz, 1H), 2.27 (s, 6H), 1.92 (ddd, *J* = 12.9, 10.0, 6.2 Hz, 1H), 1.03 (d, *J* = 32.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 154.69, 141.16, 137.08, 136.32, 130.22, 129.29, 128.65, 126.88, 125.50, 125.27, 83.33, 59.65, 38.22, 31.70, 27.62, 24.31, 24.15, 16.30. ¹¹B NMR (128 MHz, CDCl₃) δ 35.04. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₃₄BO₃⁺: 393.2596; found: 393.2579.

methyl 4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4-tetrahydronaphthalen -2-yl)benzoate 11g

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 56.4 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.92 (m, 2H), 7.51 – 7.41 (m, 2H), 7.22 – 7.16 (m, 1H), 7.13 – 7.05 (m, 2H), 7.05 – 6.99 (m, 1H), 3.89 (s, 3H), 3.34 (d, *J* = 16.0 Hz, 1H), 3.08 – 2.92 (m, 2H), 2.72 (dt, *J* = 17.3, 5.9 Hz, 1H), 2.49 – 2.36 (m, 1H), 2.07 (ddd, *J* = 13.0, 8.4, 6.1 Hz, 1H), 1.05 (d, *J* = 22.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 167.27, 151.45, 136.17, 136.10, 129.58, 129.27, 128.75, 127.20, 126.75, 125.72, 125.51, 83.62, 51.93, 37.01, 31.19, 26.94, 24.35, 24.21. ¹¹B NMR (128 MHz, CDCl₃) δ 33.04. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₄H₂₉BNaO₄⁺: 405.2051; found: 405.2074.

4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4-tetrahydronaphthalen-2-yl)benzonitrile 11h

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 44.5 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.54 (m, 2H), 7.49 – 7.36 (m, 2H), 7.19 – 7.13 (m, 1H), 7.13 – 7.05 (m, 2H), 7.05 – 6.97 (m, 1H), 3.31 (d, *J* = 16.0 Hz, 1H), 3.03 (d, *J* = 16.0 Hz, 1H), 2.97 – 2.90 (m, 1H), 2.67 (dt, *J* = 17.3, 6.2 Hz, 1H), 2.38 (dtd, *J* = 12.7, 6.2, 1.5 Hz, 1H), 2.06 (ddd, *J* = 13.5, 8.1, 6.1 Hz, 1H), 1.06 (d, *J* = 21.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 151.62, 135.87, 135.65, 132.04, 129.22, 127.59, 125.87, 125.65, 119.24, 109.06, 83.81, 36.67, 31.05, 26.68, 24.35, 24.21. ¹¹B NMR (128 MHz, CDCl₃) δ 34.04. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₂₆BNNaO₂⁺: 382.1949; found: 382.1970.

1-phenylcyclobutan-1-ol 12a

Eluent: petroleum ether/ethyl acetate (5:1), Rf = 0.5, colorless oil, 10.0 mg, 34% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 7.32 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.26 – 7.19 (m, 1H), 2.52 (dtd, *J* = 13.8, 5.2, 2.6 Hz, 2H), 2.36 – 2.27 (m, 2H), 2.03 – 1.91 (m, 2H), 1.64 (dtd, *J* = 11.1, 8.7, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.24, 128.48, 127.29, 124.98, 36.84, 13.03. Spectroscopic data are in agreement with those previously reported.⁶

1-chloro-4-(1-vinylcyclopropyl)benzene 13a

Eluent: petroleum ether/ethyl acetate (PE), Rf = 0.8, colorless oil, 36.5 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.18 (m, 4H), 5.66 (dd, *J* = 17.0, 10.4 Hz, 1H), 4.91 (dd, *J* = 10.4, 1.3 Hz, 1H), 4.57 (dd, *J* = 17.1, 1.3 Hz, 1H), 1.07 – 1.02 (m, 2H), 1.01 – 0.96 (m, 2H). ¹³C NMR

 $(101 \text{ MHz}, \text{CDCI}_3) \delta 144.89, 141.49, 132.11, 131.30, 128.36, 112.48, 28.24, 14.80. \text{ HRMS} (ESI)$ m/z: [M+H]⁺ calcd for C₁₁H₁₂Cl⁺: 179.0622; found: 179.0624.

2-(1-(4-chlorophenyl)cyclopropyl)furan 13b

Eluent: petroleum ether/ethyl acetate (50:1), Rf = 0.5, colorless oil, 74.1 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 5H), 6.24 (dd, *J* = 3.2, 1.9 Hz, 1H), 5.83 (dd, *J* = 3.2, 0.8 Hz, 1H), 1.42 – 1.38 (m, 2H), 1.21 – 1.18 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.25, 141.32, 141.02, 132.36, 130.31, 128.46, 110.25, 105.70, 23.99, 15.11. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₂ClO⁺: 219.0571; found: 219.0573.

4,4,5,5-tetramethyl-2-(4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropyl)phenyl)-1,3,2-dioxaborolane 13c

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 115.3 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.65 (m, 2H), 7.29 – 7.25 (m, 2H), 1.32 (s, 12H), 1.20 (s, 12H), 1.11 (q, *J* = 3.5 Hz, 2H), 0.91 (q, *J* = 3.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.41, 134.55, 128.46, 83.49, 83.33, 24.84, 24.58, 13.22. ¹¹B NMR (128 MHz, CDCl₃) δ 33.23, 30.94. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₃₂B₂NaO₄⁺: 365.2066; found: 365.2085.

1-phenylcyclopropan-1-ol 13d

Eluent: petroleum ether/ethyl acetate (5:1), Rf = 0.5, colorless oil, 48.9 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 4H), 7.21 – 7.15 (m, 1H), 2.69 (s, 1H), 1.23 – 1.17 (m, 2H), 1.02 – 0.95 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.32, 128.37, 124.45, 56.57. Spectroscopic data are in agreement with those previously reported.^[6]

1-((1s,4r)-4-pentylcyclohexyl)-4-(1-phenylcyclopropyl)benzene 13e

Eluent: petroleum ether/ethyl acetate (PE), Rf = 0.7, colorless oil, 70.9 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.23 (m, 4H), 7.22 – 7.04 (m, 5H), 2.41 (tt, *J* = 12.2, 3.3 Hz, 1H), 1.89 – 1.82 (m, 4H), 1.33 – 1.18 (m, 15H), 1.02 (tdd, *J* = 14.0, 11.2, 3.6 Hz, 2H), 0.91 – 0.87 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.60, 145.48, 143.12, 128.54, 128.20, 128.13, 126.65, 44.17, 37.41, 37.36, 34.38, 33.67, 32.23, 29.56, 26.65, 22.70, 16.33, 14.08. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₃₅⁺: 347.2733; found: 347.2738.

(4-(1-phenylcyclopropyl)phenyl)methanol 13f

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 76.2 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.16 (m, 9H), 4.64 (s, 2H), 1.31 (dt, *J* = 5.1, 1.9 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 145.63, 145.37, 138.55, 128.66, 128.41, 128.31, 127.11, 126.01, 65.16, 29.70, 16.44. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₇O⁺: 225.1274; found: 225.1279.

4-(1-phenylcyclopropyl)benzyl (3r,5r,7r)-adamantane-1-carboxylate 13g

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 76.2 mg, 59% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.05 (m, 9H), 4.98 (s, 2H), 1.93 (p, *J* = 3.1 Hz, 3H), 1.83 (s, 6H), 1.67 – 1.59 (m, 6H), 1.23 – 1.18 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 177.53, 145.61, 134.15, 128.59, 128.38, 128.32, 127.63, 126.08, 65.55, 40.80, 38.87, 36.53, 29.72, 27.98, 16.45.

4-(1-phenylcyclopropyl)benzyl 4-((6-(acryloyloxy)hexyl)oxy)benzoate 13h

Eluent: petroleum ether/ethyl acetate (10:1), Rf = 0.5, colorless oil, 67.7 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.00 (m, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.29 – 7.23 (m, 6H), 7.23 – 7.15 (m, 1H), 6.93 – 6.88 (m, 2H), 6.41 (dd, *J* = 17.3, 1.4 Hz, 1H), 6.14 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.82 (dd, *J* = 10.4, 1.5 Hz, 1H), 5.30 (s, 2H), 4.19 (t, *J* = 6.6 Hz, 2H), 4.01 (t, *J* = 6.4 Hz, 2H), 1.88 – 1.68 (m, 4H), 1.55 – 1.44 (m, 4H), 1.34 – 1.27 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 166.32, 166.25, 162.97, 145.88, 133.93, 131.75, 130.55, 128.60, 128.53, 128.51, 128.32, 128.21, 126.07, 114.08, 67.99, 66.19, 64.48, 29.75, 29.01, 28.57, 25.74, 25.71, 16.46. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₃₄NaO₅⁺: 521.2298; found: 521.2314.

NMR Spectra

¹³C NMR spectrum of **1b** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1c** (400 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1d** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1e** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **1e** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **1f** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1g** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **1g** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **1h** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1i** (400 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1j** (101 MHz, Chloroform-*d*)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:

¹⁹F NMR spectrum of **1j** (377 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1k** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1**I (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **1I** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **1m** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1n** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **1n** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **1o** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1p** (400 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1q** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1r** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **1r** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **1s** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1t** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **1t** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **1u** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1v** (400 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1w** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **1x** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **1x** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **2h** (101 MHz, Chloroform-*d*)

¹³C NMR spectrum of **2i** (101 MHz, Chloroform-*d*)

¹³C NMR spectrum of **2j** (101 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3a** (101 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **3b** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **3c** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **3d** (400 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3e** (101 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **3f** (128 MHz Chloroform-*d*)

¹¹B NMR spectrum of **3h** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **3i** (101 MHz, Chloroform-*d*)

S106

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:

¹⁹F NMR spectrum of **3j** (377 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **3k** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **3I** (101 MHz, Chloroform-*d*)

¹³C NMR spectrum of **3n** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **3o** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **3o** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **3p** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **3q** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **3q** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **3r** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **3s** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **3s** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **3t** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **3u** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **3u** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **3v** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **4a** (400 MHz, Chloroform-*d*)

¹³C NMR spectrum of **4b** (101 MHz, Chloroform-*d*)

¹³C NMR spectrum of 4d (101 MHz, Chloroform-d)

¹H NMR spectrum of **5a** (400 MHz, Chloroform-*d*)

S132

¹³C NMR spectrum of **5b** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **5c** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **5c** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **5d** (101 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **5d** (128 MHz Chloroform-*d*)

¹H NMR spectrum of **5e** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **5e** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **5f** (101 MHz, Chloroform-*d*)

S140

¹³C NMR spectrum of **7a** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of 8a (400 MHz, Chloroform-d)

¹¹B NMR spectrum of 8a (128 MHz Chloroform-d)

¹³C NMR spectrum of **9a** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **9b** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **9b** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **9c** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **9d** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **9d** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **9e** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **9f** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **9f** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **9g** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **9h** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **9h** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **9j** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **9k** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **9k** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **9I** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **10a** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **10a** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **11a** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **11b** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **11b** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **11c** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **11d** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **11d** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **11e** (101 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **11e** (128 MHz Chloroform-*d*)

¹H NMR spectrum of **11f** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **11f** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **11g** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **11h** (400 MHz, Chloroform-*d*)

¹¹B NMR spectrum of **11h** (128 MHz Chloroform-*d*)

¹³C NMR spectrum of **12a** (101 MHz, Chloroform-*d*)

¹³C NMR spectrum of **13a** (101 MHz, Chloroform-*d*)

¹³C NMR spectrum of **13b** (101 MHz, Chloroform-*d*)

¹³C NMR spectrum of **13c** (101 MHz, Chloroform-*d*)

¹H NMR spectrum of **13e** (400 MHz, Chloroform-*d*)

S181

¹H NMR spectrum of **13h** (400 MHz, Chloroform-*d*)

References

[1] a) V. Němec, M. Hylsová, L. Maier, J. Flegel, S. Sievers, S. Ziegler, M. Schröder, B. T. Berger, A. Chaikuad, B. Valčíková, S. Uldrijan, S. Drápela, K. Souček, H. Waldmann, S. Knapp, K. Paruch, *Angew. Chem. Int. Ed.* **2018**, *58*, 1062-1066; b) F. Gao, A. H. Hoveyda, *J. Am. Chem. Soc.* **2010**, *132*, 10961-10963.

[2] a) Y.-J. Li, D.-G. Liu, J.-H. Ren, T.-J. Gong, Y. Fu, *J. Org. Chem.* 2023, *88*, 4325-4333; b)
H. Jang, A. R. Zhugralin, Y. Lee, A. H. Hoveyda, *J. Am. Chem. Soc.* 2011, *133*, 7859-7871.

[3] J. Werth, K. Berger, C. Uyeda, Adv. Synth. Catal. 2019, 362, 348-352.

[4] X. Y. Chen, F. C. Gao, P. F. Ning, Y. Wei, K. Hong, *Angew. Chem. Int. Ed.* **2023**, *62*, e202302638.

[5] P. B. Dzhevakov, M. A. Topchiy, D. A. Zharkova, O. S. Morozov, A. F. Asachenko, M. S. Nechaev, *Adv. Synth. Catal.* **2016**, *358*, 977-983.

[6] R. Bhawar, S. Saini, K. S. Patil, D. H. Nagaraju, S. K. Bose, J. Org. Chem. 2023, 88, 16270-16279.

[7] E. Speckmeier, T. C. Maier, J. Am. Chem. Soc. 2022, 144, 9997-10005.

[8] T. Bhattacharya, S. Ghosh, S. Dutta, S. Guin, A. Ghosh, H. Ge, R. B. Sunoj, D. Maiti, *Angew. Chem. Int. Ed.* **2023**, 63.

[9] Y. Ping, R. Wang, Q. Wang, T. Chang, J. Huo, M. Lei, J. Wang, *J. Am. Chem. Soc.* **2021**, *143*, 9769-9780.