Supporting Information

Post-coordination of Ru(II) Controlled Regioselective B(4)–H Acylmethylation of *o*-Carboranes with Sulfoxonium Ylides

Hou-Ji Cao,^{*a} Jia-Xin Li,^a Jia-Hui Yan,^a Miao-Xin Liu,^a Qianyi Zhao,^a Jie Zhang,^a Ju Zhang,^{*a} and Hong Yan^{*b}

^aHenan Key Laboratory of Boron Chemistry and Advanced Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China ^bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China

E-mail: caohouji@htu.edu.cn, zhangju@htu.edu.cn, hyan@nju.edu.cn

TABLE OF CONTENTS

1.	General Information	S2
2.	Experimental Section	S4
3.	Transformations and Synthetic Applications	
4.	Mechanistic Study	S40
5.	References	
6.	Crystallographic Data	
7.	NMR Spectra	

1. General Information

Solvents

Unless otherwise noted, all the solvents were purchased from commercial sources and used directly. Toluene, tetrahydrofuran (THF), and Et₂O were refluxed and distilled over sodium/benzophenone under nitrogen. Dry 1,2-dichloroethane (DCE), anisole, and CH₃CN were purchased from J&K Chemicals and Energy Chemical. CH₂Cl₂ (DCM), petroleum ether (PE), ethyl acetate (EA), 2,2,2-Trifluoroethanol (TFE), and hexafluoroisopropanol (HFIP) were purchased from Energy Chemical.

Chromatography

Glass-backed Silica Gel 60 thin-layer chromatography (TLC) plates were used as received. Column chromatography was performed on Silica Gel 60 (200–300 or 300–400 mesh). The plates were visualized using a 254 nm ultraviolet lamp.

Spectroscopy and Instruments

¹H, ¹¹B, ¹³C, and ¹⁹F NMR spectra were recorded on Bruker AVANCE III 400 or 600 MHz NMR spectrometers in ambient conditions unless otherwise stated. All chemical shifts were reported in δ units with references to the residual solvent resonances of the deuterated solvents for proton and carbon chemical shifts. Note that H₂O resonances are often present due to high humidity. ¹¹B chemical shifts were measured utilizing external BF₃·Et₂O (δ ¹¹B = 0.00 ppm) as reference. ¹⁹F NMR spectra were referenced to fluorobenzene (δ = –113.15 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d =doublet, t = triplet, q = quartet, and m = multiplet), coupling constant (*J* values) in Hz, and integration. The high-resolution mass spectra (HRMS) were recorded on a Bruker Mass spectrometer using ESI-TOF (electrospray ionization time of flight).

Starting materials

Commercially available chemicals, including catalysts and salts, were purchased from Energy Chemica, and J&K Chemicals, and used without additional purification. *o*-carborane containing starting materials 1^1 and sulfoxonium ylides 2^2 were synthesized according to reported procedures. **1a-d10** (90% deuterium incorporation, DI) was prepared from 1-Ph-C₂B₁₀D₁₀ (90% DI) in almost quantitative yield.

X-ray Crystallography.

X-ray diffraction data of **3b**, **3l**, **7** and **A**₂ (CCDC No. 2426834-2426837) were collected on a Rigaku SuperNova, Dual, Cu at home/near, EosS2 diffractometer with hi-flux X-ray microfocus sources, upon irradiation of Cu K α radiation ($\lambda = 1.54184$ Å). The data collection, processing, and analysis were performed using CrysAlis^{Pro} software (Rigaku Oxford Diffraction, 2019). An EosS2 CCD detector was used for the collection of frames and were processed with the CrysAlis^{Pro} software³. CrysAlis^{Pro} was used for empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm⁴. Using Olex2⁵, the structure was solved with the SHELXT⁶ structure solution program using Intrinsic Phasing and refined with the SHELXL⁷ refinement package using Least Squares minimization. The non-hydrogen atoms were added with appropriate AFIX recommendations. X-ray data can be obtained from the Cambridge Crystallographic Data Centre *via* https://www.ccdc.cam.ac.uk/structures/

2. Experimental Section

2.1 Condition Optimization

Table S1. Effect of Catalyst^a

^{*a*}Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), catalyst (0.005 mmol), HFIP (1.0 mL), 100 °C, 12 h, N₂ atmosphere. ^{*b*}Yield was determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard.

Table S2. Effect of Additives^a

3	AgOAc (0.2)	91
4	AgOAc (1.0)	35
5	NaOTf (1.0)	52
6	Na ₂ CO ₃ (1.0)	15
7	Na ₂ HPO ₄ (1.0)	84
8	KOAc (1.0)	quant.

^{*a*}Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), [Ru(benzene)Cl₂]₂ (0.005 mmol), additive (0.1 mmol), HFIP (1.0 mL), 100 °C, 12 h, N₂ atmosphere. ^{*b*}Yield was determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard.

Table S3. Effect of Solvents^a

^{*a*}Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), [Ru(benzene)Cl₂]₂ (0.005 mmol), NaOAc (0.1 mmol), solvent (1.0 mL), 100 °C, 12 h, N₂ atmosphere. ^{*b*}Yield was determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard.

^{*a*}Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), [Ru(benzene)Cl₂]₂ (0.005 mmol), NaOAc (0.1 mmol), HFIP (1.0 mL), N₂ atmosphere. ^{*b*}Yield was determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard.

Table S5. Effect of the Amount of 2a and [Ru(benzene)Cl2]2^a

Ph 1	OH + a	0 [Ru(benzene)Cl ₂] ₂ (2. <u>NaOAc (1.0 equiv.</u> HFIP (1.0 mL) N ₂ , 60 °C , 3 h	$5 \mod \%$) $) \longrightarrow Ph \longrightarrow 0$ 3a
Entry	2a/equiv.	[Ru(benzene)Cl ₂] ₂ /[x mol%]	Yield [%] ^{<i>b</i>} of 3a
1	1.2	5	93
2	1.5	2.5	quant. (99%) ^c
3	1.5	0	0
4	under air	2.5	78

^{*a*}Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), [Ru(benzene)Cl₂]₂ (0.005 mmol), NaOAc (0.1 mmol), HFIP (1.0 mL), 100 °C, 3 h, N₂ atmosphere. ^{*b*}Yield was determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard. ^{*c*}Isolated yield.

2.2 General procedure for the preparation of B(4)-acylmethylated carboranes.

General procedure for the preparation of 3 or 4. *o*-Carboranyl acid 1 (0.1 mmol), sulfoxonium ylide 2 (0.15 mmol), NaOAc (0.1 mmol, 8.2 mg), $[Ru(benzene)Cl_2]_2$ (2.5 mol%, 1.3 mg) and HFIP (1 mL) were mixed in a 10 mL Schlenk tube under N₂ atmosphere. The resulting mixture was stirred at 60 °C for 3 h. Afterward, the reaction mixture was allowed to cool to room temperature and filtered through a pad of Celite. The filtrate was concentrated in *vacuo*. The crude reaction mixture was purified using preparative thin-layer chromatography (PTLC) with PE/DCM or PE/EA as the eluent to obtain the desired products **3** or **4**.

Compound data:

3a: Yield 99%. White solid.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.06 – 7.92 (m, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.52 – 7.42 (m, 4H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H) (aryl C–*H*), 4.39 (s, 1H, cage C–*H*), 2.98 (d, *J* = 13.6 Hz, 1H), 2.93 (d, *J* = 13.6 Hz, 1H) (B–C*H*₂). ¹¹B{¹H} NMR (128 MHz, Chloroform-*d*) δ -2.2 (1B), -3.7 (1B), -5.1 (1B), -8.5 (1B),

-9.3 (2B), -11.0 (3B), -13.4 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 201.7 (*C*=O), 137.5, 133.4, 130.0, 129.0, 128.82, 128.79, 127.6, 125.2 (aryl-*C*), 77.3, 61.2 (cage *C*), 28.2 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀OH₂₃ [M+H⁺]: 339.2754. Found: 339.2781.

3b: Yield 91%. White solid.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 7.4 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.34 – 7.24 (m, 4H) (aryl C–*H*), 4.38 (s, 1H, cage C–*H*), 2.94 (d, *J* = 13.5 Hz, 1H), 2.89 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂), 2.42 (s, 3H, C*H*₃). ¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.7 (1B), -5.0 (1B), -8.4 (1B), -9.3 (1B), -10.5 (1B), -11.1 (2B), -11.7 (1B), -13.4 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.3 (*C*=O), 144.2, 135.0, 133.4, 130.0, 129.5, 129.0, 128.9, 127.6 (aryl-*C*), 77.3, 61.3 (cage *C*), 28.5 (B-*C*H₂), 21.8 (*C*H₃).

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀O₂H₂₅ [M+H]⁻: 369.2860. Found: 369.2860.

Figure S1. Molecular structure of compound 3b (ellipsoids at 30% probability).

3c: Yield 95%. White solid.

¹**H NMR** (**400 MHz**, **Chloroform**-*d*) δ 7.97 (m 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.34 – 7.27 (m, 2H), 7.01 – 6.87 (m, 2H) (aryl C–*H*), 4.38 (s, 1H, cage C–*H*), 3.88 (s, 3H, C*H*₃), 2.92 (d, J = 13.4 Hz, 1H), 2.86 (d, J = 13.4 Hz, 1H) (B–C*H*₂). ¹¹B{¹H} **NMR (128 MHz, Chloroform**-*d*) δ -2.2 (1B), -3.8 (1B), -4.9 (1B), -8.5 (1B), -9.3 (1B), -10.5 (1B), -11.2 (2B), -11.7 (1B), -13.4 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 200.1 (*C*=O), 163.8, 133.4, 131.15, 130.5, 130.0, 128.9, 127.6, 113.9 (aryl-*C*), 77.3, 61.3 (cage *C*), 55.6 (*C*H₃), 28.2 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀O₂H₂₅ [M+H]⁻: 369.2860. Found: 369.2860.

3d: Yield 80%. White solid.

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.08 – 7.98 (m, 2H), 7.50 – 7.43 (m, 2H), 7.42 – 7.36 (m, 1H), 7.36 – 7.27 (m, 4H) (aryl C–*H*), 4.36 (s, 1H, cage C–*H*), 2.96 (d, *J* = 13.5 Hz, 1H), 2.90 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B), -9.2 (1B), -10.6 (1B), -11.1 (2B), -11.8 (1B), -13.3 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 200.0 (*C*=O), 152.9, 135.6, 133.3, 130.9, 130.1, 129.0, 127.6, 120.46 (aryl-*C*), 120.44 (q, *J*_{C-F} = 258.8 Hz, *C*F₃), 77.4, 61.3 (cage *C*), 28.0 (B-*C*H₂).

¹⁹F NMR (565 MHz, Chloroform-d) δ -57.6.

HRMS (ESI, positive mode): m/z calcd for $C_{17}B_{10}O_2F_3H_{22}$ [M+H⁺]: 423.2578. Found: 423.2579.

3e: Yield 93%. White solid.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.07 – 7.93 (m, 2H), 7.50 – 7.43 (m, 2H), 7.41 – 7.36 (m, 1H), 7.35 – 7.30 (m, 2H), 7.17 – 7.12 (m, 2H) (aryl C–*H*), 4.36 (s, 1H, cage C–*H*), 2.94 (d, *J* = 13.6 Hz, 1H), 2.89 (d, *J* = 13.6 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -3.8 (1B), -5.2 (1B), 8.5 (1B), -9.3 (1B), -10.7 (1B), -11.1 (2B), -11.8 (1B), -13.4 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 200.0 (*C*=O), 166.0 (d, $J_{C-F} = 254.9$ Hz), 133.8 (d, J = 3.2 Hz), 133.3, 131.5 (d, $J_{C-F} = 9.4$ Hz), 130.1, 129.0, 127.7, 115.9 (d, $J_{C-F} = 21.9$ Hz) (aryl–C), 77.4, 61.3 (cage–C), 28.6 (B–CH₂).

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -105.1.

HRMS (ESI, positive mode): *m*/*z* calcd for C₁₆B₁₀FOH₂₂ [M+H⁺]: 357.2660. Found: 357.2660.

3f: Yield 99%. White solid.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 4H), 7.41 – 7.36 (m, 1H), 7.36 – 7.28 (m, 2H) (aryl C–*H*), 4.35 (s, 1H, cage C–*H*), 2.94 (d, *J* = 13.5 Hz, 1H), 2.89 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B),
-9.3 (1B), -10.6 (1B), -11.1 (2B), -11.8 (1B), -13.4 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 200.3 (*C*=O), 139.9, 135.7, 133.3, 130.3,

130.1, 129.1, 129.0, 127.7 (aryl-C), 61.3 (cage-C), 28.7 (B-CH₂).

HRMS (ESI, positive mode): m/z calcd for $C_{16}B_{10}ClOH_{22}$ [M+H⁺]: 374.2339. Found: 374.2348.

3g: Yield 99%. White solid.

¹**H NMR (400 MHz, Chloroform-***d*) δ 7.90 – 7.78 (m, 2H), 7.65 – 7.58 (m, 2H), 7.49 – 7.42 (m, 2H), 7.41 – 7.36 (m, 1H), 7.35 – 7.28 (m, 2H) (aryl C–*H*), 4.35 (s, 1H, cage C–*H*), 2.94 (d, *J* = 13.5 Hz, 1H), 2.88 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B), -9.3 (1B), -10.6 (1B), -11.0 (2B), -11.7 (1B), -13.3 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-d) 200.4 (C=O), 136.1, 133.3, 132.1, 130.1, 129.0, 128.6, 127.6 (aryl-C), 77.4, 61.3 (cage-C), 28.2 (B-CH₂).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀BrOH₂₂ [M+H⁺]: 418.1845. Found: 418.1845.

3h: Yield 99%. White solid.

¹**H NMR (400 MHz, Chloroform-***d*) δ 7.88 – 7.81 (m, 2H), 7.72 – 7.65 (m, 2H), 7.50 – 7.42 (m, 2H), 7.41 – 7.35 (m, 1H), 7.35 – 7.29 (m, 2H) (aryl C–*H*), 4.34 (s, 1H, cage C–*H*), 2.92 (d, *J* = 13.5 Hz, 1H), 2.87 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{1H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B), -9.3 (1B), -10.6 (1B), -11.1 (2B), -11.8 (1B), -13.3 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 200.8 (*C*=O), 138.1, 136.6, 133.3, 130.2, 130.1, 129.0, 127.6, 101.5 (aryl-*C*), 61.2 (cage-*C*), 28.6 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀IOH₂₂ [M+H⁺]: 465.1720. Found: 465.1720.

3i: Yield 99%. White solid.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.09 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.50 – 7.43 (m, 2H), 7.43 – 7.37 (m, 1H), 7.36 – 7.29 (m, 2H) (aryl C–*H*), 4.35 (s, 1H, cage C–*H*), 3.00 (d, *J* = 13.5 Hz, 1H), 2.95 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (128 MHz, Chloroform-*d*) δ -2.0 (1B), -3.8 (1B), -5.4 (1B), -8.5 (1B), -9.2 (1B), -11.0 (3B), -11.7 (1B), -13.0 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 200.5 (*C*=O), 140.0, 134.6 (q, *J*_{*C*-*F*} = 32.5 Hz), 133.2, 130.2, 129.1, 129.0, 127.6, 125.9 (q, *J*_{*C*-*F*} = 3.7 Hz) (aryl–*C*), 123.8 (q, *J*_{*C*-*F*</sup> = 273.3 Hz, *C*F₃) 61.3 (s, 1H, cage–*C*), 29.0 (B–*C*H₂);}

¹⁹F NMR (**376** MHz, Chloroform-*d*) δ -63.07.

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀OF₃H₂₂ [M+H⁺]: 407.2628. Found: 407.2626.

3j: Yield 99%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 8.10 – 8.03 (m, 2H), 7.73 – 7.69 (m, 2H), 7.68 – 7.62 (m, 2H), 7.51 – 7.45 (m, 4H), 7.43 – 7.36 (m, 2H), 7.35 – 7.30 (m, 2H) (aryl C–*H*), 4.42 (s, 1H, cage C–*H*), 3.02 (d, *J* = 13.5 Hz, 1H), 2.96 (d, *J* = 13.6 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.7 (1B), -5.1 (1B), -8.4 (1B), -9.3 (1B), -10.5 (1B), -11.2 (2B) -11.7 (1B), -13.4 (1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 201.2 (*C*=O), 146.0, 139.9, 136.1, 133.4, 130.0, 129.4, 129.1, 128.9, 128.4, 127.6, 127.4 (aryl-*C*), 77.3, 61.3 (cage-*C*), 28.3 (B-*C*H₂).
HRMS (ESI, positive mode): *m*/*z* calcd for C₂₂B₁₀OH₂₇ [M+H⁺]: 415.3070. Found: 415.3070.

3k: Yield 99%. White solid.

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.21 – 8.10 (m, 2H), 8.07 – 7.96 (m, 2H), 7.50 – 7.42 (m, 2H), 7.42 – 7.36 (m, 1H), 7.36 – 7.28 (m, 2H) (aryl C–*H*), 4.35 (s, 1H, cage C–*H*), 3.95 (s, 3H, CO₂C*H*₃), 3.00 (d, *J* = 13.6 Hz, 1H), 2.94 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B), -9.2 (1B), -11.1 (3B), -11.9 (1B), -13.3 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 201.0 (*C*=O), 166.4 (*C*O₂Me), 140.6, 134.1, 133.3, 130.1, 130.0, 129.0, 128.7, 127.6 (aryl-*C*), 61.2 (cage-*C*), 52.6 (CO₂*C*H₃), 29.2 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₈B₁₀O₃H₂₅ [M+H⁺]: 397.2810. Found: 397.2810.

3l: Yield 99%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 8.39 – 8.29 (m, 2H), 8.16 – 8.09 (m, 2H), 7.49 – 7.44 (m, 2H), 7.43 – 7.38 (m, 1H), 7.34 (dd, *J* = 8.5, 7.0 Hz, 2H) (aryl C–*H*), 4.34 (s, 1H, cage C–*H*), 3.02 (d, *J* = 13.6 Hz, 1H), 2.97 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -1.9 (1B), -3.9 (1B), -5.5 (1B), -8.6 (1B), -9.1 (1B), -11.0 (3B), -11.9 (1B), -13.1 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 199.8 (*C*=O), 150.5, 141.8, 133.1, 130.2, 129.8, 129.0, 127.6, 124.0 (aryl-*C*), 77.6, 61.3 (cage-*C*), 29.3 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀NO₃H₂₂ [M+H⁺]: 384.2605. Found: 384.2605.

Figure S2. Molecular structure of compound 31 (ellipsoids at 30% probability).

3m: Yield 87%. White solid.

¹**H NMR (400 MHz, Chloroform-***d*) δ 7.57 (m, 1H), 7.50 (m, 1H), 7.45 (m, 2H), 7.42 – 7.35 (m, 2H), 7.35 – 7.28 (m, 2H), 7.13 (m, 1H) (aryl C–*H*), 4.37 (s, 1H, cage C–*H*), 3.86 (s, 3H, C*H*₃), 2.96 (d, *J* = 13.5 Hz, 1H), 2.91 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.8 (1B), -5.1 (1B), -8.4 (1B), -9.3 (1B), -10.6 (1B), -11.1 (2B), -11.8 (2B), -13.4 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 201.4 (*C*=O), 160.0, 138.8, 133.4, 130.0, 129.8, 129.0, 127.6, 121.6, 120.0, 112.8 (aryl-*C*), 77.3, 61.2 (cage *C*), 55.6 (*C*H₃), 28.9 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀O₂H₂₅ [M+H]⁻: 369.2860. Found: 369.2859.

3n: Yield 68%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 7.66 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.40 – 7.35 (m, 1H), 7.34 – 7.28 (m, 2H), 7.04 – 6.94 (m, 2H) (aryl C–*H*), 4.47 (s, 1H, cage C–*H*), 3.91 (s, 3H, C*H*₃), 3.05 (d, *J* = 13.5 Hz, 1H), 3.02 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.5 (1B), -3.7 (1B), -4.9 (1B), -8.3 (1B), -9.4 (1B), -10.4 (1B), -11.3 (2B), -11.6 (1B), -13.6 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 203.6 (*C*=O), 158.7, 133.8, 133.7, 130.6, 129.9, 129.1, 128.9, 127.6, 120.7, 111.8 (aryl–*C*), 77.4, 61.3 (cage *C*), 55.6 (*C*H₃), 32.7 (B–*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀O₂H₂₅ [M+H⁺]: 369.2860. Found: 369.2861.

30: Yield 89%. White solid.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.41 – 7.34 (m, 3H), 7.34 – 7.29 (m, 2H) (aryl C–*H*), 4.38 (s, 1H, cage C–*H*), 2.96 (d, *J* = 13.6 Hz, 1H), 2.91 (d, *J* = 13.6 Hz, 1H) (B–C*H*₂), 2.42 (s, 3H, C*H*₃). ¹¹B{¹H} NMR (128 MHz, Chloroform-*d*) δ -2.3 (1B), -3.8 (1B), -5.1 (1B), -8.4 (1B), -9.3 (1B), -11.2 (4B), -13.5 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 201.9 (C=O), 138.6, 137.5, 134.2, 133.4, 130.0, 129.3, 128.9, 128.6, 127.6, 126.1 (aryl–C), 77.3, 61.2 (cage–C), 21.5 (CH₃). HRMS (ESI, positive mode): *m*/*z* calcd for C₁₇B₁₀OH₂₅ [M+H⁺]: 353.2911. Found: 353.2911.

3p: Yield 70%. White solid.

¹**H NMR (400 MHz, Chloroform-***d*) δ 7.74 (m, 1H), 7.50 – 7.43 (m, 2H), 7.42 – 7.21 (m, 6H) (aryl C–*H*), 4.48 (s, 1H, cage C–*H*), 2.93 (d, *J* = 14.0 Hz, 1H), 2.87 (d, *J* = 14.0 Hz, 1H) (B–C*H*₂), 2.52 (s, 3H, C*H*₃).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.3 (1B), -3.7 (1B), -5.0 (1B), -8.4 (1B), -9.3 (1B), -10.5 (1B), -11.1 (2B), -11.7 (1B), -13.4 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 205.3 (*C*=O), 138.5, 138.4, 133.5, 132.2, 131.7, 130.0, 129.7, 129.0, 127.6, 125.9 (aryl-*C*), 77.2, 61.2 (cage *C*), 30.6 (B-*C*H₂), 21.6 (*C*H₃).

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀OH₂₅ [M+H⁺]: 353.2911. Found: 353.2910.

3q: Yield 87%. White solid.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.59 (s, 2H), 7.50 – 7.42 (m, 2H), 7.41 – 7.35 (m, 1H), 7.35 – 7.28 (m, 2H), 7.22 (s, 1H) (aryl C–*H*), 4.39 (s, 1H, cage C–*H*), 2.95 (d, J = 13.6 Hz, 1H), 2.90 (d, J = 13.5 Hz, 1H) (B–C*H*₂), 2.38 (s, 6H, C*H*₃).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.7 (1B), -5.0 (1B), -8.4 (1B), -9.3 (1B), -10.5 (1B), -11.2 (2B), -11.7 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 202.1 (*C*=O), 138.4, 137.5, 133.4, 130.0, 128.9, 129.0, 127.6, 126.6 (aryl-*C*), 77.2, 61.2 (cage *C*), 28.6 (B-*C*H₂), 21.4 (*C*H₃).

HRMS (ESI, positive mode): m/z calcd for C₁₈B₁₀OH₂₇ [M+H⁺]: 367.3068. Found: 367.3068.

3r: Yield 98%. White solid.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.48 – 7.43 (m, 2H), 7.40 – 7.35 (m, 1H), 7.35 – 7.29 (m, 2H), 7.24 (s, 2H) (aryl C–*H*), 4.35 (s, 1H, cage C–*H*), 3.93 (s, 3H), 3.92 (s, 6H) (C*H*₃), 2.93 (d, *J* = 13.2 Hz, 1H), 2.88 (d, *J* = 13.2 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (128 MHz, Chloroform-*d*) δ -2.1 (1B), -3.8 (1B), -5.1 (1B), -8.5 (1B), -9.2 (1B), -11.2 (4B), -13.6 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 200.3, 153.1, 142.7, 133.3, 132.5, 130.1, 128.9, 127.6, 106.2 (aryl-*C*), 77.4 (cage *C*), 61.3 (cage *C*), 61.1 (*C*H₃), 56.4 (*C*H₃), 28.8 (B-*C*H₂).

HRMS (ESI, positive mode): *m*/*z* calcd for C₁₉B₁₀NO₄H₂₉ [M+H⁺]: 429.3073. Found: 429.3073.

3s: Yield 98%. White solid.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.51 – 7.46 (m, 2H), 7.43 – 7.39 (m, 1H), 7.38 – 7.31 (m, 1H) (aryl C–*H*), 4.39 (s, 1H, cage C–*H*), 2.91 (s, 2H, B–C*H*₂).

¹¹B{¹H} NMR (128 MHz, Chloroform-*d*) δ -2.0 (1B), -3.8 (1B), -6.1 (1B), -8.5 (1B), -9.1 (1B), -10.9 (3B), -11.9 (1B), -13.6 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 194.7 (*C*=O), 145.8 – 145.3 (m), 144.5 –

144.2 (m), 142.5 – 142.0 (m), 137.8 (dtd, *J* = 255.1 Hz, 15.9 Hz, 5.8 Hz), 137.0,

133.2, 130.2, 129.1, 127.6, 115.8 (t, *J* = 16.5 Hz), H (aryl–*C*), 77.5, 61.2 (cage *C*), 34.9 (B–*C*H₂).

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -140.18 – -140.38 (m, 2F), -148.73 (m, 1F), -159.82 – -160.00 (m, 2F).

HRMS (ESI, positive mode): *m*/*z* calcd for C₁₆B₁₀OF₅H₁₈ [M+H⁺]: 451.2102. Found: 451.2106.

3t: Yield 41%. White solid.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 12.77 (s, 1H), 8.84 (s, 1H), 8.06 (m, 2H), 7.89 (d, J = 8.2 Hz, 1H), 7.60 – 7.48 (m, 3H), 7.46 – 7.41 (m, 2H), 7.39 – 7.34 (m, 1H), 7.32 – 7.23 (m, 2H), 7.06 – 6.95 (m, 1H) (aryl C–*H*), 4.21 (s, 1H, cage C–*H*), 3.01 (d, J = 13.2 Hz, 1H), 2.97 (d, J = 13.2 Hz, 1H) (B–C*H*₂), 2.46 (s, 3H, C*H*₃).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -1.9 (1B), -3.9 (1B), -5.1 (1B), -8.5 (1B), -9.2 (1B), -11.1 (3B), -11.1 (1B), -13.3 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 206.1 (CH₂*C*=O), 166.2 (*C*=O NH), 147.2, 141.8, 135.2, 133.2, 132.6, 132.0, 130.1, 129.0, 128.9, 127.7, 127.6, 123.8, 121.3, 119.9 (aryl-*C*), 77.6, 61.3 (cage *C*), 22.4 (*C*H₃).

HRMS (ESI, positive mode): m/z calcd for C₂₄B₁₀NO₂H₃₀ [M+H⁺]: 472.3285. Found: 472.3285.

3u: Yield 65%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 8.69 (d, *J* = 8.6 Hz, 1H), 8.01 (m, 2H), 7.90 (d, *J* = 8.1, Hz, 1H), 7.60 (m, 1H), 7.57 – 7.52 (m, 2H), 7.46 – 7.40 (m, 2H), 7.40 – 7.35 (m, 1H), 7.34 – 7.28 (M, 2H) (aryl C–*H*), 4.51 (s, 1H, cage C–*H*), 3.11 (d, *J* = 13.9 Hz, 1H), 3.07 (d, *J* = 13.9 Hz, 1H) (B–C*H*₂). ¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.3 (1B), -3.7 (1B), -5.0 (1B), -8.3 (1B), -9.3 (1B), -10.5 (1B), -11.1 (2B), -11.6 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 205.2 (*C*=O), 136.19, 134.2, 133.4, 133.3, 130.3, 130.0, 129.1, 128.9, 128.7, 128.2, 127.6, 126.6, 126.0, 124.6 (aryl-*C*), 77.3, 61.1 (cage *C*), 32.5 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₂₀B₁₀OH₂₅ [M+H⁺]: 289.2912. Found: 289.2912.

3v: Yield 99%. White solid.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.53 (s, 1H), 8.06 (dd, J = 8.6, 1.8 Hz, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.95 – 7.85 (m, 2H), 7.65 – 7.54 (m, 2H), 7.48 – 7.41 (m, 2H), 7.41 – 7.35 (m, 1H), 7.34 – 7.28 (m, 2H) (aryl C–*H*), 4.42 (s, 1H, cage C–*H*), 3.11 (d, J = 13.9 Hz, 1H), 3.06 (d, J = 13.9 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.7 (1B), -5.0 (1B), -8.4 (1B), -9.3 (1B), -10.5 (1B), -11.1 (2B), -11.7 (1B), -13.4 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.5 (*C*=O), 135.8, 134.7, 133.4, 132.7, 130.9, 130.0, 129.9, 128.9, 128.7, 127.9, 127.6, 126.9, 124.3 (aryl-*C*), 77.3, 61.3 (cage *C*), 28.7 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₂₀B₁₀OH₂₅ [M+H⁺]: 289.2912. Found: 289.2910.

3w Yield 94%. White solid.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.62–7.61 (d, *J* = 1.6 Hz, 1H), 7.47 –7.46 (m, 2H), 7.40 –7.37 (m, 1H), 7.33 – 7.31 (m, 2H), 7.22 (d, *J* = 3.5 Hz, 1H) (aryl C–*H*), 6.56 – 7.22 (dd, *J* = 5.1 Hz, 1.8 Hz, 1H), 4.39 (s, 1H, cage C–*H*), 2.81 (d, *J* = 12 Hz, 1H), 2.79 (d, *J* = 12 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.1(1B), -4.8 (1B), -8.4 (1B), -9.3 (1B), -10.6 (1B), -11.1 (2B), -11.8 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 189.9 (C=O), 152.9, 147.0, 133.4, 130.0, 129.0, 127.6, 127.4, 118.2, 112.6 (Ph–C), 77.3, 61.2 (cage–C), 28.5 (CH₂).

HRMS (ESI, positive mode): m/z calcd for C₁₄B₁₀O₂H₃₀ [M+H⁺]: 328.2568. Found: 328.2561.

3x Yield 93%. White solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 3.8 Hz, 1H), 7.66 (d, *J* = 5.0 Hz, 1H), 7.47 (s, 1H), 7.45 (s, 1H), 7.42 – 7.28 (m, 3H), 7.15 (t, *J* = 4.4 Hz, 1H) (aryl C–*H*), 4.42 (s, 1H, cage C–*H*), 2.89 (d, *J* = 13.5 Hz, 2H), 2.85 (d, *J* = 13.6 Hz, 1H) (B–C*H*₂). ¹¹B{¹H} **NMR** (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.7 (1B), -5.2 (1B), -8.4 (1B), -9.3 (1B), -10.5 (1B), -11.1 (2B), -11.8 (1B), -13.4 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 194.1 (*C*=O), 145.1, 134.5, 133.4, 133.1, 130.0, 129.0, 128.5, 127.6 (aryl-*C*), 77.3, 61.2 (cage *C*), 29.8 (B-*C*H₂).

HRMS (ESI, positive mode): *m*/*z* calcd for C₁₄B₁₀OSH₂₁ [M+H⁺]: 345.2318. Found: 345.2315.

3y: Yield 46%. White solid.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.99 (s, 1H), 7.93 (d, *J* = 7.4 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.28 (m, 7H) (aryl C–*H*), 4.41 (s, 1H, cage C–*H*), 3.00 (d, *J* = 13.7 Hz, 1H), 2.95 (d, *J* = 13.4 Hz, 1H) (B–C*H*₂);

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -3.7 (1B), -5.3 (1B), -8.4 (1B), -9.3 (1B), -10.5 (1B), -11.1 (2B), -11.7 (1B), -13.4 (1B);

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 195.7 (*C*=O), 144.4, 143.1, 139.4, 133.3, 130.3, 130.1, 129.0, 127.68, 127.65, 126.3, 125.2, 123.2 (aryl-*C*), 77.4, 61.2 (cage *C*), 29.4 (B-*C*H₂).

HRMS (ESI, positive mode): *m*/*z* calcd for C₁₈B₁₀OSH₂₃ [M+H⁺]: 395.2476. Found: 395.2476.

3z: 52%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) 7.47 – 7.46 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.31 (m, 2H) (aryl C–*H*), 4.36 (s, 1H, cage C–*H*), 2.51 (t, *J* = 7.5 Hz, 2H, alkyl chain–C*H*₂), 2.41 (d, *J* = 13.3 Hz, 1H), 2.39 (d, *J* = 13.3 Hz, 1H) (B–C*H*₂), 1.57 – 1.52

(m, 2H), 1.36 - 1.25 (m, 2H) (alkyl chain $-CH_2$), 0.91 (t, J = 7.2 Hz, 3H, alkyl chain $-CH_3$).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B), -9.3 (1B), -10.6 (1B), -11.2 (2B), -11.9 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 212.4 (*C*=O), 133.4, 130.0, 129.0, 127.6, (aryl-*C*), 77.3, 61.2 (s, 1H, cage-*C*), 44.5 (CO*C*H₂CH₂), 32.6 (B-*C*H₂), 25.9, 22.5 (alkyl chain-*C*H₂), 14.0 (alkyl chain-*C*H₃).

HRMS (ESI, positive mode): m/z calcd for C₁₄B₁₀OH₂₇ [M+H⁺]: 319.3060. Found: 319.3052.

3A: 63%. White solid.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 7.47 – 7.46 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.31 (m, 2H) (aryl C–*H*), 4.36 (s, 1H, cage C–*H*), 2.50 (t, *J* = 7.5 Hz, 1H) (alkyl chain–C*H*₂), 2.41 (d, *J* = 13.8 Hz, 1H), 2.38 (d, *J* = 13.2 Hz, 1H) (B–C*H*₂), 1.56 (p, *J* = 7.2 Hz, 2H), 1.30 – 1.28 (m, 27H) (alkyl chain–C*H*₂), 0.88 (t, *J* = 7.8 Hz, 3H) ((alkyl chain–C*H*₃).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B), -9.3 (1B), -10.6 (1B), -11.1 (2B), -11.9 (1B), -13.4 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 212.3 (*C*=O), 133.4, 130.0, 128.9, 127.6 (aryl-*C*), 77.3, 61.2 (s, 1H, cage-*C*), 44.8 (CO*C*H₂CH₂), 32.4 (B-*C*H₂), 32.1, 29.84, 29.82, 29.80, 29.76, 29.63, 29.58, 29.51, 29.4, 23.8, 22.8 (alkyl chain-*C*H₂), 14.3 (alkyl chain-*C*H₃).

HRMS (ESI, positive mode): m/z calcd for C₂₇B₁₀OH₅₃[M+H⁺]:502.5078. Found: 502.5084.

3B: 90%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 7.48 – 7.46 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.31 (m, 2H) (Ph–**H**), 4.39 (s, 1H) (cage–C**H**), 2.41-2.34 (m, 4H, B–C*H*₂ and COC*H*₂CH), 1.86 – 1.76 (m, 1H), 1.73 – 1.58 (m, 5H), 1.34 – 1.22 (m, 2H), 1.19 – 1.08 (m, 1H), 1.00 – 0.89 (m, 2H) (cyclohexyl C*H*).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.3 (1B), -3.8 (1B), -5.4 (1B), -8.5 (1B), -9.3 (1B), -10.5 (1B), -11.2 (2B), -12.0 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 211.9 (C=O), 133.5, 130.0, 128.9, 127.6, (aryl-*C*),77.2, 61.2 (cage-*C*), 52.3 (CO*C*H₂CH), 33.8 (cyclohexyl *C*H), 33.45 (cyclohexyl *C*H₂), 32.7 (B-*C*H₂), 26.4, 26.3 (cyclohexyl *C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀OH₃₁[M+H⁺]:359.3381. Found: 359.3381.

3C: 66%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) 7.50 – 7.47 (m, 2H), 7.40 – 7.36 (m, 1H), 7.35 – 7.30 (m, 2H) (aryl C–*H*), 4.67 (s, 1H, cage C–*H*), 2.44 – 2.37 (m, 3H) (B–C*H*₂ and COC*H*), 1.69 – 1.57 (m, 2H), 1.53 – 1.38(m, 2H), 1.35 – 1.26 (m, 2H), 1.26 – 1.19 (m, 2H) (alkyl chain–C*H*₂), 0.92-0.84 (m, 6H) (alkyl chain–C*H*₃).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.6 (1B), -3.7 (1B), -5.3 (1B), -8.4 (1B), -9.4 (1B), -10.5 (1B), -11.2 (2B), -11.8 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-d) δ 215.7 (C=O), 133.7, 129.9, 128.9, 128.8, 127.6, (aryl-C), 61.2 (cage-C), 55.6 (COCH), 30.7 (B-CH₂), 30.3, 30.2, 23.97, 23.94, 23.87, 23.0, 14.1 (alkyl chain-CH₂), 11.95, 11.88 (alkyl chain-CH₃).

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀OH₃₃ [M+H⁺]:361.3537. Found: 361.3537.

3D: 98%. White solid.

¹H NMR (600 MHz, Chloroform-d) 7.47 – 7.45 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.31 (m, 2H) (aryl C–H), 4.30 (s, 1H, cage C–H), 2.52 (d, J = 13.8 Hz, 1H), 2.49 (d, J = 13.8 Hz, 1H) (B–CH₂), 2.01 – 1.95 (m, 1H, cyclopropyl–CH), 1.04 (m, 2H), 0.93 (m, 2H, cyclopropyl–CH₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B), -9.3 (1B), -10.5 (1B), -11.1 (2B), -11.8 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 211.9 (*C*=O), 133.4, 130.0, 129.0, 127.6, (aryl-*C*), 77.3, 61.2 (cage-*C*), 33.4 (B-*C*H₂), 22.2 (cyclopropyl-*C*H), 11.30, 11.25 (cyclopropyl-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₃B₁₀OH₂₃ [M+H⁺]:303.2753. Found: 303.2751.

3E: 95%. White solid.

Conformer I : **Conformer II** = 58 : 42.

¹**H** NMR (600 MHz, Chloroform-*d*), Conformer I: δ 7.50 – 7.44 (m, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.26 (m, 4H), 7.21 (m, 1H), 7.14 – 7.08 (m, 2H) (aryl C–*H*), 4.29 (s, 1H, cage C–*H*), 2.64 – 2.51 (m, 3H B–C*H*₂ and cyclopropyl–C*H*), 2.28 – 2.21 (m, 1H), 1.68 (m, 1H), 1.43 (m, 1H) (cyclopropyl–C*H*); Conformer II: δ 7.50 – 7.44 (m, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.26 (m, 4H), 7.21 (m, 1H), 7.14 – 7.08 (m, 2H) (aryl C–*H*), 4.26 (s, 1H, cage C–*H*), 2.64 – 2.51 (m, 3H, B–C*H*₂ and cyclopropyl–C*H*), 2.28 – 2.21 (m, 1H), 1.68 (m, 1H), 1.43 (m, 1H) (cyclopropyl–C*H*).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -3.7 (1B), -5.3 (1B), -8.5 (1B), -9.3 (1B), -10.5 (1B), -11.1 (2B), 11.9 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*), Conformer I: δ 209.6, 209.5 (*C*=O), 140.30, 133.35, 130.02, 128.97, 128.67, 127.56, 126.70, 126.20, 126.12 (aryl-*C*), 77.3, 61.1 (cage-*C*), 34.7 (B-*C*H₂), 33.8 (CO*C*H), 29.6 (Ph*C*H), 19.36 (cyclopropyl-*C*H₂). Conformer II: 209.6, 209.5(*C*=O), 140.26, 133.37, 130.05, 128.97, 128.64, 127.62, 126.68, 126.28 (aryl-*C*), 77.3, 61.2 (cage-*C*), 34.7 (B-*C*H₂), 33.7 (CO*C*H), 29.5 (Ph*C*H), 19.40 (cyclopropyl-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₉B₁₀OH₂₇[M+H⁺]:379.3069. Found: 379.3070.

3F: 96%. White solid.

¹H NMR (600 MHz, Chloroform-d) 7.48 – 7.45 (m, 2H), 7.39 – 7.37 (m, 1H), 7.37 – 7.31 (m, 2H) (aryl C–H), 4.46 (s, 1H, cage C–H), 2.45 (d, J = 13.8 Hz, 1H), 2.40 (d, J = 13.8 Hz, 1H) (B–CH₂), 1.93 – 1.84 (m, 2H), 1.83 – 1.75 (m, 1H), 1.63 (s, 1H), 1.36 – 1.14 (m, 4H).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.4 (1B), -3.8 (1B), -5.3 (1B), -8.5 (1B),
-9.4 (1B), 10.5(1B) -11.1 (2B), 11.8(1B), -13.4 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 215.3 (*C*=O), 133.5, 130.0, 128.9, 127.6, (aryl-*C*), 77.2, 61.1 (s, 1H, cage-*C*), 52.3 (CO*C*H), 30.7 (B-*C*H₂), 28.5, 28.3, 26.1, 25.9, 25.8 (cyclohexyl *C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀OH₂₉[M+H⁺]:345.3324. Found:345.3320.

3G: 99%. White solid.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.65 – 7.63 (m, 2H), 7.45 – 7.43 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.31 (m, 4H) (aryl C–*H*), 4.34 (s, 1H, cage C–*H*), 3.76 (dt, *J* = 11.8, 3.9 Hz, 2H, NC*H*₂), 2.43 (s, 3H, Ts–C*H*₃), 2.42-2.28 (m, 5H) (B–C*H*₂ and (COC*H*C*H*₂)), 1.97 – 1.86 (m, 2H, NC*H*₂), 1.75 – 1.65 (m, 2H), 1.65 – 1.56 (m, 2H) (CHC*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.3 (1B), -4.0 (1B), -5.6 (1B), -8.7(1B), -9.4 (1B), -11.2 (3B), 12.1 (1B), -13.3 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 212.4 (*C*=O), 143.8, 133.2, 133.2, 130.1, 129.9, 129.8, 129.0, 127.8, 127.8, 127.6 (aryl-*C*), 77.4, 61.1 (cage *C*), 48.6 (CO*C*H), 45.8, 45.8 (N*C*H₂), 30.4 (B-*C*H₂), 27.0, 26.8 (CH*C*H₂), 21.7 (Ts-*C*H₃).

HRMS (ESI, positive mode): *m*/*z* calcd for C₂₂B₁₀O₃SNH₃₄ [M+H⁺]: 501.3238. Found: 501.3236.

3G: 70%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 7.47 – 7.46 (m, 2H), 7.40 – 7.38 (m, 1H), 7.34 – 7.32 (m, 2H) (aryl C–*H*), 4.43 (s, 1H, cage C–*H*), 4.02 (m, 2H), 3.44 (m, 2H) (OC*H*₂), 2.66-2.58 (m, 1H), 2.47 (d, *J* = 13.8 Hz, 1H), 2.42 (d, *J* = 13.9 Hz, 1H) (B–C*H*₂), δ 1.79 (m, 2H), 1.73-1.60 (m, 2H) (CHC*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.8 (1B), -5.4 (1B), -8.5 (1B), -9.3 (1B), -10.6 (1B), -11.1 (2B), -11.9 (1B), -13.4 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 213.1 (*C*=O), 133.4, 130.1, 129.0, 127.6 (aryl-*C*), 67.43, 67.40 (O*C*H₂), 61.1 (cage *C*), 48.9 (CO*C*H), 30.3 (B-*C*H₂), 28.2, 28.0 (CH*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₅B₁₀O₂H₂₇ [M+Na⁺]:369.2835. Found: 369.2834.

3I: 48%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 7.50 – 7.48 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.31 (m, 2H) (aryl C–*H*), 4.69 (s, 1H, cage C–*H*), 2.51 (d, *J* = 12 Hz, 1H), 2.39 (d, *J* = 12 Hz, 1H) (B–C*H*₂), 1.16 (s, 9H).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.6 (1B), -3.7 (1B), -5.0 (1B), -8.4 (1B), -9.5 (1B), -10.3 (1B), -11.3 (2B), -11.9 (1B), -13.6 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 217.5 (C=O), 133.7, 129.9, 128.9, 127.6 (aryl-*C*), 77.1, 61.1 (cage *C*), 45.2 (C(CH₃)₃), 26.2 (C(CH₃)₃), 25.6 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₄B₁₀OH₂₇ [M+H⁺]: 319.3066. Found: 319.3063.

3J: 73%. White solid.

Conformer I : **Conformer II** = 54 : 46

¹**H** NMR (600 MHz, Chloroform-*d*), Conformer I: δ 7.57 – 7.29 (m, 11H), 7.09 (d, *J* = 7.9 Hz, 1H) (aryl C–*H*), 4.32 (s, 1H, cage C–*H*), 3.89 (q, *J* = 7.0 Hz, 1H, COC*H*CH₃), 2.53 (d, *J* = 13.8 Hz, 1H) , 2.50 (d, *J* = 13.8 Hz, 1H) (B–C*H*₂), 1.43 (d, *J* = 6.8 Hz, 3H, COCHC*H*₃); Conformer II: δ 7.57 – 7.29 (m, 11H), 7.04 (d, *J* = 7.9 Hz, 1H) (aryl C–*H*), 4.30 (s, 1H, cage C–*H*), 3.92 (q, *J* = 7.0 Hz, 1H, COC*H*CH₃), 2.32 (d, *J* = 14.6 Hz, 1H) (B–C*H*₂), 1.45 (d, *J* = 6.8 Hz, 3H, COCHC*H*₃);

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -3.8, -5.4 (1B), -8.5 (1B), -9.3 (1B), -11.1 (3B), -12.2 (1B), 13.3 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*), Conformer I: δ 210.8 (*C*=O), 160.03 (d, *J*_{C-F} = 249.0 Hz), 141.7 (d, *J* = 7.5 Hz), 135.5, 133.34, 131.27 (d, *J*_{C-F} = 3.9 Hz), 130.1, 129.0 (d, *J*_{C-F} = 2.9 Hz), 128.6, 128.1, 127.9, 127.61, 124.34 (d, *J*_{C-F} = 3.7 Hz), 115.86 (d_{C-F}, *J* = 23.2 Hz) (aryl–*C*), 77.3, 61.1 (cage–*C*), 53.7 (CO*C*HCH₃), 31.5 (B–*C*H₂), 17.26 (COCH*C*H₃); Conformer II: δ 210.6 (*C*=O), 160.00 (d, *J*_{C-F} = 249.0 Hz), 141.6 (d, *J*_{C-F} = 7.3 Hz), 135.5, 133.37, 131.31 (d, *J*_{C-F} = 3.9 Hz), 130.1, 129.1 (d, *J*_{C-F} = 3.0 Hz), 128.6, 128.2, 127.9, 127.62, 124.32 (d, *J*_{C-F} = 3.7 Hz), 115.87 (d, *J*_{C-F} = 23.2 Hz) (aryl–*C*), 77.3, 61.3 (cage–*C*), 53.6 (COCHCH₃), 31.5 (B–*C*H₂), 17.31 (COCH*C*H₃). ¹⁹F NMR (565 MHz, Chloroform-*d*), Conformer II: δ -117.08; Conformer II: δ -117.12;

HRMS (ESI, positive mode): *m*/*z* calcd for C₂₄B₁₀FOH₃₀ [M+H⁺]: 461.3289. Found: 461.3291.

3K: 51%. White solid.

¹H NMR (600 MHz, Chloroform-*d*) 7.46 – 7.45 (m, 2H), 7.39 – 7.36(m, 1H), 7.33 – 7.30 (m, 2H) (aryl C–*H*), 4.34 (cage C–*H*), 2.92 (dd, *J* = 13.1, 6.1 Hz, 1H), 2.84 (t, *J* = 11.6 Hz, 1H), 2.76 (t, *J* = 12.6 Hz, 1H), 2.66 – 2.51 (m, 3H), 2.48 – 2.34 (m, 2H), 2.32 – 2.23 (m, 3H), 2.19 (td, *J* = 12.6, 5.0 Hz, 2H), 2.11 – 1.55 (m, 12H), 1.39 – 1.18 (m, 5H), 1.03 (d, *J* = 4.5 Hz, 4H) (alkyl C–*H*), 0.83 (d, *J* = 6.5 Hz, 3H, C*H*₃)).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.3 (1B), -3.9 (1B), -5.4 (1B), -8.6 (1B), -9.4 (1B), -11.3 (3B), -12.0(1B), -13.7 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 212.85, 212.83, 212.5, 209.9 (*C*=O), 133.36, 133.34, 130.0, 128.9, 127.6 (aryl–*C*), 77.3, 61.2 (cage–*C*), 58.0, 57.0, 53.5, 52.0, 49.2, 45.7, 45.7, 45.7, 45.4, 45.2, 44.2, 41.8, 41.7, 38.8, 36.0, 35.6, 35.5, 34.8, 33.1, 32.5, 29.1, 27.8, 27.6, 25.3, 22.7, 19.0, 11.9 (alkyl *C*).

HRMS (ESI, positive mode): m/z calcd for C₃₃B₁₀O₄H₅₁ [M+H⁺]: 620.4773. Found: 620.4779.

3L: 53%. White solid.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.52 (s, 1H), 8.11 – 8.00 (m, 3H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.82 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.61 (d, *J* = 2.4 Hz, 1H), 7.55 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.45 (dd, *J* = 7.4, 1.7 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.45 (dd, *J* = 7.4, 1.7 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.31 (t, *J* = 7.7 Hz), 7.38 (t, *J* = 7.3 Hz), 7.31 (t, *J* = 7.7 Hz), 7.31 (t, J = 7.7

2H), 7.01 (d, J = 8.4 Hz, 1H) (aryl C−H), 4.42 (s, 1H, cage C−H), 3.91 (s, 3H, OCH₃)),
3.11 (d, J = 13.5 Hz, 1H), 3.06 (d, J = 13.6 Hz, 1H) (B−CH₂), 2.19 (d, J = 3.0 Hz, 6H),
2.11 (s, 3H), 1.81 (s, 6H) (adamantly C−H).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (2B), -3.7 (1B), -5.0 (1B), -8.4 (1B), -9.3 (1B), -11.4 (4B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.4 (*C*=O), 159.1, 141.9, 139.2, 136.3, 134.3, 133.4, 132.7, 131.4, 130.7, 130.2, 130.0, 129.0, 128.7, 127.6, 126.8, 126.1, 125.9, 124.9, 124.7, 112.3 (aryl *C*), 77.4, 61.3 (cage–*C*), 55.3 (O*C*H₃), 40.8, 37.4, 37.3, 29.3 (adamantly *C*), 28.6 (B–*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₃₈B₁₀O₂H₄₉ [M+H⁺]: 630.4775. Found: 630.4772.

4b: 86%. White solid.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.00 – 7.93 (m, 2H), 7.61 – 7.55 (m, 1H), 7.52 – 7.43 (m, 2H) (aryl C–*H*), 3.95 (s, 1H, cage C–*H*), 2.91 (d, *J* = 15.6 Hz, 1H), 2.87 (s d, *J* = 15.6 Hz, 1H) (B–C*H*₂), 2.01 (s, 3H, C*H*₃).

¹¹B{¹H} NMR (128 MHz, Chloroform-*d*) δ -1.8 (1B), -5.0 (1B), -6.0 (1B), -8.6 (1B), -9.5 (1B), -10.8 (3B), -11.6 (1B), -13.2 (1B).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 201.7 (*C*=O), 137.4, 133.3, 128.81, 128.76 (aryl-*C*), 71.2, 62.7 (cage *C*), 28.5 (B–*C*H₂), 26.0 (*C*H₃).

HRMS (ESI, positive mode): m/z calcd for C₁₁B₁₀OH₂₁ [M+H⁺]: 277.2595. Found: 277.2594.

4c: 87%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 7.94 – 7.87 (m, 2H), 7.9 – 7.53 (m, 1H), 7.49 – 7.42 (m, 2H), 7.39 – 7.30 (m, 3H), 7.12 – 7.04 (m, 2H) (aryl C–*H*), 3.61 (s, 1H, cage C–*H*), 3.47 (s, 2H, Bn–C*H*₂), 2.83 (d, *J* = 13.5 Hz, 1H), 2.80 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.4 (1B), -4.9 (1B), -5.4 (1B), -8.5 (1B), -9.4 (1B), -11.2 (1B), -12.0 (2B), -12.6 (1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.2 (*C*=O), 137.4, 134.4, 133.2, 129.9, 129.2, 129.0, 128.8, 128.7, 128.6 (aryl-*C*), 75.5, 60.8 (cage *C*), 43.8 (Bn-*C*H₂), 28.8 (B-*C*H₂).

HRMS (ESI, positive mode): *m*/*z* calcd for C₁₇B₁₀OH₂₅ [M+H⁺]: 375.2730. Found: 375.2721.

4d: 86%. White solid.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 7.97 (d, J = 7.3 Hz, 2H), 7.63 – 7.51 (m, 1H), 7.47 (t, J = 7.7 Hz, 2H) (aryl C–*H*), 4.00 (s, 1H, cage C–*H*), 2.90 (d, J = 13.5 Hz, 1H), 2.86 (d, J = 13.5 Hz, 1H) (B–C*H*₂), 2.48 (hept, J = 6.9 Hz, 1H, ^{*i*}Pr–C*H*), 1.10 (d, J = 6.9 Hz, 6H, ^{*i*}Pr–C*H*₃).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) -3.1 (1B), -4.5 (1B), -5.9 (1B), -8.9 (1B), -9.7 (1B), 11.9 (1B), -12.5 (2B), 13.2 (1B), -14.1 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.7 (*C*=O), 137.5, 133.3, 128.80, 128.75 (aryl-*C*), 82.1, 61.3 (cage-*C*), 34.9 (^{*i*}Pr-*C*H), 29.0 (B-*C*H₂), 23.02, 22.99 (^{*i*}Pr-*C*H₃). HRMS (ESI, positive mode): *m*/*z* calcd for C₁₃B₁₀OH₂₅ [M+H⁺]: 305.2909. Found: 305.2910.

4e: 88%. White solid.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.00 – 7.92 (m, 2H), 7.61 – 7.54 (m, 1H), 7.47 (m, 2H) (aryl C–*H*), 4.10 (s, 1H, cage C–*H*), 2.90 (d, *J* = 13.3 Hz, 1H), 2.85 (d, *J* = 13.3 Hz, 1H) (B–C*H*₂), 1.19 (s, 9H, 'Bu–C*H*₃).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -3.8 (2B), -6.1 (1B), 8.5 (1B), -9.3 (1B), -11.5 (1B), -12.8 (2B), -13.8 (2B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.9 (*C*=O), 137.5, 133.3, 128.81, 128.77 (aryl-*C*), 86.6, 62.9 (cage *C*), 36.6 (^{*t*}Bu-*C*Me₃), 32.0 (*C*H₃).

HRMS (ESI, positive mode): m/z calcd for calcd for C₁₄B₁₀OH₂₇ [M+H⁺]: 319.3066. Found: 319.3063.

4f: 86%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 8.01 – 7.96 (m, 2H), 7.61 – 7.53 (m, 1H), 7.52 – 7.43 (m, 2H), 7.33 (m, *J* = 8.2 Hz, 2H), 7.13 – 7.07 (m, 2H) (aryl C–*H*), 4.33 (s, 1H, cage C–*H*), 2.97 (d, *J* = 13.5 Hz, 1H), 2.92 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂), 2.33 (s, 3H, C*H*₃).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.2 (1B), -4.0 (1B), -5.2 (1B), -8.5 (1B), -9.4 (1B), -10.5 (1B), -11.1 (1B), -11.8 (2B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.7 (*C*=O), 140.3, 137.5, 133.3, 130.6, 129.6, 128.82, 128.78, 127.6 (aryl–*C*), 77.5, 61.5 (cage *C*), 29.1 (B–*C*H₂), 21.1 (*C*H₃). HRMS (ESI, positive mode): *m*/*z* calcd for C₁₇B₁₀OH₂₅ [M+Na⁺]: 375.2730. Found: 375.2721.

4g: 87%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 8.03 – 7.94 (m, 2H), 7.63 – 7.53 (m, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.42 – 7.34 (m, 2H), 6.84 – 6.77 (m, 2H) (aryl C–*H*), 4.28 (s, 1H, cage C–*H*), 3.80 (s, 3H, C*H*₃), 2.96 (d, *J* = 13.5 Hz, 1H), 2.91 (d, *J* = 13.5 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.1 (1B), -4.2 (1B), -5.1 (1B), -8.7 (1B), -9.5 (1B), -11.0 (3B), 11.8(1B), -13.5 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.7 (*C*=O), 160.9, 137.5, 133.3, 129.4, 128.83, 128.78, 125.5, 114.1 (aryl-*C*), 77.7, 62.1 (cage *C*),55.6 (*C*H₃), 28.5 (B-*C*H₂).
HRMS (ESI, positive mode): *m*/*z* calcd for C₁₇B₁₀O₂H₂₅ [M+H⁺]: 369.2860. Found: 369.2869.

4h: 76%. White solid.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.98 (m, 2H), 7.64 – 7.56 (m, 5H), 7.52 – 7.45 (m, 2H) (aryl C–*H*), 4.48 (s, 1H), 2.98 (d, *J* = 13.8 Hz, 1H), 2.94 (d, *J* = 13.8 Hz, 1H) (B–C*H*₂).

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.0 (1B), -3.2 (1B), -4.9 (1B), -8.2 (1B), -9.1 (1B), -10.6 (1B), -11.3 (2B), -11.5 (1B), -13.6 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 201.7 (C=O), 137.4, 137.1, 133.5, 132.3 (q, *J* = 99.1, 32.8 Hz), 128.8 (d, *J* = 8.4 Hz), 128.1, 126.0 (q, *J* = 3.7 Hz), 123.5 (d, *J* = 272.5 Hz) (aryl–*C*), 75.8, 60.1 (cage–C), 28.4 (B–*C*H₂).

¹⁹F NMR (565 MHz, Chloroform-d) δ -63.07.

HRMS (ESI, positive mode): m/z calcd for C₁₇B₁₀F₃OH₂₂ [M+H⁺]: 407.2628. Found: 407.2626.

3 Transformations and Synthetic Applications

Transformation of 3a to 5. A solution of THF·BH₃ (1.0 M, 0.5 mL, 5.0 equiv., 0.5 mmol) was added via syringe to a solution of **3a** (1.0 equiv., 33.8 mg, 0.1 mmol) in THF (1 mL). The reaction mixture was refluxed for 12 h under N₂ atmosphere. After refluxing, the mixture was cooled to 0 °C, and the reaction was quenched by adding MeOH (0.25 mL). Next, the solvent was evaporated, and an aqueous of HCl (2N, 1.0 mL) was added to the residue, which was then refluxed for 1 h. The reaction mixture was made basic by adding K₂CO₃ and extracted with CHCl₃ (5 mL x 3). The organic layer was dried over MgSO₄, filtered, and concentrated. Finally, the residue was purified using PTLC using PE/DCM as an eluent to give the product **5**.

5: Yield 78%. White solid.

¹**H NMR (600 MHz, Chloroform-***d*) δ 7.46 – 7.40 (m, 2H), 7.40 – 7.36 (m, 1H), 7.34 – 7.27 (m, 4H), 7.24 – 7.21 (m, 2H), 7.21 – 7.17 (m, 1H), 3.82 (s, 1H, cage C–*H*), 2.80 – 2.70 (m, 2H), 1.40 – 1.34 (m, 2H).

¹¹B{¹H} NMR (128 MHz, Chloroform-*d*) δ -1.9 (1B), -2.3 (1B), -3.8 (1B), -8.5 (1B), -9.4 (1B), -11.3 (3B), -12.0 (1B), -14.1 (1B).

¹³C NMR (128 MHz, Chloroform-*d*) δ 144.2 (*C*=O), 133.8, 129.9, 128.9, 128.5, 128.1, 127.6, 125.9 (aryl–*C*), 76.8, 61.4 (cage *C*), 34.9 (B–CH₂*C*H₂), 17.6 (B–*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀H₂₅ [M+Na⁺]: 347.2781. Found: 347.2789.

Transformation of 3a to 9. To a solution of **3a** (33.8 mg, 0.1 mmol) in MeOH (1 mL) was added NaBH₄ (3 equiv., 11.4 mg, 0.3 mmol) carefully at 0 °C. The mixture was stirred at 0 °C for 15 min, then warmed to 25 °C and stirred for 20 min before being quenched with water. Subsequently, the mixture was extracted with ethyl acetate (5 mL x 3). The combined organic extracts were washed with water and brine and then dried over Na₂SO₄. The solvent was evaporated under reduced pressure, and the residue was purified by PTLC using PE/EA as an eluent to give the product **6**.

6: Yield 90%. White solid.

Conformer I: Conformer II = 46 : 54

¹**H NMR (600 MHz, Chloroform-***d***), Conformer I**: δ 7.44 – 7.41 (m, 2H), 7.41 – 7.27 (m, 8H) (aryl C–*H*), 4.92 (dd, *J* = 9.6, 4.4 Hz, 1H, C*H*OH), 4.15 (s, 1H, cage C–*H*), 1.70 – 1.46 (m, 2H, B–C*H*₂); **Conformer II**: δ 7.45 – 7.44 (m, 11H), 7.41 – 7.27 (m, 8H) (aryl C–*H*), 4.88 (dd, *J* = 10.1, 3.8 Hz, 1H, C*H*OH), 4.31 (s, 1H, cage C–*H*), 1.70 – 1.46 (m, 2H, B–C*H*₂).
¹¹B{¹H} NMR (193 MHz, Chloroform-*d*) δ -2.4 (1B), -3.4 (2B), -8.3 (1B), -9.6 (1B), -11.4 (3B), 12.4 (1B), -13.7 (1B).

¹³C{¹H} NMR (151 MHz, Chloroform-*d*), Conformer I: δ 146.1 (*C*=O), 134.0, 129.9, 128.89, 128.79, 127.9, 127.5, 126.0(aryl–*C*), 76.8, 74.6, 61.5 (cage–*C*), 26.4 (B–*C*H₂); Conformer II: δ 146.3 (*C*=O), 133.9, 129.9, 128.9, 128.87, 127.77, 127.8, 127.6, 125.9 (aryl–*C*), 76.8, 74.7, 61.6, 61.4 (cage–*C*), 26.4 (B–*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀OH₂₅ [M+H⁺]: 341.2911. Found: 341.2908.

Transformation of 3a to 7. Compound **3a** (33.8 mg, 0.1 mmol) and $Py \cdot HBr_3(1.1 \text{ equiv.}, 35.2 \text{ mg}, 0.11 \text{ mmol})$ were mixed in ethyl acetate (1.0 mL). Then, the resulting mixture was heated at 60 °C for 18 h under N₂ atmosphere. After diluting with CH₂Cl₂ (2 mL), the solvent was evaporated under reduced pressure, and the residue was purified by PTLC using PE/CH₂Cl₂ as an eluent to give the product.

7: Yield 90%. White solid.

Conformer I : **Conformer II** = 48 : 52

¹**H NMR (600 MHz, Chloroform-***d***), Conformer I: δ 7.99 (m, 2H), 7.65 – 7.59 (m, 1H), 7.54 – 7.45 (m, 4H), 7.44 – 7.30 (m, 3H) (aryl C–***H***), 5.25 (s, 1H, B–C***H***Br), 4.66 (s, 1H, cage C–***H***); Conformer II: δ 7.99 (m, 2H), 7.65 – 7.59 (m, 1H), 7.54 – 7.45 (m, 4H), 7.44 – 7.30 (m, 3H) (aryl C–***H***), 5.22 (s, 1H, B–C***H***Br), 4.74 (s, 1H, cage C–***H***). ¹¹B{¹H} NMR (193 MHz, Chloroform-***d***) δ -2.3 (1B), -3.6 (1B), -4.9 (1B), -8.4 (1B), -9.2 (1B), -11.1 (3B), 12.6 (2B).** ¹³C{¹H} NMR (151 MHz, Chloroform-*d*), Conformer I: δ 195.8 (*C*=O), 135.7, 134.0,
133.1, 130.3, 129.15, 129.05, 128.99, 127.71 (aryl–*C*), 76.6, 63.1 (cage *C*), 35.3 (B–*C*HBr); Conformer II: δ 196.2 (*C*=O), 135.6, 134.1, 133.2, 130.2, 129.11, 129.07,
129.02, 127.67 (aryl–*C*), 77.5, 62.2 (cage *C*), 34.9 (B–*C*HBr).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀H₂₂BrO [M+H⁺]: 418.1845. Found: 418.1845.

Figure S3. Molecular structure of compound 7 (ellipsoids at 30% probability).

General procedure for the nucleophilic substitution reaction of 3t. K_3PO_4 (0.2 mmol, 42.5 mg), 3t (0.1 mmol, 43 mg), and nucleophile (0.2 mmol) were combined in DMF (1 ml). The resultant mixture was then stirred at room temperature for 12 h under N₂ atmosphere. Afterward, the mixture was extracted with water/CH₂Cl₂. The organic layer was washed with water and dried over Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by silica gel chromatography with PE/DCM as an eluent to give the product.

8: Yield 51%. White solid.

¹H NMR (600 MHz, Chloroform-d) δ 7.52 – 7.46 (m, 2H), 7.43 – 7.38 (m, 1H), 7.37 – 7.32 (m, 2H) (aryl C–H), 5.33 (d, J = 7.8 Hz, 1H, NH), 4.58 (q, J = 5.6 Hz, 1H, CHNH), 4.44 (s, 1H, cage C–H), 3.69 (s, 3H, OCH₃), 3.55 (dd, J = 14.2, 4.7 Hz, 1H), 3.39 (dd, J = 14.2, 5.0 Hz, 1H, SCH₂), 2.91 (s, 2H, B–CH₂), 1.40 (s, 9H, 'Bu–CH₃).
¹¹B NMR (193 MHz, CDCl₃) δ -2.1 (1B), -3.8(1B), -6.1 (1B), -8.5 (1B), -9.1 (1B), -10.9 (3B), -11.9 (2B), -13.0 (1B).

¹³C NMR (151 MHz, CDCl₃) δ 195.3 (B–CH₂*C*=O), 170.4 (*C*O₂Me), 154.9 (*C*O₂^{*i*}Bu), 147.8, 146.1, 144.8, 143.1 (Ph–*C*F), 133.2, 130.2, 129.0, 127.6 (Ph–*C*H), 120.2 (CH₂S*C*), 117.5 (B–CH₂CO*C*), 80.7 (*C*Me₃), 77.5, 61.2 (cage *C*), 53.8 (*C*HNH), 52.9 (O*C*H₃), 36.5 (S*C*H₂), 34.3 (B–*C*H₂), 28.3 (^{*i*}Bu–*C*H₃).

¹⁹F NMR (565 MHz, Chloroform-d) δ -131.75 (dd, J = 23.7, 12.4 Hz, 2F), -140.80 (dd, J = 23.8, 12.4 Hz, 2F).

HRMS (ESI, positive mode): m/z calcd for $C_{25}B_{10}H_{37}F_4NO_5S$ [M+H⁺]: 645.3075. Found: 645.3079.

9: Yield 38%. White solid.

¹**H** NMR (600 MHz, Chloroform-d): 7.50 – 7.45 (m, 2H), 7.42 – 7.37 (m, 1H), 7.37 – 7.31 (m, 2H) (aryl C–*H*), 4.43 (s, 1H, cage C–*H*), 3.68 (t, J = 6.3 Hz, 2H, SCH₂C*H*₂), 3.66 – 3.61 (m, 18H), 3.57 (s, 4H), 3.56 – 3.52 (m, 2H) (OC*H*₂C*H*₂), 3.37 (s, 3H, OC*H*₃), 3.19 (t, J = 6.3 Hz, 2H, SC*H*₂CH₂), 2.91 (s, 2H, B–C*H*₂). ¹¹B{¹H} NMR (193 MHz, Chloroform-d) δ -2.2 (1B), -3.8 (1B), -6.1 (1B), -8.5 (1B),

-9.1 (1B), -11.0 (3B), -12.0 (1B), -13.2 (1B).

¹³C NMR (151 MHz, CDCl₃) δ 195.4 (*C*=O), 147.3, 145.9, 144.7, 142.6 (Ph–*C*F), 133.2, 130.1, 129.3, 127.6 (Ph–*C*H), 119.6 (CH₂S*C*), 118.7 (B–CH₂CO*C*), 77.4 (cage *C*Ph), 72.0, 70.7, 70.63, 70.60, 70.55, 70.48 (O*C*H₂*C*H₂O), 61.2 (cage *C*H), 59.1 (O*C*H₃), 35.0 (B–*C*H₂), 34.1 (S*C*H₂).

¹⁹**F NMR (565 MHz, Chloroform-***d***)** δ -132.72 (q, *J* = 11.2 Hz, 2F), -141.15 (q, *J* = 11.0 Hz, 2F).

HRMS (ESI, positive mode): m/z calcd for C₃₁B₁₀H₄₉F₄O₈S [M+Na⁺]: 788.3889. Found: 788.3891.

4 Mechanistic study

4.1 Reaction with 1-Ph-o-carborane without directing group

Scheme S1. Attempts without directing group.

Note: The reaction of 13 and 2a does not proceed, implying that the directing group is essential.

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 1-Pho-carborane **13** (0.1 mmol, 13.6 mg), sulfoxonium ylide **2a** (0.15 mmol, 29.5 mg), [Ru(benzene)Cl₂]₂ (2.5 mol%, 1.3 mg, 0.0025 mmol), NaOAc (0.1 mmol, 8.2 mg), and HFIP (1.0 mL) under N₂ atmosphere. After being stirred at 60 °C for 3 h, the reaction mixture was cooled to room temperature, and filtered through a pad of Celite. Removal of the solvent gave a white solid subjected to TLC, GC-MS, and ¹H NMR analyses. No target product was identified. 4.2 Reaction with 2-methyl-benzoic acid

Scheme S2. Reaction with 2-methyl-benzoic acid.

Note: 2-methyl-benzoic acid did not react with sulfoxonium ylide 2a under the optimal reaction conditions. This indicated a significant difference in reactivity between the 3D delocalization σ aromatic carborane and the 2D π aromatic benzene.

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2methyl-benzoic acid 14 (0.1 mmol, 13.6 mg), sulfoxonium ylide 2a (0.15 mmol, 29.5 mg), [Ru(benzene)Cl₂]₂ (2.5 mol%, 1.3 mg, 0.0025 mmol), NaOAc (0.1 mmol, 8.2 mg), and HFIP (1.0 mL) under N₂ atmosphere. After being stirred at 60 °C for 3 h, the reaction mixture was cooled to room temperature, and filtered through a pad of Celite. Removal of the solvent gave a white solid subjected to TLC, GC-MS, and ¹H NMR analyses. No target product 15 was identified.

4.3 Deuterium labeling experiments

Scheme S3. Reaction with 1a-d10

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with **1a-d10** (27.4 mg, 0.1 mmol), sulfoxonium ylide **2a** (0.15 mmol, 29.5 mg), [Ru(benzene)Cl₂]₂ (2.5 mol%, 1.3 mg, 0.0025 mmol), NaOAc (0.1 mmol, 8.2 mg), and HFIP (1.0 mL)

under N₂ atmosphere. The reaction mixture was stirred at 60 °C for 3 h. Afterward, the reaction mixture was allowed to cool to room temperature and filtered through a pad of Celite. The filtrate was concentrated in *vacuo*. The crude reaction mixture was purified on PTLC using petroleum/ethyl acetate as an eluent to afford compound **3l-d10** as a white solid (27 mg, 62 %). The reaction of **1a-D10** with **2a** proceeded smoothly, yielding **3a-D10** in 68% yield with 78% DI.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.06 – 7.92 (m, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.52 – 7.42 (m, 4H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H) (aryl C–*H*), 4.39 (s, 1H, cage C–*H*), 2.98 (d, *J* = 13.6 Hz, 1H), 2.93 (d, *J* = 13.6 Hz, 1H) (B–C*H*₂).

¹H {¹¹B} NMR (600 MHz, Chloroform-*d*) δ 8.06 – 7.92 (m, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.52 – 7.42 (m, 4H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H) (aryl C–*H*), 4.37 (s, 1H, cage C–*H*), 2.98 (d, *J* = 13.6 Hz, 1H), 2.93 (d, *J* = 13.6 Hz, 1H) (B–C*H*₂), 2.57 (s, 0.48H), 2.44 (s, 0.12H), 2.42 (s, 0.17H), 2.40 (s, 0.25H), 2.34 (s, 0.22H), 2.26 (s, 0.17H), 2.15 (s, 0.67H).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -2.4 (1B), -3.9 (1B), -5.2 (1B), -8.7 (1B), -9.5 (1B), -11.4 (3B), -13.6 (1B).

¹³C {¹H} NMR (151 MHz, Chloroform-*d*) δ 201.6 (*C*=O), 137.5, 133.3, 130.0, 128.9, 128.82, 128.79, 127.7, 127.7 (aryl-*C*), 61.1 (cage *C*), 28.1 (B-*C*H₂).

HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀OH₂₀D₉ [M+H⁺]: 370.3138. Found: 370.3138.

Scheme S4 Deuterium labeling experiments

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 1a (26.5 mg, 0.1 mmol), sulfoxonium ylide 2a (0.15 mmol, 29.5 mg), $[Ru(benzene)Cl_2]_2$ (2.5 mol%, 1.3 mg, 0.0025 mmol), NaOAc (0.1 mmol, 8.2 mg), HFIP (0.8 mL) and D₂O (0.2 mL) under N₂ atmosphere. After being stirred at 60 °C for 3 h, the reaction mixture was cooled to room temperature. Then, ethyl acetate and brine were added and the aqueous layer was reextracted with ethyl acetate. The combined organic layers were washed with water then brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude reaction mixture was purified on PTLC using petroleum/ethyl acetate as an eluent to afford compound **3a-d3** as a white solid (23.1 mg, 73%).

¹H {¹¹B} NMR (600 MHz, Chloroform-*d*) δ 7.99 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.52 – 7.42 (m, 4H), 7.38 (t, J = 7.3 Hz, 1H), 7.32 (t, J = 7.7 Hz, 2H) (aryl C–*H*), 4.39 (s, 0.47H, cage C–*H*), 2.99 – 2.88 (m, 0.98H) (B–C*H*₂), 2.56 (s, 2H), 2.45 (s, 1H), 2.41 (s, 3H), 2.34 (s, 1H), 2.26 (s, 1H), 2.14 (s, 1H) (B–*H*). HRMS (ESI, positive mode): m/z calcd for C₁₆B₁₀OH₂₀D₃ [M+H⁺]: 343.2911. Found: 343.2911.

Figure S4. ${}^{1}H{}^{11}B{}$ NMR of **3a-d3**.

-4.37

- 2.91

Figure S5. ²H NMR (92 MHz, DCM) of **3a-d3**.

Scheme S5. Deuterium labeling experiments

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with **1a** (26.5 mg, 0.1 mmol), sulfoxonium ylide **2l** (1.5 equiv., 36.2 mg, 0.15 mmol), $[Ru(benzene)Cl_2]_2$ (2.5 mol%, 1.3 mg, 0.0025 mmol), NaOAc (0.1 mmol, 8.2 mg), HFIP (0.8 mL) and D₂O (0.2 mL) under N₂ atmosphere. After being stirred at 60 °C for 3 h, the reaction mixture was cooled to room temperature. Then, ethyl acetate and brine were added and the aqueous layer was reextracted with ethyl acetate. The combined organic layers were washed with water then brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude reaction mixture was purified on PTLC using petroleum/ethyl acetate as an eluent to afford compound **3l-d3** as a white solid (31.2 mg, 81 %).

¹**H** {¹¹**B**} **NMR** (**600 MHz**, **Chloroform**-*d*) δ 8.33 (d, *J* = 8.8 Hz, 1H), 8.13 (d, *J* = 8.7 Hz, 1H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.43 – 7.36 (m, 1H), 7.37 – 7.30 (m, 2H) (aryl C−*H*), 4.31 (s, 0.34H, cage C−*H*), 3.04 – 2.92 (m, 0.76H) (B−C*H*₂), 2.61 (s, 1H), 2.57 (s, 1H), 2.47 (s, 1H), 2.43 (s, 2H), 2.35 (s, 1H), 2.30 (s, 1H), 2.27 (s, 1H), 2.12 (s, 1H) (B−*H*). **HRMS** (ESI, positive mode): *m/z* calcd for C₁₆B₁₀O₃H₂₁D₃ [M+H⁺]: 389.2738. Found: 389.2744.

Figure S6. ¹H{¹¹B} NMR of **3l-d3**.

-4.37

- 2.91

Figure S7. ²H NMR (92 MHz, DCM) of 3l-d3.

4.4 In situ HRMS studies on the reaction of 1a and 2a

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with **1a** (26.5 mg, 0.1 mmol), sulfoxonium ylide **2a** (0.15 mmol, 29.5 mg), $[Ru(benzene)Cl_2]_2$ (2.5 mol%, 1.3 mg, 0.0025 mmol), NaOAc (0.1 mmol, 8.2 mg), and HFIP (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 60 °C under N₂ atmosphere. ESI-HRMS directly analyzed the reaction system at different times. The mass spectrum indicated the formation of ruthenium intermediates **A**₁, **B**, and **D**.

Figure S8. HRMS of A1. Up: experimental MS. Down: calculated MS.

Figure S9. HRMS of A1. Up: experimental MS. Down: calculated MS.

Figure S10. HRMS of B. Up: experimental MS. Down: calculated MS.

Figure S11. HRMS of B. Up: experimental MS. Down: calculated MS.

Figure S12. HRMS of D. Up: experimental MS. Down: calculated MS.

Figure S13. HRMS of D. Up: experimental MS. Down: calculated MS.

4.5 X-ray study A₂

o-Carboranyl acid **1a** (0.05 mmol, 13.3 mg), NaOAc (0.1 mmol, 8.2 mg), $[Ru(benzene)Cl_2]_2$ (0.05 mol, 25 mg) and HFIP (1 mL) were mixed in a 10 mL Schlenk tube under N₂ atmosphere. The resulting mixture was stirred at 60 °C for 3 h. Subsequently, the reaction mixture was allowed to cool to room temperature and left to stand for several days, leading the formation of a small brown crystal suitable for single-crystal X-ray analysis. The endeavor to adequately isolate this Ru intermediate for additional characterization was unsuccessful.

Figure S14. Molecular structure of compound A2·H2O (ellipsoids at 30% probability).

4.6 Detection of DMSO lost from sulfoxonium ylide

Scheme S6. Reaction of 1a and 2a.

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with **1a** (26.5 mg, 0.1 mmol), sulfoxonium ylide **2a** (0.15 mmol, 29.5 mg), $[Ru(benzene)Cl_2]_2$ (2.5 mol%, 1.3 mg, 0.0025 mmol), NaOAc (0.1 mmol, 8.2 mg), and HFIP (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 60 °C for 3 h. Afterward, the reaction mixture was allowed to cool to room temperature and filtered through a pad of Celite. The filtrate was concentrated in *vacuo*.

Figure S15. Up: ¹H{¹¹B} NMR (CDCl₃) spectrum for the reaction mixture of **1a** with **2**; down: ¹H NMR (CDCl₃) for pure DMSO for comparison.

Note: The reaction of 1a with 2a confirms the formation of DMSO.

5. References

1. (a)Y. Quan and Z. Xie, Iridium Catalyzed Regioselective Cage Boron Alkenylation of *o*-Carboranes via Direct Cage B-H Activation, *J. Am. Chem. Soc.*, 2014, **136**, 15513-15516; (b)H. Lyu, Y. Quan and Z. Xie, Palladium-Catalyzed Direct Dialkenylation of Cage BH Bonds in *o*-Carboranes through Cross-Coupling Reactions, *Angew. Chem., Int. Ed.*, 2015, **54**, 10623-10626; (c)Y. Baek, S. Kim, J.-Y. Son, K. Lee, D. Kim and P. H. Lee, Rhodium-Catalyzed Amidation of the Cage B(4) – H Bond in *o*-Carboranes with Dioxazolones by Carboxylic Acid-Assisted B(4) – H Bond Activation, *ACS Catal.*, 2019, **9**, 10418-10425.

2. (a)J. Vaitla, A. Bayer and K. H. Hopmann, Synthesis of Indoles and Pyrroles Utilizing Iridium Carbenes Generated from Sulfoxonium Ylides, *Angew. Chem., Int. Ed.*, 2017, **56**, 4277-4281; (b)Y. Xu, X. Yang, X. Zhou, L. Kong and X. Li, Rhodium(III)-Catalyzed Synthesis of Naphthols via C-H Activation of Sulfoxonium Ylides, *Org. Lett.*, 2017, **19**, 4307-4310.

3. CrysAlisPro 1.171.39.53 (Rigaku Oxford Diffraction, 2019).

4. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment - Olex2 dissected, *Acta Crystallographica Section A*, 2015, **71**, 59-75.

5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.

6. G. Sheldrick, SHELXT-Integrated space-group and crystal-structure determination, *Acta Crystallographica Section A*, 2015, **71**, 3-8.

7. G. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallographica Section C*, 2015, **71**, 3-8.

6. Crystallographic data

	3b	31	7	A2·H ₂ O
Empirical formula	$C_{17}H_{24}B_{10}O$	$C_{16}H_{21}B_{10}NO_3$	$C_{16}H_{21}B_{10}BrO$	$C_{24}H_{38}B_{20}O_5Ru$
Formula weight	352.46	383.44	417.34	723.81
Crystal system	Triclinic	Triclinic	Monoclinic	Orthorhombic
Space group	P-1	P-1	$P2_1/n$	Pbca
a/Å	10.2082(11)	10.0973(4)	10.5191(2)	20.4669(2)
b/Å	10.3206(9)	10.5194(3)	10.8321(3)	12.00586(15)
c/Å	10.8736(9)	10.8504(5)	18.0396(4)	28.6857(3)
α/deg	95.963(7)	103.664(3)	90	90
β/deg	114.424(10)	111.893(4)	98.262(2)	90
γ/deg	96.569(8)	96.953(3)	90	90
$V/Å^3$	1021.64(18)	1010.78(7)	2034.17(8)	7048.75(14)
Ζ	2	2	4	8
$\rho_{calcd}(g \ cm^{-3})$	1.146	1.260	1.363	1.364
μ/mm^{-1}	0.443	0.584	2.747	3.863
F(000)	368.0	396.0	840.0	2928.0
2θ range (deg)	8.748/144.004	8.894/142.996	9.198/142.69	7.526/140.89
no. of rflns collected	8499	8588	8822	22139
no. of indep rflns	3893	3849	3881	6568
GoF on F ²	1.104	1.074	1.032	1.027
$R1/wR2$ (I> $2\sigma(I)$)	0.0701/0.2045	0.0629/0.1732	0.0465/0.1255	0.0527/0.1459
R1/wR2 (all data)	0.0952/0.2243	0.0709/0.1813	0.0529/0.1326	0.0683/0.1612
largest peak/hole (e Å ⁻¹)	0.37/-0.22	0.34/-0.33	0.79/-0.77	1.40/-0.39

Table S3. Crystallographic data of compounds 3b, 3l, 7 and A2·H2O.

7. NMR Spectra

¹H NMR (600 MHz, Chloroform-d)

¹¹B{¹H} NMR (128 MHz, Chloroform-d)

-2.20
 -3.68
 -5.09
 -8.45
 -9.34
 -11.03
 -13.37

¹¹B NMR (128 MHz, Chloroform-d)

¹³C NMR (101 MHz, Chloroform-d)

-5 -10 -30 ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*)

-2.21 -3.72 -4.98 -8.41 -9.30 -10.49 -11.11	13.40
---	-------

S60

¹H NMR (400 MHz, Chloroform-*d*)

¹¹B{¹H} NMR (128 MHz, Chloroform-*d*)

24	75	60	45	33	.46	.16	.66	3.42
~i	с.	÷	m.	с.	Ϋ́	Ξ	Ξ	2
11	٦ŕ.	1	Ÿ	Ÿ	Ξ.	Ъ.	÷г.	÷,
5		~	<u> </u>		~ \	2	-	_

S62

¹H NMR (400 MHz, Chloroform-*d*)

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

-2.08 -3.80	-5.28 -8.51	-9.24	-10.60	-11.08	-11.83	-13.30
5			5	1-	4	~

S65

¹¹B NMR (193 MHz, Chloroform-d)

-1.75 -2.53 -3.42 -4.19 -5.20 -8.89 -9.69 -11.46 -11.46	-12.90	13.71
---	--------	-------

50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 ppm

¹⁹F NMR (565 MHz, Chloroform-d)

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ppm

¹H NMR (400 MHz, Chloroform-*d*)

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*)

10	80	25	52	26	0.63	1.10	1.84	3.36
Ņ	က်	ς.	ထု	ၐ	÷	÷	÷	÷
Ľ,	-i-	-i-	_i_	-i-	Ň	, i-	نير	نہ

S69

05

¹H NMR (400 MHz, Chloroform-d)

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

-2.09 -3.81 -5.26 -8.52 -9.25 -10.64	-11.04 -11.74 -13.31
---	----------------------------

ppm

¹H NMR (400 MHz, Chloroform-d)

¹¹B{1H} NMR (193 MHz, Chloroform-d)

.10	.81	.28	.52	.25	0.64	1.10	1.77	3.34
Ņ	က္	ņ	œ	ο,	<u>.</u>	<u>.</u>		<u>.</u>
			- <u>1</u>	- <u>1</u>		- <u>1</u>		
		~	~~	-	\sim	\sim	~	_

1.08 1.105 1.10 1.03 1.05 .87 5 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹¹B{¹H} NMR (128 MHz, Chloroform-d)

-2.01 -3.79 -5.36 -5.36 -8.52 -9.18 -10.96 -11.69

ppm

¹¹B{1H} NMR (193 MHz, Chloroform-d)

¹¹B NMR (193 MHz, Chloroform-d)

_ر -1.79	_r -2.56	-3.34	11 -4.11	<u> </u> -5.04	, -8.04	/ ₇ -8.85	9.70	री -10.84	11.28	12.07	12.86	13.72
--------------------	--------------------	-------	----------	----------------	---------	----------------------	------	-----------	-------	-------	-------	-------

I-5 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -€ ppm

15 -20 -25 -30 -35 35 30 25 20 10 5 0 -10 -15 -40 -45 -5 ppm

S80

55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -7 ppm

¹¹B NMR (193 MHz, Chloroform-d)

_ر -1.81	_r -2.59	-3.36	-4.13	<u>∜</u> -5.10	¹ ر -8.06	J ₇ -8.87	-9.72	10.90	11.44	-12.13	L-12.95	13.80	
--------------------	--------------------	-------	-------	----------------	----------------------	----------------------	-------	-------	-------	--------	---------	-------	--

50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -6 ppm

S84

¹¹B NMR (193 MHz, Chloroform-d)

.15	.93	.20	60.	6.	.96	.98	.84	0.91	1.24	2.00	3.18	3.99
Ņ	Ņ	ကို	4	4		Ŷ	ဂု	5	5	5	5	Ξ
							11					

_

ŇŴ

25 20 15 5 -25 -30 30 10 0 -5 -10 -15 -20 -35 -40 -45 ppm

ppm

¹H NMR (400 MHz, Chloroform-d)

¹H NMR (400 MHz, Chloroform-d)

¹¹B NMR (193 MHz, Chloroform-d)

₋ -1.84	-2.62	-3.32	ر -4.09	-4.99	[√] -8.00	/8.85	-9.74	10.81	-11.24	L-12.08	-13.00	13.75	
--------------------	-------	-------	---------	-------	--------------------	-------	-------	-------	--------	---------	--------	-------	--

S91

ppm

¹¹B{¹H} NMR (128 MHz, Chloroform-d)

¹¹B NMR (128 MHz, Chloroform-d)

40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 ppm

ഹ	S	9	~	σ	0		2	ω	ω	σ	0		2	С	4	ø	\sim	~	ω	~	ω	σ		2	З	4	S	S	~	~
2	2	2	2	2	ŝ	З	ŝ	9	9	9	7	2	7	2	2	~	2	7	8	8	8	ω	0	6	0	0	0	0	0	6
ö	ö	ö	ö	ö	ö	ö	ö	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	<u>б</u>	<u>о</u>	6	<u>б</u>	<u>б</u>	<u>б</u>	<u>о</u>	<u>б</u>	<u>о</u>	ດ່	<u>б</u>	6
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ
-	<u>_</u>		~	~	~		~			-		-		~		~	~		~	~	<u> </u>		<u>_</u>		~					<u> </u>
						- 1	- I.	- I		- I				- I.	- 1													- I		
_		_		_		_		L			L		L		L.	-	~	~	5	2	_		_		-					

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

Aug01-2022-chj-NH-PhCB.10.fid

_r -1.55	_r -2.32	-3.48	-4.23	 -5.10 	ት -8.14 ት	-8.89	-9.65	-11.35	1-13.70
--------------------	--------------------	-------	-------	---------------------------	--------------	-------	-------	--------	---------

¹¹B NMR (193 MHz, Chloroform-d)

Aug01-2022-chj-NH-PhCB.11.fid

ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

-2.28 -3.71 -4.95 -4.95 -4.95 -9.30 -10.54 -11.13 -11.61 -11.61

ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*)

-2.18 -3.72 -4.98 -8.40 -9.28 -10.54 -11.13 -11.67

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

|--|

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

Feb14-2023-CHJ-SFPhCB.11.fid

~	~	9	~	_	40	\sim	2	4
÷i	2	÷	4	ò	Ä	5	<u></u>	~
N O	ς.	5.	ω	<u>б</u>	÷	Ξ	Ξ	~
				- I				
5	_	~	~ -	~	1 ~	2		_

¹¹B NMR (193 MHz, Chloroform-d)

Feb14-2023-CHJ-SFPhCB.10.fid

-1.79	-2.57	-3.32	-4.10	-5.18	-8.03	-8.87	-9.71	-10.72	-11.46	-12.24	-13.01	-13.85
_			\rightarrow		~ ~	~	51	4	\neq	_		

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

13	73	25	44	29	0.50	1.13	1.70	3.38
Ņ	က်.	ų.	φ	ၐ	Ť	÷	÷	Ŧ
Ļ	-	- L	~ [_]	-	- 1	1	Ļ	<i>`</i>

ppm

72.21 -3.79 -5.33 -5.34 -5.33 -5.34 -5.34 -5.34 -5.33 -5.33 -5.34 -1.10 -5.34 -1.10 -5.34 -1.10 -5.34 -1.10 -5.34 -1.10 -5.34 -1.10 -5.34 -1.11 -1.12 -1.1322 -1.13

ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

-2.23 -3.81	-5.34	-8.49	-9.33	-10.59	-11.14	-11.90	-13.43
i L	Ĺ	Ĺ	Ľ.	Ś	2	_i_	<i>_</i>

S112

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

ယ္လ	õ	5	4	53	.15	97	.50
0.0	5.0	8.4	6	10	£	£	13
5		Ľ	4	5	2	4	_

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

55 67	27	36	0.47	1.19	1.76	3.49
ဂုဂု	Ϋ́	ထုံရ	57	È	È	Ť
	~		\sim	~	~	_

റെറ	4	ņ		51	4	82	52
3.7	5.3	8.4	9.3	10.	÷.	÷.	5
	.'.	<u>'</u> '	-	5	2	2	_

ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

12	7 5	p q	.53	.13	.85	.46
ဂုံကုံ	μ	$\dot{\rho}$ $\dot{\rho}$	-10	÷	÷	-13
5		5	3	1-	-	_

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

-2.39	-3.81	-5.26	-8.50	-9.42	-10.45	-11.21	-11.93	-13.51
5	-		<i></i>		1	1-	~	_

			~	20	4	33	16
4 0	ñ,	4	4	3	Ξ		м.
N N	်က်	တဲ့	ဂံ	÷	÷	÷	÷
	-i-	<u>_</u> نہ	-i-	Ś	į,	Ĺ,	<i>_</i>

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

/ -2.26 / -4.01 / -5.61 / -9.37 / -11.15	∫ -12.05 \ -13.29
--	----------------------

S126

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

Apr26-2023-LJX-binan.11.fid

-2.21	-3.80	-5.39	-8.53	-9.33	-10.64	-11.14	-11.92	-13.39
5			~~		5	~~	~	_

¹¹B NMR (193 MHz, Chloroform-d)

Apr26-2023-LJX-binan.10.fid

9	4	ņ	N	က္	9	4	0	17	17	55	40	7	90
œ	œ.	4	Ņ	4	ς.	တဲ့	^.	ö	ö	÷.	N.	က်	ė
7	Ņ	ကို	4	ĥ	ထု	φ	ၐ	7	7	$\overline{\mathbf{x}}$	$\overline{\mathbf{x}}$	$\overline{\mathbf{x}}$	7
· _	Ľ.	Ľ.	- L	Ľ.	÷	. i	i	÷	5	<u> </u>			

S128

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

May03-2023-ljx-shudingji.11.fid

-2.58 -3.68 -4.98 -8.44	
----------------------------------	--

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

-2.15	-3.79	-5.38	-8.51	-9.31	-11.11	-12.17	-13.27
5	~	~ ~	, <i>`</i>	-1	- \	2.	~

¹¹B NMR (193 MHz, Chloroform-d)

Feb17-2023-CHJ-FBCF-PhCB.11.fid

.78 55	43	20	42	.15	93	74	0.81	1.56	2.63	3.99
?	က်	4	မှ	ထု	ထု	ရှ်	-10	÷	Ŧ	Ť
	_	-	- 1	5	1	~	1	1		

--117.08 --117.12

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹H NMR (600 MHz, Chloroform-d)

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

May28-2023-ljx-yaowu.13.fid

₩Ŵ/

40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -{ ppm

-2.23	-3.74	-5.00	-5.01	-8.43	-9.33	-11.44	-13.45
5	~~	5	~	1.	~,	~	~

S140

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

7	54	93	86	.66	1.89	2.53	3.21	4.14
က်	4	ι <u>ρ</u>	φ	οj	÷	÷	Ť	÷
Ċ	, i	Ś	, i	÷	Ĺ	-1	2.	Ż

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	.53 .83 3.83
ς	5777
έ, θ, β, θ,	777

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

-2.24 -3.97	-5.15 -8.54	-9.40	-10.54 -11.13	-11.82	-13 47
5	~~ '		いん	-	~

0.80 2 2 0.85 6 6 ŝ 15 40 35 30 25 20 15 10 -10 -15 -20 -25 -30 -35 -40 -45 -5 5 0 -5 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

-2.09 -4.15 -5.10 -5.10 -6.66 -10.97 -11.79 -13.46
--

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

6	15	06	17	05	.57	.28	.53	3.57
_		- 2		_	\circ			<i>(</i>)
S.	സ	$\overline{\mathbf{A}}$	ω	0				
5		~~	<i>\</i> -		5	1	~	_

ppm

¹¹B NMR (193 MHz, Chloroform-d)

-2.03 -2.77 -3.46 -4.22 -8.13 -8.96	-9.81 -11.06 -11.65 -12.44 -12.44 -13.66 -14.41
--	---

¹¹B NMR (193 MHz, Chloroform-*d*)

-2.02	-2.83	-3.26	-3.81	-4.11	-7.72	-7.97	-8.49	-8.73	-9.19	-9.96	-10.94	-10.94	-11.89	-12.88	-13.33	-14.15
_	_		_		_			ι			_				_	

¹H NMR (600 MHz, Chloroform-d)

¹¹B NMR (193 MHz, Chloroform-d)

-1.70 -2.48 -3.39 -4.17 -6.06	-8.07 -8.77 -9.47	1-10.54 -11.44 -12.44 -13.53
---	-------------------------	---------------------------------------

μų γ -5 -10 -15 -20 -25 -30 -35 -40 -45 -{ ppm

-131.72 -131.76 -131.76 -131.76 -131.79 -140.77 -140.81 -140.83

¹¹B{¹H} NMR (193 MHz, Chloroform-d)

.16 84	.05	.50	.13	0.95	1.96	3.24
ဂုဂု	φ	ထု	ၐ	$\overline{}$	7	7
	L L	Ĺ	-i	i	ン.	نر

.85 .62 .62 .21 .36 .36	.12 .93 .76 0.82 1.57 2.38
- 0 0 4 U	000
1 1 1 1 1	
11111	

¹¹B{¹H} NMR (193 MHz, Chloroform-*d*)

37	19	62	49	0.65	1.29	1.92	3.63
လုံးကို	ġ	φ	ရှ	Ť	È	÷	Ť
	~	~ ~		~ \	2	~	_

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm