Electronic supplementary information

Boosting bifunctional oxygen electrocatalysis by integrating $Fe-N_x$ moieties and FeNi nanoparticles for highly efficient and long-life rechargeable zinc-air batteries

Zubair Ahmed^a, Jekaterina Kozlova^b, Kaupo Kukli^b, Arvo Kikas^b, Vambola Kisand^b, Alexey Treshchalov^b, Maike Käärik^a, Jaan Leis^a, Jaan Aruväli^c, and Kaido Tammeveski^{a,*} ^aInstitute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia ^bInstitute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia ^cInstitute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia *Corresponding author, E-mail address: <u>kaido.tammeveski@ut.ee</u> (K. Tammeveski)

1. Koutecky-Levich analysis

The ORR polarization curves at different rotation rates were recorded at a scan rate (ν) of 10 mV s⁻¹ with the electrode rotation rates (ω) from 600 to 3000 rpm. The electron transfer number (n) was calculated from the Koutecky-Levich (K-L) equation ¹:

$$j^{-1} = j_k^{-1} + B^{-1} \omega^{-1/2}$$

(S1)
 $j_k = nFkC_0$ (S2)

$$B = 0.62 \mathrm{nF} C_0 D_0^{2/3} v^{-1/6}$$
(S3)

where *j* and *j*_k represent the experimental and kinetic current densities at a specific potential, *j*_d is the diffusion-limited current density, *n* is the number of electrons transferred per O₂ molecule, *k* is the O₂ reduction rate constant at a specific potential (cm s⁻¹), *F* is the Faraday constant (96485 C mol⁻¹), D_0 is the O₂ diffusion coefficient in 0.1 M KOH (1.9×10⁻⁵ cm² s⁻¹), *v* is the kinematic viscosity of the electrolyte solution (0.01 cm² s⁻¹), C_0 is the concentration of O₂ in the bulk solution (1.2×10⁻⁶ mol cm⁻³), and ω is the electrode rotation rate (rad s⁻¹)².

2. Zn-air battery tests

Zn-air batteries performance were evaluated at ambient conditions without additional oxygen supply. The polarization curves and galvanostatic discharge–charge cycling curves were recorded by linear sweep voltammetry and CP-Chronopotentiometry, respectively. The specific capacity and round trip efficiency were calculated according to the equation as follows:

$$Specific \ capacity = \frac{current \times service \ hours}{weight \ of \ consumed \ zinc}$$
(S4)

(34) Round trip efficiency (ε) = $\frac{E_{discharge}}{E_{charge}} \times 100\%$

(S5)

Fig. S1. Raman spectra of the prepared Fe-N-GNS, $Ni_1@Fe-N-GNS$, $Ni_2@Fe-N-GNS$, $Ni_3@Fe-N-GNS$, and $Ni_4@Fe-N-GNS$ catalyst materials.

Fig. S2. The high-resolution XPS spectra of N 1s for Fe-N-GNS, $Ni_1@Fe-N-GNS$, $Ni_2@Fe-N-GNS$, and $Ni_4@Fe-N-GNS$ catalyst materials.

Fig. S3. The high-resolution XPS spectra of Fe 2p for Fe-N-GNS, $Ni_1@$ Fe-N-GNS, $Ni_2@$ Fe-N-GNS, and $Ni_4@$ Fe-N-GNS catalyst materials.

Fig. S4. The high-resolution XPS spectra of Ni 2p for Fe-N-GNS, Ni₁@Fe-N-GNS, Ni₂@Fe-N-GNS, and Ni₄@Fe-N-GNS catalyst materials.

Table S1: Composition percentage analysis by Rietveld refinement of all the catalysts.

	Fe-N-GNS	Ni ₁ @Fe-N-GNS	Ni ₂ @Fe-N-GNS	Ni ₃ @Fe-N-GNS	Ni ₄ @Fe-N-GNS
Carbon	96.4	96.18	93.8	93.11	93.85
Fe ₃ C	1.3	0.95	0.93	0	0
Fe	0.8	0.2	0	0	0
Fe ₃ O ₄	1.5	0.63	0.90	0.47	0.27
FeNi	0	2.04	4.43	6.42	5.88

Table S2. The surface elemental composition of the prepared catalysts by XPS analysis.

Eleme	Function	Fe-N-GNS		Ni ₁ @Fe-N-GNS		Ni ₂ @Fe-N-GNS		Ni ₃ @Fe-N-GNS		Ni ₄ @Fe-N-GNS	
nt	al form										
		BE	at.	BE	at 0/	BE	at 0/	BE	at.%	BE	at.%
		(eV)	%	(eV)	at.%	(eV)	al.70	(eV)		(eV)	
	sp ²	284.4	76.2	284.4	77.37	284.4	76.66	284.4	74.97	284.4	70.48
	sp ³	285.1	0	285	0	285.1	0.01	285	0	285.1	2.73
C	C-O	286.3	4.05	286.3	3.04	286.3	3.93	286.3	3.2	286.3	4.71
	C=O	287.4	0.23	287.4	1.31	287.4	0.56	287.4	1.2	287.4	0.45
	O-C=O	288.3	3.8	288.3	1.19	288.3	3.39	288.3	2.29	288.3	3.74

	π-π*	290.4	5.15	289.9	5.21	290.4	5.48	290.2	5.14	290.4	5.47
	Carbide	283	3.14	283	2.71	282.8	2.63	283	3.74	282.7	2.09
	π-π*	295.5	3.43	292.5	3.52	292.1	3.52	292.3	3.94	292.7	3.28
	Imine	397.4	0	397.9	0.09	397.6	0	397.8	0.08	397.6	0.03
	Pyridinic	398.2	0.22	398.7	0.2	398.4	0.35	398.6	1.22	398.4	0.53
N	M-N _x	399.3	0.13	399.7	0.2	399.5	0.11	399.7	0.36	399.2	0.18
	Pyrrolic	400.3	0.21	400.8	0.15	400.5	0.23	400.7	0.51	400.5	0.26
	Graphitic	402	0.04	402	0.01	402.1	0.09	402	0.08	402.0	0.05
	Metal oxide	530.1	0.38	530.2	0.42	530.2	0.52	530.3	0.5	530.1	0.26
	O=C-OH	531.2	0.54	531.2	0.7	531.2	0.4	531.2	0.84	531.2	0.8
	C=O	531.7	0.57	531.7	1.26	531.6	0.5	531.9	0.78	531.3	0.33
0	carbonyl										
0	C-O	532.9	1.39	532.9	2.21	532.9	0.96	532.9	1.17	532.9	1.77
	C-OH	533.7	0.06	533.7	0.06	533.7	0.06	533.7	0.06	533.7	0.06
	Water,	535.4	0.34	535.4	0.37	535.8	0.15	535	0.37	535	0.45
	chemisor										
	bed O										
total Fe		0.14		0.1	0	0.1	7	0.1	4	0.1	2
(at.%)									-		
total N1		0		0.2	1	0.2	1	0.3	5	0.9	7
(al.%)				0.4	5	07	0	<u> </u>	0	1.0	5
(at.%)		0.6		0.0	5	0.7	0	2.2	フ	1.0	5

Table S3. Elemental composition of as-prepared materials by SEM-EDX (wt.%).

Catalyst	С	Ν	0	Fe	Ni
Fe-N-GNS	87.56	3.78	4.18	4.48	0
Ni ₃ @Fe-N-GNS	83.82	3.8	2.84	4.68	4.86
Ni ₄ @Fe-N-GNS	83.53	5.56	4.19	4.93	6.90

Table S4. BET surface area (S_{BET}), volume of micropores (V_{micro}), total pore volume (V_{tot}), DFT surface area of micropores and mesopores calculated for Fe-N-GNS, Ni₃@Fe-N-GNS, and Ni₄@Fe-N-GNS catalysts

Catalyst	S _{BET}	V _{tot}	S _{DFT}	S _{DFT} micro	S _{DFT} meso	V _{micro}
	(m²/g)	(cm ³ /g)	(m²/g)	(m²/g)	(m²/g)	(cm ³ /g)
Fe-N-GNS	394	0.71	341	140	201	0.08
Ni ₃ @Fe-N-GNS	352	0.56	328	180	148	0.08
Ni ₄ @Fe-N-GNS	300	0.52	264	130	134	0.07

Fig. S5. BF-STEM image of the as-prepared Ni₃@Fe-N-GNS catalyst.

Fig. S6. CV curves of a Ni₃@Fe-N-GNS catalyst in O₂ and Ar saturated 0.1 M KOH solution (50 mV s⁻¹).

Fig. S7. Tafel plots for ORR on the $Ni_1@Fe-N-GNS$, $Ni_2@Fe-N-GNS$, and $Ni_4@Fe-N-GNS$ catalysts.

Fig. S8. The ORR polarization curves for (a) Fe-N-GNS, (b) $Ni_1@Fe-N-GNS$, (c) $Ni_2@Fe-N-GNS$, and (d) $Ni_4@Fe-N-GNS$ catalysts in O₂-saturated 0.1 M KOH solution at different rotations rates ($\nu = 10 \text{ mV s}^{-1}$).

Fig. S9. Koutecky-Levich plots for ORR on (a) Fe-N-GNS. (b) $Ni_1@Fe-N-GNS$, (c) $Ni_2@Fe-N-GNS$, and (d) $Ni_4@Fe-N-GNS$ catalysts in O₂-saturated 0.1 M KOH solution at different potentials.

Fig. S10. Ring current of Ni_3 @Fe-N-GNS, Fe-N-GNS, and Pt/C catalysts obtained from RRDE test at 1600 rpm.

Fig. S11. RDE polarisation curve of Ni₃@Fe-N-GNS and Fe-N-GNS with and without 10mM NacN in O_2 -saturated 0.1 M KOH at 1600 rpm

Fig. S12. Chronoamperometric reponse of Ni₃@Fe-N-GNS in O₂-saturated 0.1 M KOH at 1600 rpm.

Fig. S13. (a-b) STEM images at different magnifications (c-h) HAADF-STEM image and corresponding elemental maps of Fe, C, N, Ni after (i-t) measurement of Ni₃@Fe-N-GNS.

Fig. S14. Tafel plots for OER on the Ni₁@Fe-N-GNS, Ni₂@Fe-N-GNS, and Ni₄@Fe-N-GNS catalysts.

Fig. S15. CV's of the (a) Fe-N-GNS, (b) $Ni_1@Fe-N-GNS$, (c) $Ni_2@Fe-N-GNS$, and (d) $Ni_4@Fe-N-GNS$ catalyst materials in Ar-saturated 0.1 M KOH solution at scan rates from 10 to 100 mV s⁻¹.

Fig. S16. (a) CV's of Ni₃@Fe-N-GNS catalyst measured in Ar-saturated 0.1 M KOH solution at scan rates from 10 to 100 mV s⁻¹. (b) C_{dl} of all the prepared catalysts.

Table S5: Comparison of the ORR and OER parameters of all the prepared catalysts in 0.1 M KOH.

Catalyst	Loading	E _{onset} (V) vs RHE	$E_{1/2}$ (V) vs RHE	E_{10} (V) vs RHE
	(mg cm ⁻²)	(ORR)	(ORR)	(OER)

Ni ₄ @Fe-N-GNS	0.2	0.91	0.771	*
Ni ₃ @Fe-N-GNS	0.2	0.96	0.834	1.65
Ni ₂ @Fe-N-GNS	0.2	0.92	0.808	*
Ni ₁ @Fe-N-GNS	0.2	0.92	0.808	1.68
Fe-N-GNS	0.2	0.92	0.807	*
Pt/C	0.1	-	0.838	-
RuO ₂	0.1	-	-	1.72

*missing values or the catalyst's OER current density does not reach 10 mA cm⁻².

Fig. S17. LSV curves of Ni₃@Fe-N-GNS and Pt/C + RuO₂ catalysts for ORR and OER in 0.1 M KOH.

Catalyst	<i>E</i> _{1/2} for ORR (V vs. RHE)	<i>E</i> ₁₀ for OER (V vs. RHE) or η for OER	Δ <i>E</i> (V)	Voltage gap / V	Stability / h	Ref.
Ni ₃ @Fe-N-GNS	0.834	1.65	0.81	0.71	180	This work
Ni0.6Fe0.4	0.75	1.51	0.76	0.96	69	3
Ni ₃ Fe/N-C	0.85	1.56	0.71	0.798	300 @ 2 runs	4
Ni ₃ FeN	0.78	1.588	0.808	0.70	100	5
CoNi/BCF	0.80	1.60	0.80		60	6
Co-NiO NFs	0.79	1.53	0.74	0.72	110	7
-NiFePS/CNT@NF	0.88	$\eta = 232 \text{ mV}$	0.623	-	132 @ 3 runs	8
NiFe/N-CNT	0.75	$\eta = 290 \text{ mV}$	0.77	0.61	100	9

Table S6. Bifunctional performance comparison of the Ni₃@Fe-N-GNS electrocatalyst with other works.

FeNi3@NC	0.86	$\eta = 277 \text{ mV}$	0.65	0.75	30	10
FeCo/Se-CNT	0.9	1.65	0.75	0.878	70	11
FeNi@N- CNT/NCSs	0.84	1.59	0.75	0.73	40	12
CNT@SAC- Co/NCP	0.87	1.61	0.74	0.51	33.6	13
NiFe@N-CFs	0.82	1.53	0.71	0.66	150	14
Co _{0.7} Fe _{0.3} @NC2:1- 800	0.827	$\eta = 314 \text{ mV}$	-	0.835	60	15
NiFeP/Pi	0.82	1.44	0.62	0.70	100 @ 3 runs	16
NiO/NiCo ₂ O ₄	0.73	$\eta = 357 \text{ mV}$	0.86	0.78	175	17

Table S7. The comparisom of Ni₃@Fe-N-GNS based Zn-air battery performance with reported works.

Catalyst	Loading	OCV (V)	$P_{\rm max}$ (mW	Specific capacity (mAh	Ref.
	(mg cm ⁻²)		cm ⁻²)	<u> </u>	
Ni ₃ @Fe-N-GNS	2	1.47	171	894 @20 mA cm ⁻²	This
					work
FePc CNTs NiCo/CP	0.8	1.44	219.5	748.2 @ 10 mA cm ⁻²	18
Fe/Ni(1:3)-NG	1	1.50	164.1	824.3	19
Fe(Zn)-N-C	1	1.44	193	800@10 mA cm ⁻²	20
Fe,Mn/N–C	0.5	1.40	160.8	902 @ 5 mA cm ⁻²	21
NiFePS/CNT@NF	5	1.41	134.5	737.1 @10 mAcm-2	8
NiCoFeP-HN	10	1.41	109	754 @ 5 mA cm ⁻²	22
Fe/Co-N-C	_	1.52	188	808 @ 10 mA cm ⁻²	23
FeCo-NSC	2	1.51	152.8	782.1@20 mA cm ⁻²	24

Fig. S18. EIS measurement of Ni_3 @Fe-N-GNS catalyst as air cathode in ZAB before and after stability measurement at 1.25 V.

References:

- 1. A. J. Bard and L. R. Faulkner, *Electrochemical methods: fundamentals and applications*, John Wiley & Sons, 2nd ed. New York, 2001.
- X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. W. T. Goh, T. S. A. Hor, Y. Zong and Z. Liu, ACS Catalysis, 2015, 5, 4643-4667.
- Y.-y. Li, Q. Zou, Z. Li, D. Xie, Y. Niu, J. Zou, X. Zeng and J. Huang, *Applied Surface Science*, 2022, 572, 151286.
- H. Gong, X. Zheng, K. Zeng, B. Yang, X. Liang, L. Li, Y. Tao and R. Yang, *Carbon*, 2021, 174, 475-483.
- 5. G. Fu, Z. Cui, Y. Chen, L. Xu, Y. Tang and J. B. Goodenough, Nano Energy, 2017, 39, 77-85.
- 6. W. Wan, X. Liu, H. Li, X. Peng, D. Xi and J. Luo, *Applied Catalysis B: Environmental*, 2019, 240, 193-200.
- 7. G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, X. Liu, X. Lin, S. Sun and H.-J. Qiu, *Applied Catalysis B: Environmental*, 2020, **268**, 118431.
- 8. B. Liu, S. Wu, G. Chen and Y. Han, The Journal of Physical Chemistry C, 2024, 128, 12346-12354.
- 9. H. Lei, L. Ma, Q. Wan, Z. Huangfu, S. Tan, Z. Wang and W. Mai, Nano Energy, 2022, 104, 107941.
- 10. D. Chen, J. Zhu, X. Mu, R. Cheng, W. Li, S. Liu, Z. Pu, C. Lin and S. Mu, *Applied Catalysis B: Environmental*, 2020, 268, 118729.
- H. Zhang, M. Zhao, H. Liu, S. Shi, Z. Wang, B. Zhang, L. Song, J. Shang, Y. Yang, C. Ma, L. Zheng, Y. Han and W. Huang, *Nano Letters*, 2021, 21, 2255-2264.
- 12. J.-T. Ren, L. Chen, Y.-S. Wang, W.-W. Tian, L.-J. Gao and Z.-Y. Yuan, ACS Sustainable Chemistry & Engineering, 2020, 8, 223-237.
- 13. J.-C. Li, Y. Meng, L. Zhang, G. Li, Z. Shi, P.-X. Hou, C. Liu, H.-M. Cheng and M. Shao, *Advanced Functional Materials*, 2021, **31**, 2103360.
- 14. Y. Niu, X. Teng, S. Gong and Z. Chen, Journal of Materials Chemistry A, 2020, 8, 13725-13734.
- 15. L. Long, H. Liu, J. Jia, Y. Zhang and S. Dong, Nanoscale, 2021, 13, 2609-2617.
- 16. N. Thakur, M. Kumar, D. Mandal and T. C. Nagaiah, *ACS Applied Materials & Interfaces*, 2021, **13**, 52487-52497.
- 17. Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao and D. Xue, ACS Applied Materials & Interfaces, 2020, 12, 21661-21669.
- S. Ding, L. He, L. Fang, Y. Zhu, T. Li, Z. Lyu, D. Du, Y. Lin and J.-C. Li, *Advanced Energy Materials*, 2022, 12, 2202984.
- 19. Y. Ma, H. Fan, C. Wu, M. Zhang, J. Yu, L. Song, K. Li and J. He, Carbon, 2021, 185, 526-535.
- Y. Ma, Y. Xiao, Y. Ge, D. Gao, Y. Zhang, Z. Li and Y. Han, *Journal of Materials Chemistry A*, 2024, 12, 2004-2010.
- G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B.-A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu and J.-N. Zhang, *Nature Communications*, 2021, 12, 1734.
- 22. B. He, C. Xu, Y. Tang, Y. Qian, H. Liu, Q. Hao and Z. Su, *Journal of Materials Chemistry A*, 2019, 7, 24964-24972.
- 23. R. Dun, X. He, J. Huang, W. Wang, I. Yiwei, L. Li, B. Lu, Z. Hua and J. Shi, *Journal of Materials Chemistry A*, 2023, **11**, 5902-5909.
- 24. Y. Wu, C. Ye, L. Yu, Y. Liu, J. Huang, J. Bi, L. Xue, J. Sun, J. Yang, W. Zhang, X. Wang, P. Xiong and J. Zhu, *Energy Storage Materials*, 2022, **45**, 805-813.