Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting information

Magnesium Borohydride Pyridine Derivatives as Electrolytes for All-Solid-State Batteries

Jakob B. Grinderslev and Torben R. Jensen*

Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

* Corresponding author: trj@chem.au.dk

Figure S1. ¹H NMR spectra of s1-s3.

Figure S2. Rietveld refinement of Mg(BH₄)₂·3N(CH)₅ (**s1**) from SR PXD data measured at T = 20 °C, $\lambda = 0.70870 \text{ Å}$, showing experimental (red circles) and calculated (black line) PXD patterns, and a difference plot below (blue line). Final discrepancy factors: $R_p = 2.51 \%$, $R_{wp} = 2.19 \%$ (not corrected for background), $R_p = 11.2 \%$, $R_{wp} = 18.2 \%$ (conventional Rietveld R-factors), $R_{Bragg}(Mg(BH_4)_2 \cdot 3N(CH)_5) = 9.80 \%$ and global $\chi^2 = 10.1$.

Figure S3. Rietveld refinement of Mg(BH₄)₂·2N(CH)₅ (**s2**) from SR PXD data measured at T = 20 °C, $\lambda = 0.826927$ Å, showing experimental (red circles) and calculated (black line) PXD patterns, and a difference plot below (blue line). Final discrepancy factors: $R_p = 1.60$ %, $R_{wp} = 2.74$ % (not corrected for background), $R_p = 20.4$ %, $R_{wp} = 14.2$ % (conventional Rietveld R-factors), $R_{Bragg}(Mg(BH_4)_2 \cdot 2N(CH)_5) = 10.2$ % and global $\chi^2 = 13.8$.

Figure S4. Thermal analysis (TG-MS) data of **s3** during heating with a heating rate of 0.5 °C/min. The apparent increasing weight% is an artifact from the instrument.

Figure S5. Fitting of the Nyquist data of $Mg(BH_4)_2 \cdot 3N(CH)_5$ (s1) at room temperature after stabilization.

Figure S6. Nyquist plots of $Mg(BH_4)_2 \cdot 3N(CH)_5$ (s1) from electrochemical impedance spectroscopy measurements during stabilization at room temperature in intervals of 1 h.

Figure S7. Time-evolution of the ionic conductivity of **s1-s3** measured by electrochemical impedance spectroscopy at room temperature in intervals of 1 h.

Figure S8. Arrhenius plot of $\ln(\sigma T)$ vs 1000/T to evaluate the activation energy.