Supporting Information

A fluorinated bifunctional additive achieving stable electrode/electrolyte interfaces for high-

voltage lithium-metal batteries

Lei Zeng,^{a,b} Lu Gao,^b Ting Ou,^c Yufan Xin,^b Junliang Du,^{a,b} Mengqi Wang,^{a,b} Yanshuang Meng,^{a,*}

Xiaopeng Pei,^{b,*} and Ying Tan^{b*}

^a School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

^b Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China

^c Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China

* Corresponding authors:

E-mail: mengyanshuang@163.com (Y. Meng); peixiaopeng@ucas.ac.cn (X. Pei); tanying@ucas.ac.cn (Y. Tan)

Fig. S1. 1 H, 13 C and 19 F NMR spectra of M-3FEn-IO in CDCl₃.

Fig. S2. The average electrostatic potential of the surface near the atoms in the molecule.

Fig. S3. CV of the first five circles of Li \parallel NCM622 cells with electrolytes containing (a) 0.1 and (b) 0.5 vol % M-3FEn-IO in the voltage range of 3 - 4.5 V at a scan rate of 0.5 mV s⁻¹.

Fig. S4. CV curves of Li || SS cells 0.2 vol % M-3FEn-IO, at the first three cycles in the 0 - 2.5 V voltage range at a scan rate of 0.5 mV s⁻¹.

Fig. S5. CV curves of Li \parallel SS cells with different electrolytes at the first three cycles in the 0 - 2.5 V voltage range at a scan rate of 0.5 mV s⁻¹.

Fig. S6. Capacity retention of Li \parallel NCM622 batteries with the electrolytes containing varying additive concentrations. The cells were initially activated at 0.2 C and then cycled at 1 C with a cut-off voltage of 4.3 V at 30 °C.

Fig. S7. Capacity retention of Li || NCM622 batteries with the BE and electrolytes containing varying additive concentrations. The cells were initially activated at 0.2 C and then cycled at 1 C with a cut-off voltage of 4.3 V at 30 °C.

Fig. S8. Cycling performance of the Li || NCM622 battery after activation at 0.2 C and 45 °C, followed by 1 C cycling with a 4.5 V cut-off. Capacity retention is shown over cycle number.

Fig. S9. The electrochemical cycling performance of a Li \parallel NCM622 battery was evaluated at 1 C after initial activation at 0.2 C and at a temperature of 30 °C. The charge and discharge curves of the Li \parallel NCM622 battery were measured while cycling with both BE (a) and (b) electrolyte containing 0.2 vol % M-3FEn-IO.

Fig. S10. The electrochemical cycling performance of a Li \parallel NCM622 battery was evaluated at 1 C after initial activation at 0.2 C and at a temperature of 45 °C. The charge and discharge curves of the Li \parallel NCM622 battery were measured while cycling with both (a) BE and (b) electrolyte containing 0.2 vol % M-3FEn-IO.

Fig. S11. The electrochemical cycling performance of a Li || NCM622 battery was evaluated at 2 C after initial activation at 0.2 C and at a temperature of 60 °C. The charge and discharge curves of the Li || NCM622 battery were measured while cycling with both (a) BE and (b) electrolyte containing 0.2 vol % M-3FEn-IO.

Fig. S12. Evolution of charge and discharge medium voltages during cycling for the BE and the battery containing 0.2 vol % electrolyte additive. After initial activation at 0.2 C, the cells were tested under elevated temperatures of (a) 30 °C and (b) 45 °C at a current rate of 1 C, and (c) 60 °C at a current rate of 2 C.

Fig. S13. EIS spectra of Li \parallel NCM622 cells employing the BE and the electrolyte modified with 0.2 vol % M-3FEn-IO additive after the 3rd, 50th, 100th, 150th and 200th charge-discharge cycles.

 $\label{eq:Fig.S14} \textbf{Fig. S14}. \ The \ Li^+ \ diffusion \ coefficient \ was \ derived \ from \ the \ charge-discharge \ profiles \ of \ the \ activated \ Li \| NCM622 \ cell.$

Fig. S15. XPS spectra of (a) N 1s, (b) P 2p and (c) Ni 2p for the cycled NCM622 cathode electrode with BE and 0.2 vol % M-3FEn-IO containing electrolyte.

Fig. S16. EDS spot scanning of Ni, Co, and Mn elements on the LMA surface after 100 cycles of Li || NCM622 batteries with different electrolytes at 45 °C.

Fig. S17. Evaluation of the CE of the Li || Cu battery using different electrolytes via the Aurbach's method at (a) 45 °C and (b) 60 °C.

Fig. S18. The CE of the Li \parallel Cu battery using BE and the electrolyte containing 0.2 vol % M-3FEn-IO at 0.2 mA cm⁻², at (a) 45 °C and (b) 60 °C.

Fig. S19. Long-term cycling performance of a Li || Li battery was evaluated at 45 °C using an electrolyte containing BE and 1 vol % M-3FEn-IO at current density of 0.2 mA cm⁻² and 0.1 mAh cm⁻² for the initial two hundred cycles, followed by a higher current density of 1 mA cm⁻² and 0.5 mAh cm⁻².

Fig. S20. Voltage curves during the initial discharge process of the Li || Cu battery using BE and the electrolyte containing 0.2 vol % M-3FEn-IO.

Fig. S21. XPS spectra of N 1s of the cycled Li anode electrode using the BE and electrolyte containing 1 vol % M-3FEn-IO.