Supporting Information

Integration of Material Sintering and p-n Connection for High-Performance

PbTe Thermoelectric Modules

Ding Hu^{*a,b}, Zongwei Zhang^{**a}, Jianfeng Cai^a, Lulu Chen^a, Lianghan Fan^a, Zhoumin Jiang^a, Zhe Guo^a,

Xiaojian Tan^a, Guoqiang Liu^a, Song Yue^{*b}, Jun Jiang^{*a}

^aNingbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, China

^bSiyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China

E-mail: zhangzongwei@nimte.ac.cn, ysongx50@163.com, jjun@nimte.ac.cn

These authors contributed equally.

Fig. S1. Temperature-dependent (a) conductivity, (b) Seebeck coefficiece, (c) thermal conductivity, and (d) zT of PbTe prepared by conventional sintering and PbTe prepared by co-sintering.

Fig. S2. Characterization of the U-shaped module. Current-dependent (a) output voltage, (b) output power, (c) heat flow out, and (d) efficiency for the module with h = 3.5 mm under several temperature differences. (f) The experimental setup for module efficiency measurement.

Fig. S3. Characterization of the U-shaped module. Current-dependent (a) output voltage, (b) output power, (c) heat flow out, and (d) efficiency for the module with h = 1.5 mm under several temperature differences.

Fig. S4. Characterization of the U-shaped module. Current-dependent (a) output voltage, (b) output power, (c) heat flow out, and (d) efficiency for the module with h = 2.5 mm under several temperature differences.

Fig. S5. Characterization of the U-shaped module. Current-dependent (a) output voltage, (b) output power, (c) heat flow out, and (d) efficiency for the module with h = 4.5 mm under several temperature differences.

Table S1. Calculation of electronic transport properties	

Material properties	Ceramic plate (Al ₂ O ₃)	Electrode (Cu)	p-leg (Pb _{0.98} Na _{0.02} Te)	n-leg (Pb _{0.9} Ge _{0.1} Te _{0.996} I _{0.004})	SnTe	FeSb
Density $(ka m^{-3})$	3940	8940	8090	7870	7300	8100
(kg III [*]) Thermal						
expansion coefficient (10 ⁻⁶ K ⁻¹)	7	16~18 (300 K~850 K)	20~21 (300 K~850 K)	18~21 (300 K~850 K)	18~20 (300 K~850 K)	15~20 (300 K~850 K)
Yang 's modulus	380	120	25	35	60	80

(GPa)						
Poisson ratio	0.25	0.33	0.25	0.25	0.30	0.30
Thermal conductivi ty (W m ⁻¹ K ⁻¹)	30	400~230 (300 K~850 K)	3.9~1.1 (300 K~850 K)	1.3~0.9 (300 K~850 K)	15~2 (300 K~850 K)	20~3 (300 K~850 K)
Specific heat (J kg ⁻ ¹ K ⁻¹)	780	382~431 (300 K~850 K)	150~170 (300 K~850 K)	150~170 (300 K~850 K)	190~300	180~300