Supporting Information

Vanadium-based oxyhalide photocatalysts for visible-light-driven Zscheme water splitting: advancing conduction band engineering

Hajime Suzuki,^{a,*} Ryuki Tomita,^a Yusuke Ishii,^a Osamu Tomita,^a Akinobu Nakada,^{a,b} Akinori Saeki,^c Ryu Abe^{a,*}

^a Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto

University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

^b Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and

Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

^c Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1

Yamadaoka, Suita, Osaka 565-0871, Japan

AUTHOR INFORMATION

Corresponding Author

*E-mail: suzuki.hajime.7x@kyoto-u.ac.jp (H. S.).

*E-mail: ryu-abe@scl.kyoto-u.ac.jp (R. A.).

Figure S1. XRD patterns of PbVO₃Cl synthesized by (a) solid-state reaction and (b) hydrothermal reaction.

Figure S2. XPS spectra of Pb 4f, V $2p_{3/2}$, Cl 2p and O 1s for the hydrothermally synthesized PbVO₃Cl. The oxidation states were evaluated with reference to the NIST XPS Database.

Figure S3. XRD pattern of Pb₅(VO₄)₃Cl synthesized by precipitation method.

Figure S4. Le Bail refinements using XRD patterns of $Pb_{14}(VO_4)_2O_9Cl_4$ prepared at 550 °C and 600 °C.

Figure S5. SEM images of (a) $PbVO_3Cl$, (b) $Pb_5(VO_4)_3Cl$, and (c) $Pb_{14}(VO_4)_2O_9Cl_4$. The $PbVO_3Cl$ sample was prepared by hydrothermal reaction, and the $Pb_{14}(VO_4)_2O_9Cl_4$ sample was prepared by solid-state reaction at 600 °C.

Figure S6. Tauc plots of $Pb_5(VO_4)_3Cl$, $Pb_{14}(VO_4)_2O_9Cl_4$, and $PbVO_3Cl$. Based on the band structure calculations (Figure S7), these materials were suggested to be indirect bandgap semiconductors; accordingly, the coefficient for indirect transition was applied in the calculations.

Figure S7. Band structures of Pb₅(VO₄)₃Cl, Pb₁₄(VO₄)₂O₉Cl₄, and PbVO₃Cl.

Figure S8 (a) Photoelectron yield spectra of PbBiO₂Cl and PbVO₃Cl. The spectrum of PbBiO₂Cl was cited from our previous work.^[S1] (b) Band diagram estimated from the obtained ionization energies.

[S1] H. Suzuki, M. Higashi, O. Tomita, Y. Ishii, T. Yamamoto, D. Kato, T. Kotani, D. Ozaki, S. Nozawa, K. Nakashima, K. Fujita, A. Saeki, H. Kageyama, R. Abe, *Chem. Mater.* 2021, **33**, 9580-9587.

Figure S9. Band formation in solids from isolated atoms adopted and modified from Ref [S2].

[S2] P. A. Cox, *The Electronic Structure and Chemistry of Solids; Oxford Science Publications: Oxford*, 1986, 146.

Figure S10. Photocatalytic O₂ evolution using unmodified or (Fe,Ru)O_x-loaded PbVO₃Cl in aqueous Fe(NO₃)₃ solution (5 mM, 250 mL, pH 2.4) under visible light irradiation ($\lambda > 400$ nm).

Figure S11. Current–potential curves for electrodes composed of PbVO₃Cl, Pb₅(VO₄)₃Cl, and Pb₁₄(VO₄)₂O₉Cl₄ in a phosphate-buffered solution (0.1 M, pH 6.0) under chopped visible light from a 300-W Xe lamp with a cutoff filter (L-42).

Figure S12. XRD pattern of (Fe,Ru)O_x-PbVO₃Cl after photocatalytic O₂ evolution in aqueous Fe(NO₃)₃ solution (5 mM, 250 mL, pH 2.4) under visible light irradiation ($\lambda > 400$ nm), shown in Figure 6a.

Figure S13. Schematic of Z-scheme water splitting using a mixture of Ru/SrTiO₃:Rh as a H₂evolution photocatalyst and (Fe,Ru)O_x/PbVO₃Cl as an O₂-evolution photocatalyst. The dotted arrows represent the electron flow.

Figure S14. Time courses of photocatalytic evolution of H₂ and O₂ using a mixture of Ru/SrTiO₃:Rh and (Fe,Ru)O_x/PbVO₃Cl under visible light ($\lambda > 400$ nm) in an aqueous Fe(NO₃)₃ solution (5 mM, 250 mL, pH 2.4).

Figure S15. Z-scheme water splitting using unmodified PbVO₃Cl as an OEP and Ru/SrTiO₃:Rh as a HEP under visible light ($\lambda > 400$ nm) in an aqueous Fe(ClO₄)₃ solution (5 mM, 250 mL, pH 2.4).