Supplementary Information

Spontaneous Deposition of High-Density Pt Single Atoms on Oxides via Charge Polarization between Oxides and Carbon

Jing-Fang Huang,*a Liang-Jhu Chen, Bo-Zhao Yang, and Jeng-Lung Chen^b

^a Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan

^b National Synchrotron Radiation Research Center, Science-Based Industrial Park, Hsinchu 30076, Taiwan

Correspondence to: jfh@dragon.nchu.edu.tw

This PDF file includes:

Electrochemical determination of D_{ee}. Schemes S1-S2 Figures. S1-S20 Tables S1-S3

Scheme S1 Dee determines the bond formation between two H*, and the HER mechanism.

Electrochemical characterization of Pt1. The anodic charge (Q_{Pt}) of the anodic stripping of Pt1 from the Pt1/oxide/C/GCE was evaluated by anodic CV scanning. The Pt1 content obtained by ICP-MS was used to confirm Q_{Pt} . A combination of ECSA_H and Q_{Pt} was used to calculate the mean diameter of Pt1 (D_{Pt1}) and the number of Pt1s on the electrode (N_{Pt1}). Assuming that Pt1 on the electrode is distributed uniformly and spherical in shape, ECSA_H and Q_{Pt} can be calculated using Equations (1) and (2), respectively.

$$ECSA_{\rm H} = \frac{\pi D_{\rm Ptl}^2}{2} \times N_{\rm Pt1}$$
(1)

$$Q_{\rm Pt} = \frac{\pi D_{\rm Pt1}{}^3 \rho_{\rm Pt}}{6M_{\rm Pt}} \times n \times F \times N_{\rm Pt1}$$
(2)

where n= 4 is the number of electrons transferred for the anodic stripping of Pt, F is the Faraday constant, ρ_{Pt} is the density of Pt (21.09 g cm⁻³), and M_{Pt} is the atomic mass of Pt. The Q_{Pt1} /ECSA_H ratio for evaluating the D_{Pt1} of Pt₁ is shown by Equation (3):

$$D_{Pt1} = \frac{3M_{Pt}}{4F\rho_{Pt}} \times \frac{Q_{Pt1}}{ECSA_{H}}$$
(3)

Then, N_{Pt1} can be obtained from D_{Pt1}.

Electrochemical determination of Dee.

We propose the adjacent Pt_1s distance (D_{ee} , the edge-to-edge distance between two adjacent SAs) as a controlling parameter for the HER kinetics of the Pt_1 -SACs. D_{ee} represents the distance between two Pt_1s affected by the control parameters (D_{Pt1} , A_{BET} (the Brunauer-Emmett-Teller (BET) surface area of oxides), and Pt loading). We assume that all Pt_1s exhibit spherical shapes for the calculation of D_{ee} . The Pt_1s are monodispersed and homogeneously distributed on the oxide support (Scheme S2).

BET surface area of oxides

Scheme S2 Evaluation of D_{ee} : D_{cc} (center-to-center distance between Pt_1) = $(A_{BET}/N_{Pt1})^{0.5}$, $D_{ee} = D_{cc}$ - $D_{Pt1} = (A_{BET}/N_{Pt1})^{0.5}$ - D_{Pt1} . (Note: N_{Pt1} is the number of Pt_1 atoms and A_{BET} is the BET surface area of the oxide).

Figure S1. CVs of oxides and C before (black line) and after (red line) incubation with Pt_{aq} for 16 h in Ar-saturated 0.5 M H₂SO₄ at a scan rate of 50 mVs⁻¹.

Figure S2 CVs curves of COs for Pt₁/oxide/C and Pt/C.

Figure S3 CO-stripping curves for Pt₁/oxide/C with various oxide contents.

Figure S4 *i*_{mPt} vs. TOF for Pt₁/oxide/C and state-of-the-art Pt₁-SACs in Table S2.

Figure S5 EIS spectra of Pt₁/oxide/C and Pt/C in Ar-purged H₂SO₄ at $\eta = 20$ mV.

Figure S6 HR-TEM images of Pt₁/oxide/C (left) and oxide/C (right). P₁s are selectively highlighted by red circles.

Figure S7 HR-TEM images of Pt_1 /oxide/C (left) and oxide/C (right). Lattice fringes are selectively marked.

Figure S8 XRD patterns (Cu Ka) of oxide/C (black line) and Pt₁/oxide/C (red line).

Figure S9 (a) TEM image of Pt₁/CeO₂/C; (b) Ce, (c) O, and (d) Pt EDS mapping in (a).

Figure S13 High-resolution XPS C 1s spectra of Pt₁/oxide/C, oxide/C, and C.

Figure S14 High-resolution XPS Pt 4f spectra of Pt₁/oxide/C and Pt/C.

Figure S15 High-resolution XPS Al 2p, Ce 3d, Si 2p, and Ti 2p spectra of Pt₁/oxide/C and oxide/C.

Figure S16

Figure S16 k³-weighted FT-EXAFS spectra of Pt Foil, PtO₂, and Pt₁/oxide/C.

Figure S17 CVs of Pt_1 /oxide/C recorded at various reversed potentials in Ar-saturated 0.5 M H₂SO₄ at a scan rate of 50 mVs⁻¹.

Figure S18 Anodic LSVs for H_{upd} recorded on Pt₁/oxide/C (0.19 µg cm⁻² Pt loading) after holding at 0.04 V for various durations.

Figure S19 Raman spectra of C, (a) oxide/C, and (b) Pt1/oxide/C

The Stability of Pt₁/oxide/C in the HER Process

To evaluate its durability, Pt₁/oxide/C underwent 2000 continuous potential cycles from 0.8 V to -0.1 V vs. RHE at a scan rate of 0.05 V/s. The polarization curves for the first and 2000th cycles remained almost identical, with no significant changes, as shown in Figs S20a-S20d. Although Pt ions may transfer into the electrolyte under high anodic potentials (>0.8 V vs. RHE), they remained stable under cathodic HER conditions. ICP-MS analysis confirmed that the Pt²⁺ content in the electrolyte was below 5 ppb, indicating that Pt₁ sites on Pt₁/oxide/C remained intact, and the catalyst did not deactivate during HER operation.

For practical application, the stability of Pt₁/oxide/C was further examined at a moderate current density (~35 mA cm⁻², corresponding to an overpotential of 50 mV. PS: the catalyst ink is unstable at large current density, ~100 mA cm⁻²). Chronoamperometry (CA) measurements (Fig. S20e) showed that Pt₁/oxide/C retained 95% of its initial current after 1 hour. Although the current density gradually dropped to 85% in the first hour, it remained stable over 10 hours, with no significant increase in Pt²⁺ content in the electrolyte. However, CV tracking results revealed a slight cathodic shift in the HER onset potential from 0.05 V to 0.0 V vs. RHE, which is close to the behavior of bulk Pt. Since the Pt content in the catalyst did not significantly decrease, this activity decline is likely due to electrode surface polarization effects, causing Pt single-atom migration and aggregation into larger clusters during HER operation. This issue needs to be further addressed to enhance the long-term stability of Pt₁/oxide/C under high-current density HER conditions.

Figure S20. (a)(b)(c)(d) CVs of Pt₁/oxide/C were recorede at (blue line) the first and (red line) the 2000th cycles in 0.5 M H₂SO_{4aq}. (e) Long-term stability of Pt₁/oxide/C examined by chronoamperometry at overpotentials of 50 mV (current density \sim 35 mA cm⁻²) for HER in 0.5 M H₂SO_{4aq}.

Catalyst	$A_{BET}*$	Q _{CO}	Q_{Hupd}	sECSA _{CO} *	$sECSA_{\rm H}^{*}$	d_{av}	N_{Ptl}/A_{BET}	D _{ee}
	m^2/g	μC	μC	m^2/g	m^2/g	nm	k μm ⁻²	nm
$Pt_1/Al_2O_3/C$	61.3	42.3	22.7	740.6	794.6	0.35±0.1	683.1±1.5	0.86 ± 0.03
$Pt_1/CeO_2/C$	35.8	48.7	22.3	852.7	779.8	$0.36{\pm}0.1$	1105.2±2.2	$0.59{\pm}0.02$
$Pt_1/SiO_2/C$	43.2	43.2	22.2	756.3	777.3	$0.36{\pm}0.1$	907.6±2.0	0.69 ± 0.02
Pt ₁ /TiO ₂ /C	47.3	42.6	22.2	746.2	778.2	$0.36{\pm}0.1$	831.0±3.2	0.74 ± 0.04
Pt/C	124.9	2.96	1.21	52.9	57.5	4.86±0.3	0.094 ± 0.006	98.6±0.2

Table S1 The characteristics of Pt_1 /oxide/C and Pt/C measured by electrochemical method

* A_{BET} : the Brunauer-Emmett-Teller (BET) surface area of oxides or carbon; sECSA_{CO} and sECSA_H: the specific ECSA of Pt (sECSA = ECSA/Pt weight, m² g⁻¹) was evaluated from ECSA_{CO} and ECSA_H.

Catalysta	Tafel	η ₁₀ (mV)	TOF imPt(η/mV)		electroluto	Pofe
Catalysis	(mV/dec)		(s ⁻¹)	(A/mg)	electrolyte	NUIS .
Pt ₁ /Al ₂ O ₃ /C	32.1	16	490.1	484.8	0.5M H ₂ SO ₄	This
Pt ₁ /CeO ₂ /C	30.6	11	586.4	580.2	0.5M H ₂ SO ₄	1 1115
Pt ₁ /SiO ₂ /C	31.1	12	503.5	498.2	$0.5M H_2 SO_4$	WORK
Pt ₁ /TiO ₂ /C	31.2	12	576.9	570.6	$0.5M H_2 SO_4$	
Pt/C	32.1/121.6	71	1.9	1.9	0.5M H ₂ SO ₄	
Pt-Ru dimer	26	59	4.14	3.49	0.5M H ₂ SO ₄	s^1
CoPt-PtsA/NDPCF	24.84	20	75.1150	74.3150	0.5M H ₂ SO ₄	s^2
Pt/N-VG-5	52.2	42	N/A	4.4550	0.5M H ₂ SO ₄	s ³
P-Pt ₃ Co/NC	13	136	1.33	59.8	0.5M H ₂ SO ₄	s^4
Pt1 SAC-VNGNMAs	49	15	~1.550	~1.550	0.5M H ₂ SO ₄	s^5
Pt/TiON _x	29.5	N/A	12.1550	1.4150	0.1 M HClO ₄	s ⁶
A-Pt	97.0	89.7	0.48710	0.94810	0.5M H ₂ SO ₄	s^7
Ti ₃ C ₂ T _x -PtSA	45	38	23.45	23.21	0.5M H ₂ SO ₄	s^8
PtW ₆ O ₂₄ /C	29.8	22	33.35100	20.17577	0.5M H ₂ SO ₄	s ⁹
$Pt_1^{O1}/Ti_{1-x}O_2$	31	22	N/A	23.9250	0.5M H ₂ SO ₄	s^{10}
PtCo@PtSn	24	21	3.3	3.31	0.5M H ₂ SO ₄	s^{11}
Pt-PVP/TNR@GC	27	21	N/A	16.5350	0.5M H ₂ SO ₄	s ¹²
AC Pt-NG/C	27	35.28	0.092750	6.50850	0.5M H ₂ SO ₄	s ¹³
Pt/RuCeO _x -PA	31	41	N/A	0.37550	0.5M H ₂ SO ₄	s ¹⁴
3Pt/CuG	27.6	20	N/A	40.150	0.5M H ₂ SO ₄	s^{15}
LPWGA	30	42	29.0550	28.7050	0.5M H ₂ SO ₄	s^{16}
2-Pt/NC-CC	36.65	123	0.935450	0.90750	0.5M H ₂ SO ₄	s^{17}
Pt@DG	48	30	26.41100	28.38100	0.5M H ₂ SO ₄	s^{18}
Pt/NiO@Ni/NF	40	34	N/A	0.53250	1M KOH	s ¹⁹
Pt-SAs/C	43	38	N/A	3.0150	0.5M H ₂ SO ₄	s ²⁰
Pt _{0.2} -CeO ₂	35	N/A	N/A	7.650	0.5M H ₂ SO ₄	s ²¹
Pt-SAs/MoS ₂	28	32	12.8350	47.48100	0.5M H ₂ SO ₄	s ²²
PtO _x /TiO ₂	40	N/A	N/A	8.6850	0.5M H ₂ SO ₄	s ²³
Pt ₂ Ir DNWs/C	20.9	26	17.0850	5.1750	0.5M H ₂ SO ₄	s ²⁴
Pt/MXene	297	34	10.66	1.84750	0.5M H ₂ SO ₄	s ²⁵
Pt-SAs/EVG	35	21.3	34.6070	32.9070	0.5M H ₂ SO ₄	s ²⁶

 Table S2. HER performances of Pt-SACs and Pt-catalysts

NGA-COF@Pt 21.88 13 18.4044 18.16544 0.5M H ₂ SO4	s^{27}
Pt ₁ +Pt _n /MXene-7 32.5 61.3 0.488 ₁₀₀ 0.4849 ₁₀₀ 0.5M H ₂ SO ₄	s ²⁸
PtSA-M-CeO ₂ -X/rGO 22.8 25 15.4650 15.350 0.5M H ₂ SO ₄	s ²⁹
Pt-SA/pCNFs 24 21 14.850 ~1450 0.5M H ₂ SO ₄	s ³⁰
Pt@Mn-SAs/N-C 30.7 25 N/A 1.550 0.5M H2SO4	s ³¹
Pt ₁ Ru _x @C 20.7 13.15 N/A 9.075 ₁₀₀ 0.5M H ₂ SO ₄	s ³²
Pt/V Mn ₃ O ₄ NSs 30.2 19.2 44.54 ₁₀₀ 12.56 ₅₀ 0.5M H ₂ SO ₄	s ³³

	Scattering Path	Ν	σ^2 (Å ²)	R(Å)	Rf
Pt foil	Pt-Pt	12	0.005	2.76	0.002
PtO ₂	Pt-O	6	0.003	2.02	0.006
Pt ₁ /Al ₂ O ₃ /C	Pt-O	3.6	0.003	2.09	0.005
Pt ₁ /CeO ₂ /C	Pt-O	3.8	0.002	2.1	0.004
Pt ₁ /SiO ₂ /C	Pt-O	3.6	0.003	2.11	0.016
Pt ₁ /TiO ₂ /C	Pt-O	3.7	0.004	2.11	0.01

Table S3. The best-fiting FT-EXAFS parameters of Pt1/oxide/C catalysts*

*Where N is coordination number, R is distance between absorber and backscatter atoms, σ^2 is Debye–Waller factor value, R_f is R-factor characterizing the goodness of fit. S_o² was fixed to 0.8 as determined from PtO₂ fitting. Error bounds (accuracies) characterizing the structural parameters obtained by EXAFS data analysis are estimated to be as follows: N, ±20%; R, ±1%; and σ^2 , ±20%.

Author Contributions

Conceptualization: JFH

Methodology and experiment: JFH, LJC, BZY, JLC

Investigation: JFH, LJC, BZY, JLC

Funding acquisition: JFH

Project administration: JFH

Supervision: JFH

Writing: JFH

References

- S1. W. K. Zhao, C. Luo, Y. Lin, G. B. Wang, H. M. Chen, P. Y. Kuang and J. G. Yu, *ACS Catal.*, 2022, 12, 5540-5548.
- S2. W. W. Yang, P. Cheng, Z. Li, Y. X. Lin, M. Y. Li, J. Z. Zi, H. H. Shi, G. S. Li, Z. C. Lian and H. X. Li, *Adv. Funct. Mater.*, 2022, **32**, 2205920.
- S3. H. Z. Yang, Z. J. Yang, Z. J. Han, D. W. Chu, C. Q. Chen, X. Y. Xie, L. Shang and T. R. Zhang, 2D Mater., 2022, 9, 045011.
- S4. C. F. Li, C. Tian, H. B. Tang, M. R. Liu, L. R. Zheng, F. Z. Huang, G. R. Li and Q. Li, ACS Energy Lett., 2023, 8, 5161-5169.
- S5. K. Chi, Z. X. Chen, F. Xiao, W. Guo, W. Xi, J. Liu, H. Yan, Z. Y. Zhang, J. Xiao, J. Liu, J. Luo, S. Wang and K. P. Loh, *J. Mater. Chem. A*, 2019, 7, 15575-15579.

- S6. M. Smiljanic, S. Panic, M. Bele, F. Ruiz-Zepeda, L. Pavko, L. Gasparic, A. Kokalj, M. Gaberscek and N. Hodnik, *ACS Catal.*, 2022, **12**, 13021-13033.
- S7. Z. H. Ma, C. Chen, X. Z. Cui, L. M. Zeng, L. J. Wang, W. Jiang and J. L. Shi, ACS Appl. Mater. Interfaces, 2021, 13, 44224-44233.
- S8. J. J. Zhang, E. Q. Wang, S. Q. Cui, S. B. Yang, X. L. Zou and Y. J. Gong, *Nano Lett.*, 2022, 22, 1398-1405.
- S9. F. Y. Yu, Z. L. Lang, L. Y. Yin, K. Feng, Y. J. Xia, H. Q. Tan, H. T. Zhu, J. Zhong, Z. H. Kang and Y. G. Li, *Nat. Commun.*, 2020, **11**, 490.
- S10. F. Lu, D. Yi, S. J. Liu, F. Zhan, B. Zhou, L. Gu, D. Golberg, X. Wang and J. N. Yao, Angew. Chem. Int. Ed., 2020, 59, 17712-17718.
- S11. J. L. Chen, G. F. Qian, H. Zhang, S. Q. Feng, Y. S. Mo, L. Luo and S. B. Yin, *Adv. Funct. Mater.*, 2022, **32**, 2107597.
- S12. C. Li, Z. Chen, H. Yi, Y. Cao, L. Du, Y. D. Hu, F. P. Kong, R. K. Campen, Y. Z. Gao, C. Y. Du, G.
 P. Yin, I. Y. Zhang and Y. J. Tong, *Angew. Chem. Int. Ed.*, 2020, **59**, 15902-15907.
- S13. M. H. Sun, J. P. Ji, M. Y. Hu, M. Y. Weng, Y. P. Zhang, H. S. Yu, J. J. Tang, J. C. Zheng, Z. Jiang,
 F. Pan, C. D. Liang and Z. Lin, *ACS Catal.*, 2019, 9, 8213-8223.
- S14. T. T. Liu, W. B. Gao, Q. Q. Wang, M. L. Dou, Z. P. Zhang and F. Wang, Angew. Chem. Int. Ed., 2020, 59, 20423-20427.
- S15. Y. D. Xu, D. M. Meng, L. W. Wang, H. Yang, X. F. Guo, Y. Zhu, T. Wang and W. P. Ding, *Appl. Surf. Sci.*, 2022, **591**, 153057.
- S16. Y. Li, K. Y. Jiang, J. Yang, Y. Y. Zheng, R. Hübner, Z. W. Ou, X. Dong, L. Q. He, H. L. Wang, J. Li, Y. J. Sun, X. B. Lu, X. D. Zhuang, Z. K. Zheng and W. Liu, *Small*, 2021, 17, 2102159.
- S17. R. Ramesh, S. Han, D. K. Nandi, S. Y. Sawant, D. H. Kim, T. Cheon, M. H. Cho, R. Harada, T. Shigetomi, K. Suzuki and S. H. Kim, *Adv. Mater. Interfaces*, 2021, 8, 2001508.
- S18. Q. Yang, H. X. Liu, P. Yuan, Y. Jia, L. Z. Zhuang, H. W. Zhang, X. C. Yan, G. H. Liu, Y. F. Zhao, J. Z. Liu, S. Q. Wei, L. Song, Q. L. Wu, B. Q. Ge, L. Z. Zhang, K. Wang, X. Wang, C. R. Chang and X. D. Yao, *J. Am. Chem. Soc.*, 2022, **144**, 2171-2178.
- S19. Z. J. Chen, G. X. Cao, L. Y. Gan, H. Dai, N. Xu, M. J. Zang, H. B. Dai, H. Wu and P. Wang, ACS Catal., 2018, 8, 8866-8872.
- S20. Z. Y. Wang, J. Yang, J. Gan, W. X. Chen, F. Y. Zhou, X. Zhou, Z. Q. Yu, J. F. Zhu, X. Z. Duan and Y. E. Wu, J. Mater. Chem. A, 2020, 8, 10755-10760.
- S21. J. J. Gao, P. Du, Q. H. Zhang, X. Shen, F. K. Chiang, Y. R. Wen, X. Lin, X. J. Liu and H. J. Qiu, *Electrochim. Acta*, 2019, 297, 155-162.
- S22. Y. Shi, Z. R. Ma, Y. Y. Xiao, Y. C. Yin, W. M. Huang, Z. C. Huang, Y. Z. Zheng, F. Y. Mu, R. Huang, G. Y. Shi, Y. Y. Sun, X. H. Xia and W. Chen, *Nat. Commun.*, 2021, **12**, 3021.

- S23. X. Cheng, Y. H. Li, L. R. Zheng, Y. Yan, Y. F. Zhang, G. Chen, S. R. Sun and J. J. Zhang, *Energy Environ. Sci.*, 2017, 10, 2450-2458.
- S24. M. M. Wang, M. J. Wang, C. H. Zhan, H. B. Geng, Y. H. Li, X. Q. Huang and L. Z. Bu, *J. Mater. Chem. A*, 2022, 10, 18972-18977.
- S25. Y. C. Wu, W. Wei, R. H. Yu, L. X. Xia, X. F. Hong, J. X. Zhu, J. T. Li, L. Lv, W. Chen, Y. Zhao,
 L. Zhou and L. Q. Mai, *Adv. Funct. Mater.*, 2022, **32**, 2110910.
- S26. B. W. Ren, J. D. Huang, P. Li, W. Xu and B. Dong, J. Colloid Interface Sci., 2025, 678, 511-519.
- S27. Z. Q. Zhang, Z. Zhang, C. L. Chen, R. Wang, M. G. Xie, S. Wan, R. G. Zhang, L. C. Cong, H. Y. Lu, Y. Han, W. Xing, Z. Shi and S. H. Feng, *Nat. Commun.*, 2024, 15, s41467-41024-46872-x.
- S28. X. Sun, J. Wang, J. Yu, Y. F. Jing, J. Y. Liu, M. Singh, P. D. Lund and M. I. Asghar, *Int. J. Hydrog. Energy*, 2024, 84, 502-510.
- S29. X. Y. Liu, Y. X. Zhou, J. K. Lin, X. Xiao, Z. J. Wang, L. Y. Jia, M. Y. Li, K. Yang, J. C. Fan, W. W. Yang and G. S. Li, *Angew. Chem.-Int. Edit.*, 2024, 63, anie202406650.
- S30. Y. Han, H. L. Duan, W. Liu, C. H. Zhou, B. S. Wang, Q. Y. Jiang, S. H. Feng, W. S. Yan, T. Tan and R. F. Zhang, *Appl. Catal. B-Environ. Energy*, 2023, 335, 9.
- S31. L. Gong, J. W. Zhu, F. J. Xia, Y. H. Zhang, W. J. Shi, L. Chen, J. Yu, J. S. Wu and S. C. Mu, ACS Catal., 2023, 13, 4012-4020.
- S32. X. Y. Zhu, M. H. Fang, B. Z. Yang, M. L. Zhan, S. R. Ke, F. Yang, X. W. Wu, Y. G. Liu, Z. H. Huang and X. Min, *J. Mater. Chem. A*, 2024, **12**, 4108-4122.
- S33. D. X. Hu, Y. J. Wang, W. H. Chen, Z. Q. Jiang, B. L. Deng and Z. J. Jiang, *Small*, 2024, DOI: 10.1002/smll.202402652.