Supporting Information

Cerium-optimized high-entropy spinel oxide for efficient and anti-

interference removal of VOC from complex flue gas

Yunyi Ge^{a,b}, Xiao Zhang^{a,b*}, Feng Shen^c, Shuhao Li^{a,d}, Boxiong Shen^{a,b*}

^a School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China

^b Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, China

° Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China

^d Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia

Corresponding author: Dr. Xiao Zhang, School of Energy and Environmental Engineering, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin, 300401, China. E-mail addresses: zhangxiao@hebut.edu.cn Fax: +86-022-60435784; Tel: +86-022-60435784

Corresponding author (handling correspondence at all stages): Professor Boxiong Shen, School of Energy and Environmental Engineering, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin, 300401, China. E-mail addresses: <u>shenbx@hebut.edu.cn</u> Fax: +86-022-60435784; Tel: +86-022-60435784

Preparation of MnCeOx Catalyst: The MnCeOx catalyst was synthesized following a previously reported method [1]. An equimolar amount (10 mmol) of $(Mn(NO_3)_2$ and $Ce(NO_3)_3 \cdot 6H_2O$ were dissolved in 100 mL of deionized water. Then, 60 mmol of citric acid was gradually added to the solution, which was stirred at 80 °C for 7 h. The resulting suspension was then dried at 110 °C for 12 h, followed by calcination at 600 °C for 5 h in air. The synthesized catalyst is denoted as MnCeOx.

Reference:

[1] Yu Dai, Xingyi Wang, Qiguang Dai, Dao Li. Applied Catalysis B: Environmental,2012, 111, 141-149.

Figure S1. Schematic diagram of the experimental apparatus. Components (a: mass flow meter; b: volume flow meter; c: thermostatic bath; d: cleaning bottle for water vapor generation; e: cleaning bottle for gas mixing; f: heating device; g: quartz reactor; h: catalyst; i: gas detector; j: temperature controller; k: flue gas analyzer; l: Mercury generator; m: mercury analyzer)

Figure S2. XRD patterns of the fresh HEO and spent HEO after reaction at 450 $^{\circ}\mathrm{C}$

Figure S3. GC-MS spectra analysis of enriched tail gas after o-xylene oxidized by HEO and MMO.

Figure S4. XRD patterns of the Al-HEO

Figure S5. O-xylene removal efficiency of HEO and Al-HEO

Figure S6. Comparison of catalytic oxidation activity between HEO (a) and

conventional MnCeOx catalyst (b) for o-xylene degradation

Fig. S7 Long-term stability of (a) HEO and (b) MnCeOx for o-xylene oxidation

Catalyst	Surface area (m^2/g)	Pore volume(cm^3/g)	Pore size(nm)
HEO	1.73	0.017	9.09
ММО	39.72	0.061	4.16

Table S1. Surface area, pore size and pore volume of HEO and MMO catalysts

Characterization	Samples	Composition (at%)					
		Mn	Со	Cr	Fe	Ce	Mn: Co: Cr: Fe: Ce
ІСР	HEO	20.4	20.2	20.0	20.6	18.8	1.02: 1.01: 1.00: 1.03: 0.94
	MMO	20.6	20.5	19.5	20.3	19.1	1.03: 1.02: 0.98: 1.01: 0.96
XPS	HEO	23.0	17.1	16.9	25.2	17.8	1.15: 0.86: 0.85: 1.26: 0.89
	MMO	10.9	14.4	26.0	41.3	7.4	0.55: 0.72: 1.30: 2.06: 0.37
EDS	HEO	20.8	20.2	19.8	19.7	19.5	1.04: 1.01: 0.99: 0.98: 0.97
	MMO	26.4	15.6	22.5	25.0	10.6	1.32: 0.78: 1.13: 1.25: 0.53

Table S2. Elemental percentage of ICP, XPS as well as EDS tests for HEO and MMO

Catalysts	Adsorption model ^a	Adsorption model	Adsorption model $(O, yyleng+Hg^0)$
HEO (CeMnFeCoCr) ₃ O ₄	(O-xylene)	(Hg ^o)	(O-xylene+Hg*)
Al-HEO (AlMnFeCoCr) ₃ O ₄			
MMO CeMnFeCoCrO _x			

Table S3. Optimized adsorption configurations for pollutants

^a o-xylene, Hg⁰ are located at the optimized stable adsorption sites;

250

O-xylene

Purple, Mn; dark blue, Cr; green, Fe; blue, Co; brown, Ce; light blue, Al; red, O.