Supporting Information

Hollow spherical Cu/CuO-Fe₃O₄ composite for high-efficiency photothermal co-catalysis of hydrogen evolution

Nan Lu,^{a,b} Fozia Sultana,^b Zhenyong Ying,^a Xiaofan Zhang,^a Tongtong Li,^b Renhong Li,^{*,b} Benxia Li,^{*,a} Xiaoqing Yan^{*,a}

^a Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
^b State Key Laboratory of Bio-based Fiber Materials, Department of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China

*Corresponding Authors *E-mail:* yanxiaoqing927@126.com (X.Q. Yan) *E-mail:* libx@zstu.edu.cn (B.X. Li) *E-mail:* lirenhong@zstu.edu.cn (R.H. Li)

Fig. S1 XRD pattern of the synthesized CuO.

Fig. S2 FTIR spectrum of Cu/CuO-Fe₃O₄ catalysts with varying Cu contents at 400-800 cm⁻¹.

Fig. S3 XPS survey spectra of of Cu/Fe₃O₄-5 and Fe₃O₄.

Fig. S4 (a) UV-visible diffuse absorption spectra of Cu/Fe₃O₄-5, Fe₃O₄, Cu/CuO and CuO. (b) Tauc plot of Cu/Fe₃O₄-5, Fe₃O₄ and CuO.

Fig. S5 (a) Mott-Schottky plots of CuO, Fe_3O_4 , Cu/CuO and Cu/CuO-Fe_3O_4-5 (b) Mechanism diagram of the band structures of Cu/CuO-Fe_3O_4-5.

Fig. S6 (a) Catalytic H₂ evolution from alkaline formaldehyde solutions using Cu/CuO-Fe₃O₄-5 or Fe₃O₄ catalysts under air and dark conditions. (b) Catalytic H₂ evolution from alkaline formaldehyde solutions using Cu/CuO-Fe₃O₄-5, Fe₃O₄ or CuO catalysts under different illumination conditions. The concentrations of HCHO and NaOH are 1.0 mol·L⁻¹ and 1.0 mol·L⁻¹, respectively.

Fig. S7 The effect of the calcination temperature during catalyst preparation on the rate of H_2 evolution within 3 h of reaction in the alkaline HCHO solutions. The concentrations of HCHO and NaOH are 1.0 mol·L⁻¹ and 1.0 mol·L⁻¹, respectively.

Fig. S8 SEM micrograph of Cu/CuO-Fe₃O₄-5 after calcination at (a) 200 °C, (b) 250 °C, (c) 350 °C and (d) 400 °C.

Fig. S9 The effect of HCHO concentration during catalyst preparation on the rate of H_2 evolution within 3 h of reaction in the alkaline HCHO solutions. The concentrations of NaOH are 1.0 mol·L⁻¹.

Fig. S10 Catalytic performance of Cu/CuO-Fe₃O₄-5 in different organic substrates.

Fig. S11 The effect of NaOH concentration during catalyst preparation on the rate of H_2 evolution within 3 h of reaction in the alkaline HCHO solutions. The concentrations of HCHO are 1.0 mol·L⁻¹.

Fig. S12 The variation of p_{O2} over time in the alkaline HCHO solutions; Cu/Fe₃O₄-5 is employed as the photocatalyst.

Fig. S13 Repeated photothermal co-catalytic H_2 evolution tests with recycled Cu/Fe₃O₄-5 by an external magnetic field. For each cycle, the concentrations of HCHO and NaOH are 1.0 mol·L⁻¹ and 1.0 mol·L⁻¹, respectively.

Fig. S14 SEM images of Cu/Fe $_3O_4$ -5 after the photothermal co-catalytic reaction.

Fig. S15 XRD patterns of Cu/Fe_3O_4 -5 before after the photothermal co-catalytic reaction.