Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

## **Supporting information**

A PEGylated conjugated-BODIPY oligomer for NIR-II imaging-guided photothermal therapy

Yuan Wang<sup>†</sup>, Tongtong Shan<sup>†</sup>, Jiahao Zheng, Jia Tian, Weian Zhang<sup>\*</sup>

Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.

\*Corresponding Authors: <u>wazhang@ecust.edu.cn</u>

BODIPY<sub>1</sub>-CI

<sup>†</sup>Yuan Wang, Tongtong Shan contributed equally to this work.



Scheme S2. Synthesis of BODIPY<sub>2</sub>-Cl<sub>2</sub>.

BODIPY



Scheme S3. Synthesis of BODIPY<sub>4</sub>.







**Scheme S5.** Synthesis of BODIPY<sub>4</sub>-PEG.



Fig. S1. Absorbance and emission spectra of BODIPY<sub>4</sub>.



**Fig. S2.** The linear relationship between concentration and fluorescence intensity of BODIPY<sub>4</sub>-PEG.



Fig. S3. Photostability of BODIPY<sub>4</sub>-PEG and ICG.



**Fig. S4.** Photothermal conversion curves of BODIPY<sub>4</sub>-PEG NPs aqueous solution at various concentrations (a) and different power densities (b) (100  $\mu$ M) under 808 nm laser irradiation for 5 min. (c) Photothermal stability of BODIPY<sub>4</sub>-PEG. The heating and cooling cyclic curves of BODIPY<sub>4</sub>-PEG (100  $\mu$ M) under 808 nm laser irradiation (1.00 W cm<sup>-2</sup>, 5 cycles). (d) The heating-cooling curve of BODIPY<sub>4</sub>-PEG aqueous solution (100  $\mu$ M) under 808 nm laser irradiation (1.00 W cm<sup>-2</sup>, 5 cycles). (d) The heating-cooling curve of BODIPY<sub>4</sub>-PEG aqueous solution (100  $\mu$ M) under 808 nm laser irradiation (1.00 W cm<sup>-2</sup>) (heating time 5 min, cooling time 9 min) and the relationship between -Ln( $\theta$ ) and cooling time calculated by the curve and formula. (e) Thermal images of BODIPY<sub>4</sub>-PEG and water under 808 nm laser irradiation (1.00 W cm<sup>-2</sup>, 5 min).



**Fig. S5.** Photothermal conversion curves of BODIPY<sub>4</sub>-PEG NPs aqueous solution at various concentrations (a) and different power densities (b) (100  $\mu$ M) under 1064 nm laser irradiation for 5 min. (c) Photothermal stability of BODIPY<sub>4</sub>-PEG. The heating and cooling cyclic curves of BODIPY<sub>4</sub>-PEG (100  $\mu$ M) under 1064 nm laser irradiation (1.00 W cm<sup>-2</sup>, 5 cycles). (d) The heating-cooling curve of BODIPY<sub>4</sub>-PEG aqueous solution (100  $\mu$ M) under 1064 nm laser irradiation (1.00 W cm<sup>-2</sup>) (heating time 5 min, cooling time 9 min) and the relationship between -Ln( $\theta$ ) and cooling time calculated by the curve and formula. (e) Thermal images of BODIPY<sub>4</sub>-PEG NPs and water under 1064 nm laser irradiation (1.00 W cm<sup>-2</sup>, 5 min).



Fig. S6. Summary of PCEs of BODIPY<sub>4</sub>-PEG under different laser sources.



**Fig. S7.** (a) Quantitative statistic of 3T3 cells' uptake intensity after coincubation with BODIPY<sub>4</sub>-PEG for 12 h or 24 h. (c) Photograph of 4T1 cells after co-incubating with BODIPY<sub>4</sub>-PEG for 24 h (808 nm, 1000 LP, 1000 ms).



Fig. S8. Quantitative statistics of fluorescence intensity at 4T1 tumor sites.



Fig. S9. (a) NIR-II fluorescence image of major organs and tumor resected at 48 h postinjection of BODIPY<sub>4</sub>-PEG. (d) Quantitative statistics of fluorescence intensity of major organs and tumors (n = 3).



**Fig. S10.** Photographs of the 4T1 tumors excised from the mice after the four treatments with PBS, PBS+L, BODIPY<sub>4</sub>-PEG NPs, and BODIPY<sub>4</sub>-PEG NPs+L as indicated.



Fig. S11. Curves of tumor inhibition rates for different experimental groups (n = 5, mean  $\pm$  SEM) and n represented independent experiments. \*\*P < 0.01.



Fig. S12. Variation curve of body weights of mice under the four treatments (n = 5, mean  $\pm$  SEM).



**Fig. S13.** H&E staining images of the main organs including the heart, liver, spleen, lung, and kidney of mice in different treatment groups. Scale bar: 100 μm.



Fig. S14. Immunofluorescence staining experiments. (A) The staining results of Caspase-3 and TUNEL, as well as the quantification of their fluorescence intensities (B) and (C). Scale bar:100  $\mu$ m.



Fig. S15. <sup>1</sup>H NMR spectrum of BODIPY<sub>4</sub> in CDCl<sub>3</sub>.



Fig. S16. <sup>1</sup>H NMR spectrum of BODIPY<sub>4</sub>-Cl in CDCl<sub>3</sub>.

