Supporting Information for

A Customizable ³²P Hydrogel Applicator for Brachytherapy of Skin Hemangioma Based on Machine Learning and 3D-Printing

AUTHOR NAMES. Jingyu Wang^{a, ‡}, Rang Wang^{b, ‡}, Peng Chen^a, Lisha Jiang^b, Banggan Luo^a, Xueqian Zhang^a, Wanjie Bai^a, Ting Zhang^a, Jinsong Zhang^c, Shu Tan^c, Rong Tian^b, Yiwen Li^a, Huawei Cai^b*, Yuanting Xu^a*

AUTHOR ADDRESS.

^{a.} College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.

^{b.} Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.

^{c.} Nuclear Power Institute of China, Chengdu 610101, China.

[‡] The authors contributed equally to this work.

Table S1 Different ratio of monomer and crosslinker hydrogel precursor

	AAm	MBA/PEGDA	12959	H ₂ O
	5 g			10 g
Different ratio of	10 g	$0.2 \text{ mg} \text{MP} \Lambda$	2.5 mg	
monomer	15 g	0.2 lig MBA		
	20 g			
Different type of crosslinker	10 g	1.3 μmol PEGDA Mn~200	-	10 g
		1.3 μmol PEGDA Mn~700		
		1.3 μmol PEGDA Mn~2000	2.5 mg	
		1.3 μmol PEGDA Mn~5000		
		1.3 μmol MBA		
Different ratio of crosslinker	10 g	0 mg MBA	2.5 mg	10 g
		0.02 mg MBA		
		0.1 mg MBA		
		0.2 mg MBA		
		0.5 mg MBA		
		1 mg MBA		
		2 mg MBA		
		6 mg MBA		
		20 mg MBA		
		100 mg MBA		
		200 mg MBA		

formulations.

Fig. S1 SEM images of HG.

Fig. S2 The stress-stretch curves of hydrogel of different ratio of monomer.

Fig. S3 The stress-stretch curves of hydrogel of different crosslinker.

Fig. S4 HG in different shapes (scale bar, 5 mm).

Fig. S5 The continuous 10 times tensile cyclic loading–unloading curves

of HG (scale bars 20 mm).

Fig. S6 The continuous 10 times compressive cyclic loading–unloading

curves of HG (scale bars 10 mm).

Fig. S7 The HG cured from the precursor solution stored for different condition (from left to right: 25°C, 25°C in the dark, and 4°C in the dark) (scale bar, 10 mm).

Fig. S8 (a) Commercial ⁹⁰Sr-based applicators.

(b) Normal skin damage caused by excessive exposure of 90 Sr.

Table S2 Photos of different cases, areas recognized by the algorithm,

and 3D printing time required as calculated by the slicing software.

	Case 1	Case 2	Case 3	Case 4	Case 5
Lesion		4	6	3 .3	
Area (cm ²)	11.23	6.87	31.08	9.07	9.86
3D printing time (min)	3.6	3	6	3.6	3.6

Fig. S9 Preparation process of filter paper applicator. a) Drawing the outline of the lesion area. b) Preparing the ³²P filter paper carrier. c)
Driping ³²P solution, drying and sealing. d) Using of ³²P filter paper applicator.

Table S3 The images of different radioactivity P-HGs was detected by

RAG			lacksquare	۲	
Radioactivity (MBq/cm ²)	3.7	1.85	0.925	0.37	0

autoradiography (scale bars 20 mm).

Fig. S10 Images of H&E slices from hearts, livers, spleens, lungs and kidneys of mice (scale bars 100 μm).