## **Supporting Information**

## Synergistic Mixed Halide and Additive Strategy for Efficient Pure Red Quasi-2D Perovskite Light-Emitting Diodes

Fanyuan Meng<sup>a</sup>\*, Shengxuan Shi<sup>a</sup>, Zhao Chen<sup>b</sup>, Boyang Li<sup>a</sup>, Xianfei Lu<sup>a</sup>, Qi Feng<sup>a</sup>, Yan Chen<sup>a</sup>\*, Shi-Jian Su<sup>c</sup>\*

<sup>a</sup> School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, China

<sup>b</sup> Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.

<sup>c</sup> State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China.

\*E-mail addresses: mengfanyuan@wyu.edu.cn, ychen08@163.com, mssjsu@scut.edu.cn

## **Experimental Section**

*Materials:* phenylethylammonium iodide (PEAI, 99.5%), Cesium iodide (CsI, 99.999%), lead bromide (PbBr<sub>2</sub>, 99.999%), lead iodide (PbI<sub>2</sub>, 99.999%), and N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)benzidine (TPD, 99.0%) were procured from Xi'an Yuri Solar Co., Ltd. Tris(4-carbazoyl-9-ylphenyl)amine (TCTA, 99.8%), lithium fluoride (LiF, 99.99%), and Molybdenum(VI) Oxide (MoO<sub>3</sub>, 99.998%) were obtained from Lumtec. Rubidium iodide (RbI, 99.9%) was purchased from Macklin. N,N-Dimethylformamide (DMF, 99.8%), Dimethyl sulfoxide (DMSO), and chlorobenzene (CB) were acquired from Sigma Aldrich. All chemicals were employed as received, without any additional purification.

*Perovskite Precursor Preparation*: The pristine perovskite precursor solutions were synthesized by dissolving PEAI, RbI, CsI, PbBr<sub>2</sub>, and PbI<sub>2</sub> in a molar ratio of 0.7:0.1:1:0.53:0.47 with a DMSO:DMF (1:4, v:v) mixed solvent. For the TDA-modified perovskite precursors, TDA was incorporated into the pristine precursor solution at a molar ratio of 0.055: 0.7:0.1:1:0.53:0.47 for defect passivation. The concentration of Pb<sup>2+</sup> in perovskite precursor solution was maintained at 0.095 M. All precursor solutions were stirred under nitrogen atmosphere in a glovebox at 40 °C for 8 hours prior to utilization.

*Device Fabrication*: The PeLEDs were fabricated following a well-established procedure. The patterned ITO glasses were ultrasonically cleaned with detergent, deionized water, and ethyl alcohol, and then baked at 120°C for 20 min. The ITO substrates were treated with  $O_2$  plasma for 10 min and transferred into a nitrogen-filled glove box. The LiMg-ZnO (14 mg mL<sup>-1</sup>) in ethanol solvent was spin-coated at 3000 rpm for 30 s and then baked at 140 °C for 20 min. Here, PEI (0.5 mg mL<sup>-1</sup>) in ethanol solvent was spin-coated at 3000 rpm for 30 s and then baked at 140 °C for 20 min. Here, PEI (0.5 mg mL<sup>-1</sup>) in ethanol solvent was spin-coated at 3000 rpm for 30 s. and then baked at 80 °C for 5 min. Naturally cool to room temperature, the pristine and TDA-modified perovskite precursor solution was spin-coated onto the above substrates at 3000 rpm for 50s. Next, TPD (1 mg mL<sup>-1</sup>) in 1,4-dioxane solvent was spin-coated at 3000 rpm for 20 s and then baked at 100 °C for 2 min. Finally, TCTA (30 nm), MoO<sub>3</sub> (7.0 nm), and Al (130 nm) were evaporated with a high-vacuum deposition system. The emission area of these PeLEDs was 2 mm × 2 mm by the overlapping area of the ITO and Al electrodes. Current density-voltage (*J-V*) curves were measured by using a dual-channel Keithley 2400 instrument. The EL spectra, current efficiency, and EQE were measured by using an integrating sphere, a multi-channel analyzer PMA-12, and

an external quantum efficiency measurement system (C9920-12, Hamamatsu Photonics, Japan). Before taking out the glove box for EQE testing, all the PeLEDs were easily encapsulated with a UV-cured epoxy resin.

*Thin Film and Device Characterizations*: UV-vis absorption spectra were acquired using a SHIMADZU/UV-3600 PLUS spectrophotometer. XRD spectra were measured by a multipurpose SmartLab SE Japan Rigaku system. The Fourier transform infrared spectroscopy (FTIR) measurement was conducted by using Thermo Scientific Nicolet iS5. X-ray photoelectron spectroscopy (XPS) was obtained on an Thermo Scientific Nexsa G2 system. SEM images were taken with a ZEISS/SIGMA500 system. PL spectra were measured using an Edinburgh FL980 fluorescence spectrophotometer with a 375 nm xenon lamp as the excitation light source. Time-resolved PL decay spectra were measured with an Edinburgh FL980 fluorescence spectrophotometer with a 371.6 nm ps diode laser as the excitation light source. PLQYs of the perovskite films were measured by a commercialized PLQY measurement system from Ocean Optics with a 375 nm LED as the excitation light source.

## Calculation of radiative & non-radiative decay rate:

The TRPL spectra were fitted by a triexponential function following the Equations S1 below:

$$y = \sum A_i \exp\left(-\frac{t}{\tau_i}\right) \tag{S1}$$

Where i = 1, 2, 3, the A<sub>1</sub>, A<sub>2</sub>, and A<sub>3</sub> are the normalized pre-exponential factors, and  $\tau_1$  is the fast decay time constant,  $\tau_2$ , and  $\tau_3$  are the lifetimes of the slow decay component. The average PL lifetime ( $\tau_{avg}$ ) can be calculated by the following equation S2:

$$\tau_{avg} = \frac{\sum A_i \tau_i^2}{\sum A_i \tau_i}$$
(S2)

The radiative recombination rate  $(k_r)$  and the nonradiative recombination rate  $(k_{nr})$  were obtained using the following Equation S3 and S4:

$$k_r = \frac{PLQY}{\tau_{avg}}$$
(S3)

$$k_{nr} = \frac{1}{\tau_{avg}} - k_r \tag{S4}$$

The relationship between PLQY and EQE can be expressed as Equation S5:

$$\eta_{EQE} = \eta_b \times \eta_{IQE} \times \eta_{out} \tag{S5}$$

wherein,  $\eta_b$  is the charge carrier-balance efficiency,  $\eta_{IQE}$  is the PLQY of the perovskite film, and  $\eta_{out}$  is the light out-coupling efficiency.



**Fig. S1** Current efficiency-current efficiency (*CE-J*) curves of TDA-modified and Pristine PeLEDs.



**Fig. S2** Statistical EQE performance. (a) TDA-modified PeLEDs with an average EQE of 9.67% from 28 devices, and (b) pristine perovskite with an average EQE of 0.24% from 31 devices.



Fig. S3 T<sub>50</sub> lifetime of the TDA-modified and Pristine PeLEDs.



Fig. S4 <sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy of pure TDA additive and its mixture with  $PbX_2$ .



Fig. S5 The SEM images of (a) TDA-modified and (b) pristine perovskite films.



Fig. S6 XRD spectra of TDA-modified and pristine perovskite films.

| Light-Emitting<br>layers | V <sub>on</sub><br>(V) | CE <sub>max</sub><br>(cd/A) | EQE <sub>max</sub><br>(%) | EL<br>(nm) | CIE <sub>x</sub> | CIE <sub>y</sub> |
|--------------------------|------------------------|-----------------------------|---------------------------|------------|------------------|------------------|
| Pristine                 | 2.5                    | 0.22                        | 0.25                      | 638        | 0.713            | 0.312            |
| TDA-modified             | 2.25                   | 6.76                        | 12.39                     | 650        | 0.711            | 0.290            |

Table S1. Performance summary of pristine and TDA-modified PeLEDs.

Table S2. TRPL fitting parameters of pristine and TDA-modified perovskite films.

| Light-Emitting layers | $A_1$   | $	au_l$ (ns) | $A_2$  | $	au_2$ (ns) | $A_3$  | $	au_3$ (ns) | $	au_{avg}$ (ns) |
|-----------------------|---------|--------------|--------|--------------|--------|--------------|------------------|
| Pristine              | 2137.23 | 0.94         | 299.68 | 4.3          | 27.92  | 22.14        | 5.39             |
| TDA-modified          | 933.4   | 6.56         | 827.94 | 25.05        | 130.54 | 100.28       | 46.86            |

Table S3. PL average lifetimes ( $\tau_{avg}$ ), PLQY, radiative decay rates ( $k_r$ ), and nonradiative decay rates ( $k_{nr}$ ) of the pristine and TDA-modified perovskite films.

| Light-Emitting layers | $	au_{avg}$ (ns) | PLQY<br>(%) | k <sub>r</sub><br>(10 <sup>6</sup> s <sup>-1</sup> ) | $k_{nr}$<br>(10 <sup>6</sup> s <sup>-1</sup> ) | k <sub>r</sub> : k <sub>nr</sub> |
|-----------------------|------------------|-------------|------------------------------------------------------|------------------------------------------------|----------------------------------|
| Pristine              | 5.39             | 11.9        | 22.08                                                | 163.45                                         | 0.14                             |
| TDA-modified          | 46.86            | 66.2        | 39.26                                                | 7.21                                           | 5.45                             |