Enhanced Thermoelectric and Mechanical Properties of Cu_{1.8}S_{1-x}P_x

Bulks Mediated by Mixed Phase Engineering

Xi Yan ^{*} ^{a,b}, Qin-Yuan Huang ^{*} ^{a,b}, Tian-Yu Yang ^{a,b}, Ding-Yi Yu ^c, Hao Yin ^{a,b}, Chong-Yu Wang ^{a,b}, Zhen-Hua Ge ^{a,b}*, Yi-Xin Zhang ^{a,b}*, and Hong-Jiang Pan ^{a,b}*

^a Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

^b National-Local Joint Engineering Research Center for Technology of Advanced Metallic Solidification Forming and Equipment, Kunming 650093, China

^c Inner Mongolia Research Institute, China University of Mining and Technology (Beijing), Ordos 017001, China

*Corresponding authors.

* Xi Yan and Qin-Yuan Huang contributed equally to this work.

E-mail: Z.-H. Ge (<u>zge@kust.edu.cn</u>); Yi-Xin Zhang (<u>yxzhang@kust.edu.cn</u>); Hong-Jiang Pan (<u>hj pan@kust.edu.cn</u>)

Part 1. Supplementary Data and Diagrams

Fig. S1 XPS survey scan of the $Cu_{1.8}S_{0.97}P_{0.03}$.

Fig. S2. Mechanics properties of $Cu_{1.8}S_{1-x}P_x$ bulk samples. 3D cloud image of modulus for a) pure $Cu_{1.8}S$, b) $Cu_{1.8}S_{0.97}P_{0.03}$.

Part 2. Single Parabolic Band (SPB) modeling

The Cu_{1.8}S, as a kind of degenerate semiconductor, can be analyzed by the Single Parabolic Band (SPB) Model with relaxation time approximation. The Seebeck coefficient can be expressed as:

$$S = \frac{k_B}{e} \left[\frac{\left(\frac{5}{2} + \lambda\right)F_{\lambda + \frac{3}{2}}}{\left(\frac{3}{2} + \lambda\right)F_{\lambda + \frac{1}{2}}} - \eta \right]$$
(1)

The charge carrier concentration can be expressed as:

$$n_{H} = 4\pi \left(\frac{2m^{*}k_{B}T}{h^{2}}\right)^{3/2} F_{1/2}$$
(2)

The effective mass (m*) can be expressed as:

$$m^{*} = \frac{h^{2}}{2k_{B}T} \left[\frac{n}{4\pi F_{1}(\eta)}\right]^{\frac{2}{3}}$$
(3)

The Fermi integral can be expressed as:

$$F_i(\eta) = \int_0^\infty \frac{x^i dx}{1 + exp(x - \eta)}$$
(4)

where η is the simple Fermi energy, $F_i(\eta)$ is the i-th Fermi integral, k_B is the Boltzmann constant, *h* is the Planck constant, and *r* is the scattering factor usually to be—0.5 meaning the main scattering mechanism is acoustic phonon scattering.