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1. General information

'TH NMR and '3C NMR spectra were tested on Bruker NMR spectrometer operating at 500 or
400 MHz and 126 MHz or 101 MHz, respectively, with tetramethyl silane (TMS) as the internal
standard. The samples were dissolved in deuterated chloroform (CDCI;) or methylene chloride
(CD,Cl,) solvent and measured at room temperature. MALDI-TOF mass spectrometry was
conducted on a Waters SYNAPT G2-Si mass spectrometer. The HOMO energy levels were
obtained from photoelectron yield measurement (AC-3) of the neat films, and the LUMO energy
level can be calculated by the on-set of the ultra-violet to visible (UV-vis) absorption spectra. UV-
vis absorption spectra were measured using Perkin-Elmer Lambda 950-PKA, while
photoluminescence (PL) spectra were recorded by FluoroMax-4 spectrofluorometer (Horiba Jobin
Yvon), respectively. Photoluminescence quantum yields (PLQYSs) of doped films were measured
utilizing an integrating sphere of Hamamatsu absolute PLQY spectrometer (C11347-11). Transient
PL decay was evaluated by Edinburgh FLS980 fluorescence spectrophotometer equipped with

Oxford Instruments nitrogen cryostat (Optistat DN).



2. Quantum chemical method

All of the simulations were performed using the Gaussian 09 E01 program package.!'l Ground
state (Sy) geometries were initially optimized using the B3LYP functional with 6-31g(d) basis set
in vacuum according to density functional theory (DFT). All the excited states were optimized based
on Sy geometries using time-dependent density functional theory (TD-DFT) under B3LYP/6-31g(d)
theoretical level in toluene with polarizable continuum model (PCM). The distribution of HOMO
and LUMO were analyzed by using Multiwfn.[?] The Huang-Rhys factors (HRf) were determined
with the DUSHIN module in MOMAP (Molecular Materials Property Prediction Package).l?! The
corresponding spin-orbital coupling (SOC) matrix elements were calculated based on the optimized

geometries by using the spin-orbit mean-field (SOMF) approaches in ORCA.[43]
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Figure S1. HOMO energy levels of different donor units.



3. Estimation for the rate constants.

Rate constants for the titled compounds in 1 wt% doped PhCzBCz films at room temperature
are determined from the measurements of quantum yields and lifetimes of the prompt fluorescence
(PF) and delayed fluorescence (DF) components according to equations 1-7.
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4. Device fabrication and characterization

All the organic materials for device fabrication were available from p-OLED, Xi’an Polymer
Light Technology Corp. Glass substrates pre-coated with a 95-nm-thin layer of indium tin oxide
(ITO) with a sheet resistance of 10 Q per square were thoroughly cleaned in ultrasonic bath of
tetrahydrofuran, isopropyl alcohol, detergent, deionized water, and isopropyl alcohol and treated
with O, plasma for 10 min in sequence. Organic layers were deposited onto the ITO-coated glass
substrates by thermal evaporation under high vacuum (~1073 Pa). Cathode was patterned using a
shadow mask with an array of 3 mm x 3 mm openings. Deposition rates are 1 —2 A s°! for organic
materials, 0.1 A s! or LiF, and 6 A s™! or aluminum, respectively. Electroluminescence (EL) spectra
were recorded by Photo Research PR745. The current density and luminance versus driving voltage
characteristics were measured by Keithley 2420 and Konica Minolta chromameter CS-200. External
quantum efficiencies (EQEs) were calculated from the current density, luminance, and EL spectra,

assuming a Lambertian distribution.



5. Synthesis and structural characterization of materials
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Scheme S1. Synthetic routes for DQBN.

Synthesis of 9-(3-bromo-2-chlorophenyl)-3,6-di-zer-butyl-9H-carbazole (M1).

A mixture of 1-bromo-2-chloro-3-fluorobenzene (10.00 g, 47.75 mmol), 3,6-di-tert-butyl-9H-
carbazole (13.34 g, 47.75 mmol) and Cs,CO; (17.11 g, 52.52 mmol) were added to anhydrous N, N-
dimethylformamide (DMF, 50mL) under nitrogen atmosphere. The reaction was refluxed overnight
and then cooled to room temperature. The mixture was extracted with dichloromethane and water
for three times. The organic phase was concentrated under reduced pressure. The crude product was
washed with ethanol to afford white solids (19.0 g, yield of 85%). 'H NMR (400 MHz, Chloroform-
d) o =8.14 (d, J=2.0, 2H), 7.80 (dd, J=8.1, 1.6, 1H), 7.44 (dd, J=8.5, 2.1, 3H), 7.31 (t, /=8.0, 1H),
6.98 (d, J=8.6, 2H).

Synthesis of 1,2,3,4-tetrahydroquinoxaline.

A mixture of quinoxaline (5.00 g, 38.42 mmol), trimethylamine borane (2.80 g, 38.42 mmol)
were added to H,O (300 mL) in a round bottom flask under air, and then the trifluoroacetic acid
(14.71 mL, 192.09 mmol) was dropped into the mixture with a syringe at room temperature. The
mixture was stirred for 3 hours in air at room temperature. After that, an appropriate amount of

sodium hydroxide aqueous solution was added to adjust the PH value of the solution to neutrality.



The mixture was extracted with dichloromethane and water for three times. The organic phase was
concentrated under reduced pressure. The crude product was washed with ethanol to afford pale
yellow solids (5.0 g, 97%), the solid is unstable in air, so the next reaction is directly carried out
without further purification. "H NMR (400 MHz, Chloroform-d) & = 6.58 (dd, J=5.8, 3.4, 2H), 6.50
(dd, J=5.7, 3.4, 2H), 3.42 (s, 4H), 2.81 (s, 2H).

Synthesis of 1,4-bis(2-chloro-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-1,2,3,4-
tetrahydroquinoxaline (M2).

A mixture of 1,2,3,4-tetrahyroquinoxaline (1.50 g, 11.18 mmol), M1 (10.48 g, 22.36 mmol),
Pd,(dba); (0.05 g, 0.05 mmol), P(#-Bu);HBF, (0.03 g, 0.11 mmol) and ~BuONa (2.79 g, 29.07
mmol) were added to 50 mL anhydrous o-xylene under nitrogen atmosphere. The reaction was
refluxed overnight and then cooled to room temperature. The mixture was extracted with
dichloromethane and water for three times. The organic phase was concentrated under reduced
pressure and the residue was purified by chromatography on silica gel (eluent:
dichloromethane/hexane = 1:4) to afford white solids (4.37 g, 43%). 'H NMR (400 MHz,
Chloroform-d) 6 = 8.15 (d, J=1.9, 4H), 7.53 (d, J=6.2, 2H), 7.50 — 7.42 (m, 6H), 7.38 (dd, J=7.7,
1.7, 2H), 7.08 (d, J=8.6, 4H), 6.74 (dt, J=7.2, 3.6, 2H), 6.57 (dd, J=6.0, 3.5, 2H), 3.87 (s, 4H), 1.47
(s, 36H).

Synthesis of DQBN.

M2 (2.00 g, 2.20 mmol) was dissolved into 20 mL anhydrous mesitylene in a 100 mL Schlenk
tube. The gas in the tube is replaced by nitrogen for three times. The mixture was added #-BuLi (1.3
M, 6.76 mL) dropwise under nitrogen atmosphere at -40 °C. After stirring for 15 minutes, the
reaction mixture was heated at 80 °C for 3 hours. Then the reaction mixture was cooled to -30 °C,
and boron tribromide (BBr;) (0.85 mL, 8.79 mmol) was added, followed by stirring at room
temperature for 3 hours. Then the reaction mixture was cooled to 0 °C, and NN-
diisopropylethylamine (EtN(i-Pr),) (3.06 mL) was added, followed by stirring at 160 °C for 12
hours. After cooling to room temperature, the reaction mixture was quenched by water and extracted
with dichloromethane and water for three times, After the solvent was removed under reduced
pressure, the residue was purified by chromatography on silica gel (eluent: ethyl
acetate/hexane=1/40) to afford orange solids (0.57 g, 30%). '"H NMR (500 MHz, Chloroform-d) &

=8.99 (d, J=1.8, 2H), 8.76 (s, 2H), 8.45 (d, J=1.8, 2H), 8.28 (d, J=2.1, 2H), 8.18 (d, J=8.8, 2H),



7.86 (d, J=8.2, 2H), 7.63 — 7.56 (m, 4H), 7.07 (d, /=8.4, 2H), 4.47 (s, 4H), 1.71 (s, 18H), 1.55 (s,
18H). 13C NMR (126 MHz, CDCl3) & 144.99, 144.95, 144.59, 142.68, 141.63, 138.13, 134.37,
132.67, 129.72, 127.03, 126.29, 125.93, 124.13, 123.39, 121.67, 121.15, 119.63, 117.01, 114.10,
104.85, 44.73, 35.26, 34.79, 32.40, 31.89. MALDI-TOF mass: calculated for C¢yHssB,N4 [M]*

856.48, found 856.0703.
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Scheme S2. Synthetic routes for tBCQBN.
Synthesis of 3,6-di-fert-butyl-9-(2-chloro-3-(3,4-dihydroquinoxalin-1(2H)-yl)phenyl)-9H-
carbazole (M3).

A mixture of 1,2,3,4-tetrahydroquinoxaline (2.00 g, 14.93 mmol), M1 (5.00 g, 10.66 mmol),
Pd,(dba); (0.10 g, 0.11 mmol), P(#~-Bu);HBF,4 (0.06 g, 0.21 mmol) and ~BuONa (1.54 g, 16.00
mmol) were added to 50 mL anhydrous o-xylene under nitrogen atmosphere. The reaction was
refluxed overnight and then cooled to room temperature. The mixture was extracted with
dichloromethane and water for three times. The organic phase was concentrated under reduced
pressure and the residue was purified by chromatography on silica gel (eluent:
dichloromethane/hexane = 1:2) to afford white solids (3.65 g, 65%). 'H NMR (500 MHz,
Chloroform-d) 6 =8.16 (d, /=2.0, 2H), 7.49 — 7.38 (m, 4H), 7.33 (dd, J=7.7, 1.8, 1H), 7.06 (d, J=8.6,
2H), 6.72 — 6.65 (m, 1H), 6.66 — 6.54 (m, 2H), 6.43 (d, J=9.3, 1H), 3.73 (s, 2H), 3.50 (s, 2H), 2.97

(s, 1H), 1.46 (s, 18H).

r



Synthesis of 3,6-di-zert-butyl-9-(3-(4-(2-chloro-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-
3,4-dihydroquinoxalin-1(2H)-yl)phenyl)-9H-carbazole (M4).

A mixture of M3(1.30 g, 2.49 mmol), 9-(3-bromophenyl)-3,6-di-tert-butyl-9H-carbazole (1.08
g, 2.49 mmol), Pd,(dba); (0.05 g, 0.05 mmol), P(#-Bu);HBF, (0.03 g, 0.10 mmol) and ~-BuONa
(0.48 g, 4.97 mmol) were added to 40 mL anhydrous o-xylene under nitrogen atmosphere. The
reaction was refluxed overnight and then cooled to room temperature. The mixture was extracted
with dichloromethane and water for three times. The organic phase was concentrated under reduced
pressure and the residue was purified by chromatography on silica gel (eluent:
dichloromethane/hexane = 1:3) to afford white solids (1.54 g, 71%). 'H NMR (400 MHz,
Chloroform-d) 6 =8.13 (dd, J=9.8, 1.9, 4H), 7.57 — 7.38 (m, 11H), 7.31 (s, 1H), 7.22 (d, J=8.0, 1H),
7.15 (dd, J/=7.8, 1.7, 1H), 7.06 (d, J=8.6, 2H), 6.75 (dtd, J=22.1, 7.4, 1.6, 2H), 6.51 (dd, J/=7.9, 1.6,
1H), 3.90 (t, J=4.6, 2H), 3.80 (s, 2H), 1.46 (d, J=2.6, 36H).

Synthesis of tBCQBN.

M4 (1.54 g, 1.76 mmol) was dissolved into 20 mL anhydrous mesitylene in a 100 mL Schlenk
tube. The gas in the tube is replaced by nitrogen for three times. The mixture was added #-BuLi (1.3
M, 2.71 mL) dropwise under nitrogen atmosphere at -40 °C. After stirring for 15 minutes, the
reaction mixture was heated at 80 °C for 3 hours. Then the reaction mixture was cooled to -30 °C,
and boron tribromide (BBr;) (0.34 mL, 3.52 mmol) was added, followed by stirring at room
temperature for 3 hours. Then the reaction mixture was cooled to 0 °C, and N,N-
diisopropylethylamine (EtN(i-Pr),) (1.23 mL) was added, followed by stirring at 160 °C for 12
hours. After cooling to room temperature, the reaction mixture was quenched by water and extracted
with dichloromethane and water for three times, After the solvent was removed under reduced
pressure, the residue was purified by chromatography on silica gel (eluent: ethyl
acetate/hexane=1/50) to afford yellow solids (0.30 g, 20%).'"H NMR (400 MHz, Methylene
Chloride-d,) 6 = 8.82 (d, J/=1.9, 1H), 8.47 (dd, /=7.7, 1.5, 1H), 8.38 (d, J/=1.8, 1H), 8.30 (d, J=8.8,
1H), 8.21 (d, J=2.1, 1H), 8.11 — 8.03 (m, 3H), 7.88 (t, J=8.3, 1H), 7.59 (dd, J=8.8, 2.1, 1H), 7.52 (t,
J=8.0, 1H), 7.48 — 7.35 (m, 6H), 7.28 (dd, J=8.0, 2.3, 1H), 7.24 — 7.14 (m, 3H), 4.42 (t, J=5.3, 2H),
4.02 (t,J=5.3,2H), 1.54 (s, 7TH), 1.44 (s, 13H), 1.37 (s, 16H). *C NMR (101 MHz, CDCl5) & 148.43,
145.88, 145.07, 142.96, 139.50, 139.04, 138.24, 135.75, 133.77, 133.10, 130.59, 129.67, 129.14,

127.08, 124.16, 123.67, 123.45, 120.66, 120.34, 120.24, 119.70, 117.13, 116.28, 114.00, 109.32,



105.09, 48.14, 46.36, 35.20, 34.75, 32.28, 32.03, 31.86. MALDI-TOF mass: calculated for

CeoHg1 BN, [M]* 848.50, found 848.0848.
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Scheme S3. Synthetic routes for BN-Q-Ph.
Synthesis of 1-phenyl-1,2,3,4-tetrahydroquinoxaline (MS5).
A mixture of 1,2,3,4-tetrahyroquinoxaline (2.21 g, 16.47 mmol), iodobenzene (1.85 mL, 16.47
mmol), Pd,(dba); (0.15 g, 0.16 mmol), P(#~-Bu);HBF, (0.10 g, 0.33 mol) and +-BuONa (1.90 g, 19.76
mmol) were added to 60 mL anhydrous o-xylene under nitrogen atmosphere. The reaction was
refluxed overnight and then cooled to room temperature. The mixture was extracted with
dichloromethane and water for three times. The organic phase was concentrated under reduced
pressure and the residue was purified by chromatography on silica gel (eluent:
dichloromethane/hexane = 1:3) to afford white solids (2.14 g, 62%). "H NMR (400 MHz, Methylene
Chloride-d,) 6 =7.35—-17.27 (m, 2H), 7.23 — 7.16 (m, 2H), 7.02 (t, J=7.3, 1H), 6.83 (dd, J=8.0, 1.4,
1H), 6.70 (t, J=7.5, 1H), 6.64 — 6.44 (m, 2H), 3.70 (s, 2H), 3.44 (s, 2H), 2.69 (s, 1H).
Synthesis of tBuCzBN-Br.

The synthesis process was referred to the reported literature [6],
Synthesis of BN-Q-Ph.

A mixture of tBuCzBN-Br (2.00 g, 2.78 mmol), M5 (0.70 g, 3.34 mmol), Pd,(dba); (0.13 g,
0.14 mmol), P(z-Bu);HBF, (0.08 g, 0.18 mmol) and ~BuONa (0.53 g, 5.56 mmol) were added to
60 mL anhydrous o-xylene under nitrogen atmosphere. The reaction was refluxed overnight and
then cooled to room temperature. The mixture was extracted with dichloromethane and water for
three times. The organic phase was concentrated under reduced pressure and the residue was
purified by chromatography on silica gel (eluent: dichloromethane/hexane = 1:6) to afford brown
solids (1.46 g, 62%). '"H NMR (500 MHz, Chloroform-d) 4 = 9.10 (d, J=1.9, 2H), 8.43 (d, J=1.8,

2H), 8.25 (d, J=2.1, 2H), 8.21 — 8.14 (m, 4H), 7.73 — 7.68 (m, 1H), 7.57 (dd, J=8.7, 2.1, 2H), 7.43



—7.35 (m, 4H), 7.20 — 7.15 (m, 1H), 7.05 — 7.01 (m, 1H), 7.00 — 6.95 (m, 2H), 4.22 (dd, J=5.8, 4.0,
2H), 3.91 - 3.86 (m, 2H), 1.67 (s, 18H),1.51 (s, 18H).3C NMR (101 MHz, CDCl;) § 145.34, 145.25,
144.60, 141.83, 138.15, 131.45, 129.74, 129.62, 127.13, 124.65, 124.33, 123.44, 122.64, 120.85,
120.22, 117.28, 113.85, 101.12, 50.04, 48.39, 35.17, 34.79, 32.21, 31.83. MALDI-TOF mass:

calculated for C4oHg; BN, [M]" 848.99, found 847.9704.
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Figure S2. 'H NMR spectrum of compound 1,2,3,4-tetrahydroquinoxaline. (400 MHz, CDCl;)
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Figure S3. 'H NMR spectrum of compound M1. (400 MHz, CDCl;)
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Figure S4. 'H NMR spectrum of compound M2. (400 MHz, CDCl;)
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Figure S10. 'H NMR spectrum of compound tBCQBN. (400 MHz, CDCl5)
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Figure S11. 3C NMR spectrum of compound tBCQBN. (101 MHz, CDCl;)
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Figure S12. MALDI-TOF mass spectrum of compound tBCQBN.
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Figure S13. '"H NMR spectrum of compound M5. (400 MHz, CD,Cl,)
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Figure S14. "H NMR spectrum of compound BN-Q-Ph. (500 MHz, CDCl3)
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Figure S15. 3C NMR spectrum of compound BN-Q-Ph. (101 MHz, CDCl;)
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Figure S16. MALDI-TOF mass spectrum of compound BN-Q-Ph.



6. Supplementary figures and tables

(a)

904 \

804 ——BN-POZ-Ph (Td=430C) | |
70— tBCQBN (Td = 464 T)

——DGBN (Td = 525 C)
60

50-
40
30
20
104

Mass (%)

200 400 600 800

Temperature ('C)

—_
o
~—

—BN-Q-Ph
—_{BCGBN
—DQBN

! 1 Tg=197 C

o Tg=168T 9=

E

g \

£

g -

@

100 200 300

Temperature (C)

Figure S17. a) Thermal gravimetric analysis (TGA) curves and b) differential scanning calorimetry

(DSC) analysis curves of the investigated compounds.

Chemical
structure

LUMO
distribution

HOMO
distribution

Lumo

207V AE=0.45 eV
* 2.63eV
| | — 218 0V
E3.05eV ﬂ T
Energy level : .
S e—

—

HOMO

-5.12eV

LUMO
-1.45 eV

Ef3.32eV

HOMO
-4.77 eV

LUMO

AE4=0.37 eV
AE=0.45 eV Agsey 289 eV
2.83eV 1 — 2 52 o\
| m— 2 38 eV ‘ —_—
- E=337eV
Sy m—
S| e— |
—
HOMO
-5.00 eV

Figure S18. Chemical structures, HOMO/LUMO distributions and calculated energy levels of

DQBN, tBCQBN and BN-Q-Ph.



Table S1. Summary of the calculated energy level data and oscillator strengths of DQBN, tBCQBN and

BN-Q-Ph.
LUMO HOMO E, S S, T, AEgt
Eimitters f/S; f/S,
[eV] [eV] [eV] [eV] [eV] [eV] [eV]
DQBN -2.07 -5.12 3.05 2.63 0.09 2.84 0.59 2.18 0.45
tBCQBN -1.45 -4.77 332 283 0.27 3.26 0.14 2.38 0.45
BN-Q-Ph -1.63 -5.00 337 2.89 0.34 2.98 0.17 2.52 0.37
(a) 1.2 —r . . : (b) 1.2 T T T
. DQBN in . DQBN in hexane(10° M)
5 1.0 ——HEX 4 = 1.0 N ex-350nm |
8 —TOL s I% ex—j&';gnm
—THF ex-470nm
% 0.8 —DCM 1 'E 0.8 ’Ii ex-490nm 1
g e | l ex-500nm
£ 064 1 £064 R —abs
H T Y I
Nogd 1 Hpad | R
(1] 1+ 1 i? 1
E E [
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Figure S19. a) UV-vis absorption spectra of DQBN in different polar solvents. b) PL spectra at

different excitation wavelengths and UV-vis absorption spectra of DQBN in dilute hexane solution.
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Table S2. Summary of the emission peak wavelengths and FWHMs of DQBN, tBCQBN and BN-Q-Ph

in different polar solvents.

DQBN tBCQBN BN-Q-Ph
Peak FWHM Peak FWHM Peak FWHM
(nm) (nm) (nm) (nm) (nm) (nm)
Hexane 492 16 470 24 469 21
Toluene 504 20 484 33 474 33
Tetrahydrofuran 507 22 494 48 480 37
Dichloromethane 509 25 499 51 483 37
N, N-dimethylformamide 515 35 513 68 487 39
(8) 1.2 (b) 1.2 (C) 1.2
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Figure S21. Fluorescence and phosphorescence spectra of a) DQBN, b) tBCQBN and c) BN-Q-Ph

in solution at 77K.
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Figure S22. Atmospheric ultraviolet photoelectron spectroscopies of DQBN, tBCQBN and BN-Q-

Ph.
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Figure S23. PL spectra of a) DQBN, b) tBCQBN and ¢) BN-Q-Ph doped in PhCzBCz film at

different concentrations.
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Figure S25. EL performance of the devices at different doping concentrations. a) EL spectra, b)
EQE-luminance, and c¢) J-V-L characteristics of the devices based on DQBN as emitter. d) EL
spectra, ¢) EQE-luminance, and f) J-V-L characteristics of the devices based on tBCQBN as emitter.
g) EL spectra, h) EQE-luminance, and i) J-V-L characteristics of the devices based on BN-Q-Ph as

emitter.



Table S3. Summary of EL properties of the devices based on DQBN, tBCQBN and BN-Q-Ph as emitter

in various doping concentrations.

(a) (a) (b) © (d) © (%] (2)

DOped }\’EL FWHM Von Lmax CEmax PEmax EQEmax/ 100/1000 CIE
devices concentra

-tions [nm] [nm] VI [edm’]  [edA]  mw] (%] [x.y]

1 wt% 509 33 32 7534 12.2 11.9 4.7/2.8/2.6 [0.19,0.54]

3 wt% 515 40 34 16473 14.1 13.0 4.4/2.4/1.9 [0.24,0.65]

DQBN

5 wt% 520 43 33 15253 18.6 17.7 6.9/1.8/1.3 [0.27,0.65]

10 wt% 526 45 32 12473 16.8 16.5 5.7/1.6/1.0 [0.36,0.60]

1 wt% 484 35 32 7437 35.2 34.5 19.8/12.6/6.0 [0.12,0.32]
tBCQBN

2 wt% 487 35 32 10278 252 24.7 12.4/6.7/4.7 [0.12,0.36]

1 wt% 476 36 34 14527 65.2 60.2 28.7/25.4/19.0 [0.16,0.31]

3 wt% 479 46 34 21340 69.7 57.6 28.6/26.5/20.9 [0.18,0.37]
BN-Q-Ph

5 wt% 487 64 34 23857 70.2 55.1 26.4/24.9/20.0 [0.22,0.45]

10 wt% 500 78 34 24096 71.6 62.4 24.9/22.7/18.4 [0.26,0.51]

@ EL peak and FWHM at the current density of 1 mA cm?; ® Turn-on voltage at the luminance of 1 cd
m2; 9 Maximum luminance; 9 Current efficiency; @ Power efficiency;” EQE value at maximum, 100 cd
m2 and 1000 cd m2, respectively; ©® Commission International deL’Eclairage (CIE) coordinates at the

current density of 1 mA cm™.



7. Reference

[1] Gaussian 09, Revision E.O1, Frisch, M. J. G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.
Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A.J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman,
J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

[2] M. Ma, J. Li, D. Liu, Y. Mei, R. Dong, ACS Appl. Mater. Interfaces 2021, 13, 44615-44627.
[3] T. Hua, J. Miao, H. Xia, Z. Huang, X. Cao, N. Li, C. Yang, 4dv. Funct. Mater. 2022, 32,
2201032.

[4] F.Neese, WIREs Comput. Mol. Sci. 2011, 2, 73.

[5] F.Neese, WIREs Comput. Mol. Sci. 2017, 8, e1327.

[6] Z.Huang, H. Xie, J. Miao, Y. Weli, Y. Zou, T. Hua, X. Cao, C. Yang, J. Am. Chem. Soc. 2023,
145, 12550-12560.



