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1. Materials and measurements

All commercial chemicals (from Sigma-Aldrich, Solarmer Energy Inc, Adamas, Alfa
Aesar, TCI Chemical Co., Liaoning Youxuan New Energy Technology Co. Ltd and
Energy Chemical) were used as received. All reactions and manipulations were
carried out under argon atmosphere with the use of standard Schlenk techniques. All
these solvents used here were commercially available from Chongqing Chuandong
Chemical.Proton nuclear magnetic resonance ('H-NMR) and carbon-13 nuclear
magnetic resonance (13C-NMR) spectra of CH-TCI] were recorded at 600 MHz and
150 MHz on a Bruker Avance III Ultra shield Plus. MALDI-TOF-TOF were
determined on a Bruker Ultraflextreme mass spectrometer.

Calculations: The molecular geometries were optimized by Gaussian 09 with a
functional of B3LYP and a basis set of 6-31G(d).! The long alkyl chains were
replaced by methyl or isobutyl groups to save time.

CoHs

PNDIT-F3N 07 N"So
c4H5
'C,Hs

Figure S1. Chemical structure of PNDIT-F3N

Solar cells: OSCs use conventional device configuration as ITO/BrDECz?/active
blend/PNDIT-F3N/Ag. After cleaning with deionized water, acetone, and isopropanol,
the ITO glass was treated with UV-Ozone for 15 minutes.the BrDECz (0.4 mg/mL in
ethanol) solution was applied directly onto the ITO substrate for 20 s followed by a
spin-coating step at 3000 rpm for 10 s, then placed the ITO substrate onto a hotplate
and annealed at 100 °C for 5 min.The PM6:BTP-eC9 (1:1.2 w/w) was dissolved in
chloroform at the total blendconcentration of 17 mg/mL with 11 mg/ml 1,4-
diiodobenzene (DIB) as the solid additive.The PM6:CH-TCl (1:1.2 w/w) was
dissolved in chloroform at the total blend concentration of 17 mg/mL with 11 mg/ml
DIB. The PM6:BTP-eC9:CH-TCI (1:1.2:0.1 w/w/w) was dissolved in chloroform at
the total blend concentration of 17 mg/mL with 11 mg/ml DIB. All the solutions need
to be stirred at a 50 °C for 2 hours to ensure proper dissolution. The blended solution
was spin-coated on the BrDECz layer at 3000 rpm for 30 s. It was then annealed at 90
°C for 5 minutes. Then PNDIT-F3N (0.5 mg/mL in methanol added 0.5% acetic acid,
2000 rpm) spin-coated on the active layer, the devices were finally transferred to the
evaporation tank to deposit 100 nm Ag. The active area with calibration was 0.1 cm?.

Electrochemical cyclic voltammogram(CV): CV data was conducted using
CIH660e electrochemical workstation with glassy carbon working electrode, platinum



wire auxiliary electrode, and Ag/Ag+ glass electrode used as the reference electrode.
Ag/Ag" reference electrode was utilized ferrocene/ferrocenium (Fc/Fc™ ) redox couple
with Fc/Fc* set relative to 4.8 eV vacuum level. All CV curves were obtained through
casting thin films on a glassy carbon electrode. Thermogravimetric analysis data were
obtained from a Pyris6 (PerkinElmer).

UV-visible (UV-vis) absorption: UV-visible spectra were recorded on a PerkinElmer
LAMBDA 365 UV-Vis spectrophotometer.

Contact angle measurement: Contact angles of two solvents (water and formamide)
were measured on DSA-100 liquid droplet on the pure film (donor/acceptor) using a
shape analysis instrument (KRUSS Scientific). Miscibility of the two components in
the mixture could be estimated based on the solubility parameters (9) of each material,

calculated using the formula: 6 = K\JY where ¥ is the surface energy of the material,

and K is a proportionality constant (K=116 x103 m'?).

atomic force microscopy (AFM): Topographic images of the films were obtained
from a Bruker AFM with the type of dimension edge with Scan AsystTM in the
tapping mode using an etched silicon cantilever at a nominal load of ~40nN, and the
scanning rate for a 2 pumx2 um image size was 1.5 Hz.

GIWAXS: GIWAXS measurements were carried out with a Xeuss 2.0 SAXS
laboratory beamline using a Cu X-ray source (8.05 keV, 1.54 A) and a Pilatus3R
300K detector. The incidence angle is 0.2°.

SCLC: The carrier mobility (hole and electron mobility) of photoactive layer was
determined by fitting the dark current of hole/electron-only diodes to the space-
charge-limited current (SCLC) model. Hole-only diode configuration:
ITO/BrDECz/active  layer/MoOs/Ag;  Electron-only  diode  configuration:
ITO/ZnO/PNDIT-F;N/active layer/PNDIT-F;N/Ag. V;,=0 was used for both fittings.
The active layer thickness was determined by a Tencor surface profilometer. The
electric-field dependent SCLC mobility was estimated using the following equation?:

2
9 V=V \(V=V5)
J(V) = —eoermoexp(0.89b bl)—l
8 L 1.3 .
Equation 1




2. Synthetic Protocols and Characterizations

M14 and M25 were synthesized according to the procedure reported in the literature.

N, N

I e i
N={ \=h

NN

sy s CyHas \S T ) 5, CiHzs  toulene, HOAC Ny

L =N + ! N N | ——— W CiHm s s, CyHas

s s 95°C ST '@,
HaN' Hy CgH1z CgH1a | [l
Cyl gHi7

N

S 5

csuuw) S,c His
CgHy7CeH7

M2 M1 M3

Synthesis of M3: In a round-bottom flask, compound M1 (200mg, 1.0 equiv.) and
M2 (46mg, 1.2 equiv.) were dissolved in a mixture solvent (20 mL, toluene: acetic
acid=4:1). The reaction mixture was heated to 95 °C and stirred for 24 h. Next, the
mixture was concentrated under reduced pressure. The crude product was purified by
column chromatography over SiO, using hexanes/CH,Cl, (5:1) as the eluent,
affording desired compound M3 (163mg, 70%). 'H NMR (600 MHz, Chloroform-d) &
7.07 (s, 2H), 4.72 (d, J = 7.9 Hz, 4H), 2.90 (t, ] = 7.8 Hz, 4H), 2.18 (m, 2H), 1.94-1.88
(m, 4H), 1.50-0.85 (m, 86H), 0.74 (t, J = 7.3 Hz, 6H), 0.66 (t, J = 7.2 Hz, 6H). 13C
NMR (151 MHz, Chloroform-d) & 155.57, 149.02, 144.11, 138.02, 137.28, 136.90,
136.44, 132.43, 123.55, 123.28, 119.70, 117.72, 55.39, 38.92, 32.08, 31.93, 31.75,
30.64, 30.57, 29.87, 29.84, 29.81, 29.71, 29.66, 29.55, 29.52, 29.50, 29.25, 29.12,
25.67,22.85,22.70, 22.57, 14.27, 14.18, 14.09.
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Synthesis of M4: In a pre-dried roundbottom flask, compound M3 (150mg, 1.0 equiv.),
POCI; (2.0 ml) and DMF (4.0 ml) were dissolved in anhydrous 1,2-dichloroethane
(25 mL). The reaction mixture was heated to 90 °C and was stirred for 24 h. Next, the
mixture was cooled down and quenched with 3M NaOAc solution (70 mL). The
mixture was extracted with CHCIl; (3x50 mL), and the organic phase was combined,
dried over Na,SQO,, filtered, and concentrated under reduced pressure. The crude
product was purified by column chromatography over SiO, using hexanes/CH,Cl,
(3:1) as the eluent to yield the pure dialdehyde M4 (140mg, 90%). 'H NMR (600
MHz, Chloroform-d) & 10.18 (s, 2H), 4.74 (d, J = 8.0 Hz, 4H), 3.28 (t, J = 7.8 Hz, 4H),
2.15 (m, 2H), 2.02 — 1.94 (m, 4H), 1.68 — 0.82 (m, 86H), 0.74 (t, ] = 7.3 Hz, 6H), 0.66
(t, J = 7.1 Hz, 6H). *C NMR (151 MHz, Chloroform-d) 6 182.04, 155.06, 149.11,
147.21, 144.93, 137.67, 137.46, 137.12, 137.06, 133.43, 129.54, 127.90, 124.16,
123.62, 118.27, 116.07, 55.64, 39.16, 34.86, 32.06, 32.03, 31.88, 31.75, 31.67, 30.91,
30.60, 30.54, 30.44, 29.83, 29.81, 29.79, 29.74, 29.70, 29.64, 29.59, 29.52, 29.49,
29.47, 29.42, 29.24, 29.08, 28.34, 26.05, 25.64, 22.81, 22.67, 22.56, 14.24, 14.15,
14.06.



TCN-C1

Synthesis of CH-TCI: To a mixed solution of the dialdehyde M4 (100mg, 1.0 equiv.),
2-(1-chloro-6-o0x0-5,6-dihydro-4H-cyclopenta| c]thiophen-4-ylidene)malononitrile
(42mg, 2.5 equiv.) and acetate anhydride (0.5ml, 20 equiv.) in toluene (20 mL), boron
trifluoride etherate (BF3-OEt, 0.2ml, 5 equiv.) was added and the mixture was stirred
for 20 min. The reaction mixture was quenched with methanol (50 mL), filtered, and
washed with methanol (20 mL) and ethyl acetate (20 mL), affording a black green
solid CH-TCl (108mg, 82%) in high purity. Further purification can be simply
performed via re-precipitation method. 'H NMR (600 MHz, Chloroform-d) & 9.10 (s,
2H), 8.18 (s, 2H), 4.94 (d, J = 8.2 Hz, 4H), 3.32 (t, J = 8.1 Hz, 4H), 2.34 (m, 2H), 1.92
(t, J=8.1 Hz, 4H), 1.62 (d, J = 9.8 Hz, 4H), 1.44-1.04 (m, 76H), 0.88 (t, ] = 6.9 Hz,
6H), 0.76-0.68 (m, 12H). 13C NMR (151 MHz, Chloroform-d) & 180.33, 155.49,
154.36, 154.13, 148.98, 146.85, 141.59, 138.57, 137.11, 136.95, 136.85, 136.37,
136.22, 134.21, 133.86, 131.85, 131.28, 126.83, 125.34, 119.24, 115.19, 66.76, 56.21,
39.74, 32.06, 31.92, 31.89, 31.77, 30.93, 30.12, 30.10, 29.89, 29.84, 29.79, 29.76,
29.55, 29.51, 29.36, 26.15, 26.10, 22.83, 22.71, 22.67, 14.25, 14.16, 14.13.MALDI-
TOF MS: calcd. for CigoH;16C1,N1,0,Sg [m/z]: 1844.6594, found 1844.6533



3. Density Functional Theory (DFT) Calculations

Figure S2. The molecular geometry optimizations of CH-TCIl are performed by
Gaussian 16' at B3LYP/6-31G(d) level, where the long alkyl side chains are
simplified to methyl groups for simplifying calculation.



4. Thermogravimetric Analysis (TGA)
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Figure S3. TGA plot with a heating rate of 10 °C/min under N, atmosphere, with the
temperature for 5% weight loss of CH-TCI being 336.00 °C.




5. UV-Vis Spectroscopy
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Figure S4. Optical absorption spectra in chloroform solution (normalized absorption
spectra)



6. Contact angle

Water

Figure S5. The surface contact angle measurements for the pure films of PM6, CH-
TCl, and BTP-eC9. The measurements were carried out by using (a-c) deionized
water and (d-f) formamide as wetting liquids.
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7. OSCs
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Figure S6. Hole-only devices and electron-only devices of PM6:CH-TCI, PM6:BTP-
eC9, and PM6:BTP-eC9:CH-TCI.
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Figure S7. light intensity dependence of V¢ and Jgc.
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8. Atomic Force Microscopy (AFM) Imaging
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Figure S8. Tapping-mode AFM images depict the phase variations of blend films.
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9. GIWAXS
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Figure S9. The IP and OOP line-cuts of (a) PM6:CH-TCI, (b) PM6:BTP-eC9, and (c)
PM6:BTP-eC9:CH-TCIL.
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Figure S10. 2D GIWAXS images of (a) CH-TCI, (b) BTP-eC9 films and the
corresponding 1D line-cuts in the in-plane and out-of-plane directions of (¢) CH-TCI,

(d) BTP-eC9, respectively.
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10. Supporting table

Table S1. Summary of contact angles (0), surface energy (y) and compatibility (c) of
PM6, BTP-eC9 and CH-TCI.

Contact Angle Contact Angle surface energy

Materials — ater) ©)  (FA) () yNm)y A ®

PM6 104.78 85.03 20.18 weme/cater 0.1361
CH-TC1 98.95 78.55 23.63 Ypme/BTP-cco  0.4186
BTP-eC9 97.57 75.35 26.41 YcH-TcyBTP-cc9 0.0773

Table S2. Photovoltaic performances of binary and ternary OSCs based on
PM6:BTP-eC9, and PM6:BTP-eC9:CH-TCI photoactive layers(without DIB) with
different weight ratios. Other process optimization conditions were mentioned in our
previous work.?

Voc Jsc FF PCE

D:A:A
%) (mA/cm?) (%) (%)

0.863 27.82 74.52 17.90
1:1.2

0.860+0.004 27.724+0.35 73.93+£1.85 17.62+0.66

0.870 28.00 74.60 18.17
1:1.2:0.05

0.868+0.004 27.594+0.52 74.37£1.97 17.83+0.82

0.873 28.00 75.56 18.46
1:1.2:0.1

0.869+0.004 28.01+0.10 75.04+0.86 18.26+0.19

0.876 27.92 74.45 18.21
1:1.2:0.15

0.875+0.003 27.70+0.35 74.04+1.48 18.00+0.40

Table S3. Charge carrier mobilities determined by SCLC measurement.

BHJ e ph

(104 cm?/Vs) (104 cm?/Vs) H e
PM6:CH-TC1 3.77 5.96 1.58
PM6:BTP-eC9 9.78 114 1.17

PM6:BTP-eC9:CH-TCI 10.3 11.3 1.10

13



Table S4. Crystallographic parameters for the thin films.

Film q d-spacing!?! FWHM CCLM

[010, A-1] [010, A] [010, A1) [010, A]
BTP-eC9 1.765 3.56 0.293 19.30
CH-TCI 1.750 3.59 0.254 22.26
PM6:BTP-eC9 1.748 3.59 0.286 19.77
PM6:CH-TCI 1.745 3.60 0.301 18.79
PM6:BTP-eC9:CH-TC1 1.751 3.59 0.285 19.84

[a] Calculated from the equation: d-spacing = 2m/q. [b] Obtained from the Scherrer
equation: CCL = 2nK/FWHM, where FWHM is the full-width at half-maximum and
K is a shape factor (K = 0.9 here).
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11. Supporting figure
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Figure S11. '"H NMR spectrum of M1 in CDCl;
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Figure S12. 3C NMR spectrum of M1 in CDCl;
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Figure S21. MALDI-TOF spectrum of CH-TCI.
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