Supplementary Information

Structure and reactivity of polymer supported carbonylation catalysts

Anthony Haynes,*^{*a*} Peter M. Maitlis,^{*a*} Ruhksana Quyoum,^{*a*} Claire Pulling^{*a*} Harry Adams,^{*a*} Sharon E. Spey^{*a*} and Richard W. Strange^{*b*}

^{*a}* Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK ^{*b*} Synchrotron Radiation Department, Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK.</sup>

Kinetic data

Table S1. Observed pseudo first order rate constants, k_{obs} , for oxidative addition of MeI to $[Rh(CO)_2I_2]^-$ with polymeric and monomeric counterions in CH_2Cl_2 or neat MeI.

Temp °C	[MeI] M	Cross- linking %	4-VP content mmol g ⁻¹	Film thickness µm	R	$\frac{10^4 k_{\rm obs}}{\rm s^{-1}}$				
						Polym ⁺	Bu_4N^+	PyMe ⁺	EtPyMe ⁺	BzPyMe ⁺
25	2.0	22	1	96	Me	0.4	0.6			
25	4.0	22	1	96	Me	0.9	1.1			
25	8.0	22	1	96	Me	1.7	1.9			
10	16	22	1	96	Me	1.1	1.3	2.5	2.8	2.2
15	16	22	1	96	Me	1.7	2.0	3.1	3.5	2.9
20	16	22	1	96	Me	2.5	2.8	4.7	5.5	5.2
25	16	22	1	96	Me	4.0	4.4	7.1	9.2	7.9
30	16	22	1	96	Me	5.3	5.8	11.0	11.6	9.6
35	16	22	1	96	Me	11.4	9.6	17.0	19.1	16.4
40	16						12.9	28.0	23.6	22.0
25	16	22	1	59	Me	4.8				
25	16	22	0.5	51	Me	4.4				
25	16	22	1.3	51	Me	4.3				
25	16	22	8.7	43	Me	3.6				
25	16	11	2	96	Me	4.9				
25	16	11	2	96	^{<i>n</i>} Pr	4.8				
25	16	11	2	96	^t Bu	5.1				

Temp °C	[MeI] M	Cross- linking %	4-VP content mmol g ⁻¹	Film thickness µm	R	$\frac{10^4 k_{\rm obs}}{\rm s^{-1}}$	
					-	Polymer ⁺	Ph_4As^+
25	0.08	22	1	96	Me	0.7	2.4
25	0.16	22	1	96	Me	1.7	5.0
25	0.24	22	1	96	Me	2.2	7.5
5	0.32						1.9
15	0.32	22	1	96	Me	0.5	4.7
20	0.32	22	1	96	Me	1.2	
25	0.32	22	1	96	Me	3.1	10.3, 9.9
30	0.32	22	1	96	Me	3.8	
35	0.32	22	1	96	Me	3.8	20.5
25	0.32	22	1	96	^{<i>n</i>} Pr	2.9	

Table S2. Observed pseudo first order rate constants, k_{obs} , for oxidative addition of MeI to $[Ir(CO)_2I_2]^{-}$ with polymeric and monomeric counterions in CH_2Cl_2 .

Figure S1. ORTEP plot for $[C_5H_5NMe][Rh(CO)_2I_2]$ **1**. Thermal ellipsoids are shown at the 50% probability level.

Figure S2. ORTEP plot for $[4-\text{Et-C}_5\text{H}_4\text{NMe}][\text{Rh}(\text{CO})_2\text{I}_2]$ **2**. Thermal ellipsoids are shown at the 50% probability level.