Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2002 data_global _journal_coden_Cambridge 186 _publ_requested_journal 'Dalton Trans.' loop_ _publ_author_name _publ_author_address 'P. Kamalakannan' ; Department of Chemistry Regional Engineering College Tiruchirappalli - 620 015 Tamil Nadu, India ; 'D. Venkappayya' ; Department of Chemistry Regional Engineering College Tiruchirappalli - 620 015 Tamil Nadu, India ; 'T. Balasubramanian' ; Department of Physics Regional Engineering College Tiruchirappalli - 620 015 Tamil Nadu, India ; _publ_contact_author_name 'Dr Venkappayya Devashya' _publ_contact_author_address ; Dr Venkappayya Devashya Chemistry Regional Engineering College Department of Chemistry Regional Engineering College Tiruchirappalli India / TamilNadu 620015 INDIA ; _publ_contact_author_email 'DVENKA@RECT.ERNET.IN' _publ_section_title ; Synthesis, Crystal Structure and Semi-Empirical Quantum Mechanical Calculation of a New Antimetabolite 5-Morpholinomethyl-2-Thiouracil - Spectral Properties, Thermal Profiles, Antibacterial, Antifungal and antitumor studies of Some of its Metal Chelates ; _publ_section_references ; 1. Delft Instruments (1990) MolEn structure determination system. (Delft Instruments, X-ray diffraction, Roentgenweg, B. V., 1, 2624, BD Delft, The Netherlands). 2. Stout, G.H. and Jenson, L.H. (1989) X-ray Structure Determination, A Practical Guide. John Wiley & Sons, New York. 3. Sheldrick,G.M., SHELXS 97, Programme for automatic structure solution and for refinement of crystal structure of crystal structure, Univ. of Gottingen, Germany, 1997. 4. Nardelli M P (1983) Computer and Chemistry 7 : 95-98. 5. Nardelli M P (1995) J Appl Cryst 28 : 659. 6. Speck A L (1999) PLATON, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan, The Netherlands, USA. 7. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA. 8. Kojic-Prodic B, Ruzic-Toros Z, Coffou E (1976) Acta Cryst B32 : 1099-1102. 9. Rohrer D C, Sundaralingam M (1970) Acta Cryst B26 : 546-553. 10. Shefter E, Mautner G, (1967) J Am Chem Soc 89 : 1249-1253. 11. Stewart R F, Jensen L H (1967) Acta Cryst 23 : 1102-1105 12. Swaminathan S, Chacko K K (1978) Acta Cryst B34 : 3108-3110. 13. Bartell L S (1959) J Am Chem Soc 81 : 3497-3498. 14. Banerjee A, Dattagupta J K, Saenger W, Rabczenko A (1977) Acta Cryst B33 : 90-94. 15. Lin G H Y, Sundaralingam M, Arora S K (1971) J Am Chem Soc 93 : 1235-1241. 16. Singh C (1965) Acta Cryst 19 : 861-864. 17. Voet D, Rich A (1970) Prog Nucleic Acid Res Mol Biol 10 : 183-265. 18. Bugg C E, Thomas J M, Sundaralingam M, Rao S T (1971) Biopolymers 10 : 175-219. 19. Pauling L (1960) The nature of the chemical bond. Cornell Univ. Press, Ithaca. ; data_MMTU _database_code_CSD 172362 #------------------------------------------------------------------------------ _computing_data_collection 'molen' _computing_cell_refinement 'molen' _computing_data_reduction 'molen' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'wingx, platon' _computing_publication_material 'Chem Comm. - Dalton Trans.' #------------------------------------------------------------------------------ _chemical_compound_source ? _chemical_name_common 'ThiouracilDerivatives' _chemical_name_systematic '5-morpholinomethyl-2-thiouracil.HCl' _chemical_formula_weight 279.74 _chemical_formula_sum 'C9 H14 Cl N3 O3 S' _chemical_formula_moiety 'C9 H14 Cl N3 O3 S' _chemical_formula_structural ? _chemical_melting_point 493 #------------------------------------------------------------------------------ _cell_length_a 9.1416(14) _cell_length_b 13.412(2) _cell_length_c 10.6570(12) _cell_angle_alpha 90.00 _cell_angle_beta 106.647(14) _cell_angle_gamma 90.00 _cell_volume 1251.9(3) _cell_formula_units_Z 4 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 25 _cell_measurement_theta_min 2.33 _cell_measurement_theta_max 24.99 #------------------------------------------------------------------------------ _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M p21 _symmetry_Int_Tables_number ? _symmetry_space_group_name_Hall P2yb loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z' _exptl_crystal_description 'Prisms' _exptl_crystal_colour 'colourless' _exptl_crystal_size_max 0.32 _exptl_crystal_size_mid 0.27 _exptl_crystal_size_min 0.24 _exptl_crystal_density_diffrn 1.484 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 584 _exptl_absorpt_coefficient_mu 0.472 _exptl_absorpt_correction_type ? _exptl_special_details ; Preparation: The compound was solvated in 1:1 acetic acid : water (v/v) and a few drops of hydrochloric acid, the homogeneous solution was allowed to evaporate slowly. After a week’s time the colourless crystalline solid separated out which was washed with minimum amount of ethanol and acetone to wipe out the solvent if any, and dried in a vacuum oven. ; #------------------------------------------------------------------------------ _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71070 _diffrn_radiation_type 'Mo K\a' _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'ENRAF NONIUS CAD4' _diffrn_measurement_method \q/2\q _diffrn_detector_area_resol_mean ? _diffrn_standards_number 3 _diffrn_standards_interval_count ? _diffrn_standards_interval_time 60 _diffrn_standards_decay_% 0 _reflns_number_total 2305 _reflns_number_gt 2083 _reflns_threshold_expression >2sigma(I) _diffrn_reflns_av_R_equivalents 0.0161 _diffrn_reflns_av_sigmaI/netI 0.0143 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 2.33 _diffrn_reflns_theta_max 24.99 #------------------------------------------------------------------------------ loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' #------------------------------------------------------------------------ loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C2 C 0.3354(6) 0.1190(6) 0.9087(5) 0.0222(15) Uani 1 1 d . . . C2' C 1.1657(7) -0.0601(6) 1.5951(6) 0.0265(16) Uani 1 1 d . . . C4 C 0.1302(7) -0.0060(6) 0.8924(6) 0.0264(16) Uani 1 1 d . . . C4' C 1.3624(6) 0.0675(6) 1.6088(5) 0.0220(15) Uani 1 1 d . . . C5 C 0.2541(7) -0.0762(6) 0.9647(6) 0.0246(16) Uani 1 1 d . . . C5' C 1.2490(7) 0.1348(6) 1.5431(6) 0.0232(15) Uani 1 1 d . . . C6 C 0.3986(7) -0.0435(6) 1.0010(6) 0.0276(17) Uani 1 1 d . . . H6 H 0.4751 -0.0871 1.0453 0.033 Uiso 1 1 calc R . . C6' C 1.1022(7) 0.1020(6) 1.5058(7) 0.0293(17) Uani 1 1 d . . . H6' H 1.0259 0.1459 1.4620 0.035 Uiso 1 1 calc R . . C9 C 0.2123(7) -0.1823(6) 0.9872(6) 0.0246(15) Uani 1 1 d . . . H9A H 0.2938 -0.2265 0.9805 0.030 Uiso 1 1 calc R . . H9B H 0.1205 -0.2010 0.9195 0.030 Uiso 1 1 calc R . . C9' C 1.2840(8) 0.2388(7) 1.5165(7) 0.0300(17) Uani 1 1 d . . . H9C H 1.3747 0.2602 1.5835 0.036 Uiso 1 1 calc R . . H9D H 1.2002 0.2813 1.5219 0.036 Uiso 1 1 calc R . . C11 C 0.2068(8) -0.3014(6) 1.1661(7) 0.0279(16) Uani 1 1 d . . . H11A H 0.1368 -0.3439 1.1029 0.033 Uiso 1 1 calc R . . H11B H 0.3101 -0.3227 1.1723 0.033 Uiso 1 1 calc R . . C11' C 1.4703(8) 0.2167(6) 1.3811(7) 0.033(2) Uani 1 1 d . . . H11C H 1.5484 0.2523 1.4467 0.040 Uiso 1 1 calc R . . H11D H 1.4817 0.1460 1.4003 0.040 Uiso 1 1 calc R . . C12 C 0.1791(7) -0.3117(7) 1.2933(6) 0.0324(17) Uani 1 1 d . . . H12A H 0.1948 -0.3806 1.3216 0.039 Uiso 1 1 calc R . . H12B H 0.2517 -0.2710 1.3570 0.039 Uiso 1 1 calc R . . C12' C 1.4865(8) 0.2371(7) 1.2462(8) 0.0355(19) Uani 1 1 d . . . H12C H 1.5861 0.2144 1.2430 0.043 Uiso 1 1 calc R . . H12D H 1.4100 0.1991 1.1822 0.043 Uiso 1 1 calc R . . C14 C 0.0086(9) -0.1753(6) 1.2537(7) 0.0309(16) Uani 1 1 d . . . H14A H 0.0816 -0.1356 1.3184 0.037 Uiso 1 1 calc R . . H14B H -0.0935 -0.1540 1.2516 0.037 Uiso 1 1 calc R . . C14' C 1.3173(7) 0.3719(8) 1.2056(6) 0.0358(19) Uani 1 1 d . . . H14C H 1.2428 0.3340 1.1397 0.043 Uiso 1 1 calc R . . H14D H 1.3076 0.4415 1.1798 0.043 Uiso 1 1 calc R . . C15 C 0.0333(7) -0.1617(6) 1.1205(6) 0.0268(17) Uani 1 1 d . . . H15A H -0.0433 -0.1993 1.0560 0.032 Uiso 1 1 calc R . . H15B H 0.0214 -0.0919 1.0962 0.032 Uiso 1 1 calc R . . C15' C 1.2853(8) 0.3599(6) 1.3401(7) 0.0287(17) Uani 1 1 d . . . H15C H 1.3533 0.4026 1.4045 0.034 Uiso 1 1 calc R . . H15D H 1.1810 0.3794 1.3328 0.034 Uiso 1 1 calc R . . N1' N 1.0621(6) 0.0080(5) 1.5296(6) 0.0296(15) Uani 1 1 d . . . H1' H 0.9676 -0.0090 1.5022 0.035 Uiso 1 1 calc R . . N1 N 0.4388(6) 0.0510(5) 0.9759(6) 0.0298(15) Uani 1 1 d . . . H1 H 0.5333 0.0681 1.0037 0.036 Uiso 1 1 calc R . . N3' N 1.3098(6) -0.0264(4) 1.6356(5) 0.0221(13) Uani 1 1 d . . . H3' H 1.3769 -0.0664 1.6828 0.026 Uiso 1 1 calc R . . N3 N 0.1868(6) 0.0857(5) 0.8675(6) 0.0268(14) Uani 1 1 d . . . H3 H 0.1211 0.1267 0.8207 0.032 Uiso 1 1 calc R . . N10' N 1.3100(6) 0.2522(4) 1.3830(5) 0.0222(13) Uani 1 1 d D . . N10 N 0.1858(6) -0.1955(4) 1.1201(5) 0.0242(13) Uani 1 1 d D . . O1 O 1.1190(5) 0.1155(4) 1.1811(4) 0.0262(10) Uani 1 1 d . . . O2 O 1.7276(6) -0.0016(5) 1.3831(5) 0.0441(15) Uani 1 1 d . . . O8 O -0.0025(5) -0.0247(5) 0.8534(5) 0.0347(14) Uani 1 1 d . . . O8' O 1.5026(5) 0.0832(4) 1.6454(5) 0.0353(13) Uani 1 1 d . . . O13 O 0.0290(5) -0.2824(4) 1.2886(4) 0.0290(12) Uani 1 1 d . . . O13' O 1.4705(5) 0.3368(5) 1.2129(5) 0.0331(13) Uani 1 1 d . . . S7' S 1.1193(2) -0.17606(17) 1.62426(18) 0.0364(5) Uani 1 1 d . . . S7 S 0.3820(2) 0.23383(16) 0.87733(19) 0.0356(5) Uani 1 1 d . . . Cl1 Cl 0.7886(3) 0.0598(3) 1.1248(3) 0.0703(8) Uani 1 1 d . . . Cl2 Cl 1.3912(3) -0.0581(3) 1.3298(2) 0.0669(8) Uani 1 1 d . . . H10' H 1.251(8) 0.222(6) 1.311(5) 0.05(3) Uiso 1 1 d D . . H10 H 0.250(5) -0.149(3) 1.167(5) 0.007(14) Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C2 0.019(3) 0.029(4) 0.020(3) -0.003(3) 0.007(2) -0.002(3) C2' 0.030(3) 0.020(4) 0.027(3) -0.002(3) 0.004(3) 0.001(3) C4 0.030(4) 0.017(4) 0.032(4) 0.002(3) 0.009(3) 0.006(3) C4' 0.018(3) 0.030(4) 0.018(3) -0.006(3) 0.006(2) -0.008(3) C5 0.026(3) 0.024(4) 0.023(3) 0.000(3) 0.006(2) 0.003(3) C5' 0.022(3) 0.020(4) 0.029(3) 0.000(3) 0.010(3) 0.001(3) C6 0.020(3) 0.030(5) 0.032(3) 0.004(3) 0.006(3) 0.012(3) C6' 0.029(3) 0.027(4) 0.032(3) 0.007(3) 0.009(3) -0.001(3) C9 0.031(3) 0.020(4) 0.026(3) 0.004(3) 0.012(3) 0.005(3) C9' 0.030(3) 0.026(4) 0.034(4) -0.003(3) 0.010(3) -0.004(3) C11 0.024(3) 0.023(4) 0.034(4) 0.006(3) 0.003(3) 0.007(3) C11' 0.032(4) 0.029(5) 0.034(4) -0.001(4) 0.002(3) 0.007(4) C12 0.026(3) 0.026(4) 0.041(4) 0.013(4) 0.002(3) 0.003(3) C12' 0.029(3) 0.037(5) 0.046(4) -0.009(4) 0.020(3) 0.002(4) C14 0.039(4) 0.021(4) 0.033(4) -0.004(4) 0.010(3) -0.004(4) C14' 0.029(4) 0.046(5) 0.029(3) 0.006(4) 0.004(3) -0.007(4) C15 0.024(3) 0.021(4) 0.038(4) 0.003(3) 0.013(3) 0.004(3) C15' 0.028(3) 0.024(4) 0.036(4) 0.006(3) 0.012(3) 0.000(3) N1' 0.016(2) 0.032(4) 0.039(3) -0.003(3) 0.004(2) 0.005(3) N1 0.020(2) 0.027(4) 0.040(3) 0.009(3) 0.004(2) -0.006(3) N3' 0.017(2) 0.020(3) 0.027(3) 0.002(3) 0.002(2) 0.003(2) N3 0.020(3) 0.024(4) 0.032(3) 0.003(3) 0.001(2) -0.001(3) N10' 0.017(2) 0.018(3) 0.031(3) 0.003(3) 0.006(2) -0.001(2) N10 0.025(3) 0.021(3) 0.024(3) -0.002(3) 0.002(2) -0.003(3) O1 0.037(2) 0.014(2) 0.038(2) -0.010(2) 0.029(2) -0.013(2) O2 0.049(3) 0.054(4) 0.039(3) 0.018(3) 0.028(2) -0.009(3) O8 0.018(2) 0.042(4) 0.040(3) 0.002(3) 0.0015(19) -0.006(2) O8' 0.020(2) 0.024(3) 0.055(3) 0.004(3) 0.000(2) -0.001(2) O13 0.029(2) 0.026(3) 0.032(2) -0.002(2) 0.0084(19) -0.005(2) O13' 0.027(2) 0.038(4) 0.035(2) 0.003(3) 0.010(2) -0.006(3) S7' 0.0372(10) 0.0242(11) 0.0444(10) 0.0020(9) 0.0062(8) -0.0098(9) S7 0.0305(9) 0.0257(11) 0.0487(11) 0.0013(9) 0.0082(8) -0.0052(8) Cl1 0.0601(14) 0.0713(19) 0.0777(17) 0.0190(16) 0.0169(12) 0.0070(15) Cl2 0.0666(14) 0.065(2) 0.0635(14) -0.0162(15) 0.0100(11) -0.0146(15) #------------------------------------------------------------------------- _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.1024P)^2^+1.6837P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.12(12) _refine_ls_number_reflns 2305 _refine_ls_number_parameters 315 _refine_ls_number_restraints 3 _refine_ls_R_factor_all 0.0571 _refine_ls_R_factor_gt 0.0518 _refine_ls_wR_factor_ref 0.1694 _refine_ls_wR_factor_gt 0.1622 _refine_ls_goodness_of_fit_ref 1.104 _refine_ls_restrained_S_all 1.104 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.001 _refine_diff_density_max 0.650 _refine_diff_density_min -0.500 _refine_diff_density_rms 0.083 #------------------------------------------------------------------------------ _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C2 N1 1.361(9) . Yes C2 N3 1.377(8) . Yes C2 S7 1.657(8) . Yes C2' N3' 1.341(8) . Yes C2' N1' 1.357(9) . Yes C2' S7' 1.665(8) . Yes C4 O8 1.191(8) . Yes C4 N3 1.389(10) . Yes C4 C5 1.504(10) . No C4' O8' 1.246(7) . Yes C4' C5' 1.401(10) . No C4' N3' 1.407(10) . Yes C5 C6 1.339(9) . No C5 C9 1.511(11) . No C5' C6' 1.359(9) . No C5' C9' 1.477(11) . No C6 N1 1.367(11) . Yes C6' N1' 1.357(10) . Yes C9 N10 1.515(8) . Yes C9' N10' 1.518(9) . Yes C11 C12 1.456(10) . No C11 N10 1.496(10) . Yes C11' C12' 1.512(10) . No C11' N10' 1.546(8) . Yes C12 O13 1.415(8) . Yes C12' O13' 1.380(10) . Yes C14 O13 1.482(9) . Yes C14 C15 1.511(9) . No C14' O13' 1.458(8) . Yes C14' C15' 1.551(10) . No C15 N10 1.467(8) . Yes C15' N10' 1.513(10) . Yes loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 C2 N3 115.0(7) . . Yes N1 C2 S7 123.3(5) . . Yes N3 C2 S7 121.6(5) . . Yes N3' C2' N1' 114.5(7) . . Yes N3' C2' S7' 122.3(5) . . Yes N1' C2' S7' 123.2(5) . . Yes O8 C4 N3 121.2(7) . . Yes O8 C4 C5 126.1(7) . . Yes N3 C4 C5 112.6(6) . . Yes O8' C4' C5' 126.5(7) . . Yes O8' C4' N3' 118.0(7) . . Yes C5' C4' N3' 115.5(5) . . Yes C6 C5 C4 118.6(7) . . No C6 C5 C9 122.4(6) . . No C4 C5 C9 118.9(6) . . No C6' C5' C4' 117.7(7) . . No C6' C5' C9' 120.0(7) . . No C4' C5' C9' 122.3(6) . . No C5 C6 N1 123.0(6) . . Yes N1' C6' C5' 122.9(7) . . Yes C5 C9 N10 111.9(6) . . Yes C5' C9' N10' 113.1(6) . . Yes C12 C11 N10 110.8(7) . . Yes C12' C11' N10' 108.0(6) . . Yes O13 C12 C11 111.5(5) . . Yes O13' C12' C11' 112.8(7) . . Yes O13 C14 C15 108.1(6) . . Yes O13' C14' C15' 110.5(5) . . Yes N10 C15 C14 111.3(5) . . Yes N10' C15' C14' 109.1(7) . . Yes C6' N1' C2' 122.4(6) . . Yes C2 N1 C6 122.7(5) . . Yes C2' N3' C4' 126.7(6) . . Yes C2 N3 C4 127.9(6) . . Yes C15' N10' C9' 110.3(6) . . Yes C15' N10' C11' 110.5(6) . . Yes C9' N10' C11' 112.3(5) . . Yes C15 N10 C11 109.0(5) . . Yes C15 N10 C9 111.9(5) . . Yes C11 N10 C9 112.1(6) . . Yes C12 O13 C14 109.2(6) . . Yes C12' O13' C14' 110.8(6) . . Yes loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag O8 C4 C5 C6 179.4(7) . . . . No N3 C4 C5 C6 2.7(9) . . . . No O8 C4 C5 C9 2.7(10) . . . . No N3 C4 C5 C9 -174.0(6) . . . . No O8' C4' C5' C6' 176.9(7) . . . . No N3' C4' C5' C6' -3.4(9) . . . . No O8' C4' C5' C9' -4.3(11) . . . . No N3' C4' C5' C9' 175.4(6) . . . . No C4 C5 C6 N1 0.3(10) . . . . No C9 C5 C6 N1 176.9(6) . . . . No C4' C5' C6' N1' 0.1(11) . . . . No C9' C5' C6' N1' -178.7(6) . . . . No C6 C5 C9 N10 88.3(7) . . . . No C4 C5 C9 N10 -95.1(7) . . . . No C6' C5' C9' N10' -88.2(8) . . . . No C4' C5' C9' N10' 93.1(8) . . . . No N10 C11 C12 O13 59.8(8) . . . . No N10' C11' C12' O13' 59.5(8) . . . . No O13 C14 C15 N10 -58.5(8) . . . . No O13' C14' C15' N10' -55.9(8) . . . . No C5' C6' N1' C2' 1.3(11) . . . . No N3' C2' N1' C6' 0.9(10) . . . . No S7' C2' N1' C6' -179.4(5) . . . . No N3 C2 N1 C6 0.0(9) . . . . No S7 C2 N1 C6 -180.0(5) . . . . No C5 C6 N1 C2 -1.8(11) . . . . No N1' C2' N3' C4' -4.8(9) . . . . No S7' C2' N3' C4' 175.5(5) . . . . No O8' C4' N3' C2' -174.1(6) . . . . No C5' C4' N3' C2' 6.1(10) . . . . No N1 C2 N3 C4 3.7(10) . . . . No S7 C2 N3 C4 -176.3(6) . . . . No O8 C4 N3 C2 178.1(7) . . . . No C5 C4 N3 C2 -5.0(10) . . . . No C14' C15' N10' C9' 178.3(5) . . . . No C14' C15' N10' C11' 53.6(7) . . . . No C5' C9' N10' C15' 158.4(6) . . . . No C5' C9' N10' C11' -77.9(7) . . . . No C12' C11' N10' C15' -54.2(8) . . . . No C12' C11' N10' C9' -177.7(7) . . . . No C14 C15 N10 C11 55.4(7) . . . . No C14 C15 N10 C9 180.0(6) . . . . No C12 C11 N10 C15 -55.0(7) . . . . No C12 C11 N10 C9 -179.4(5) . . . . No C5 C9 N10 C15 80.2(7) . . . . No C5 C9 N10 C11 -157.0(6) . . . . No C11 C12 O13 C14 -62.6(8) . . . . No C15 C14 O13 C12 60.6(7) . . . . No C11' C12' O13' C14' -63.6(8) . . . . No C15' C14' O13' C12' 60.7(9) . . . . No _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 24.99 _diffrn_measured_fraction_theta_full 0.998 #------------------------------------------------------------------------------ _exptl_special_details ; The compund was found to be an antimicrobial, antifungal and antitumour compound ; _refine_special_details ; The X-ray data of MMTU compound were collected on CAD-4 Enraf-Nonius diffractometer in the w-2q scan mode. The maximum and minimum transmission for the crystal are 95% and 85% respectively. Structure Solution and Refinement: The cell parameter and analysis of the data set indicate that, the compound belongs to monoclinic system. The cell parameters were refined by least square methods. The intensity data sets were subjected to Lorentz polarisation and absorption corrections using MolEN programme[1]. The systematic absences in the 0 k 0 series, k odd reflection found, revealed a 21 screw perpendicular to the b-axis. Accordingly the space group P21 was assigned to the compound. This structure was later confirmed by the successful structure solution and refinement. The structure was solved by Direct Methods[2] and full-matrix least square refinement on F2 was carried out using SHELX97 programme[3]. All the non-hydrogen atoms were located from the first electron density map itself, which led to a R-value(= S½Fo-Fc½ / S|Fo|) of 20.2 %. Eleven cycles of full matrix least squares adjustment of the coordinates and isotropic temperature factors (R = 11.5 %), a difference map indicated the location of all hydrogen atoms except water hydrogens. Anisotropic refinement was then carried out. All the coordinates and isotropic temperature factor were included in the final refinement. The refinement was completed at R = 0.0574 for all 2305 reflections with F0 > 4s(F0). The weighting scheme employed for the final cycle of refinement was w = 1 /[s^2 (F0^2) + (0.1072 x P)^2 + 1.52 x P] where P = [Max {F0^2,0} + 2 x Fc^2]/3. Results and Discussion: Using the PARST[4,5] programme the geometric calculation and least square plane calculation have been performed. The hydrogen bonding and stacking interactions were calculated using Platon[6]. The molecular structures were drawn using Ortep[7]. There are two pseudo-symmetric molecules with two water oxygens and chlorides in the asymmetric unit.Bond lengths of the present compound are compared with those of 5,6-dihydro-2 thiouracil[8], 5,6-dihydro uracil[9], 2,4-dithio uracil[10], uracil[11] and 6-amino-2-thiouracil monohydrate[12]. The C5-C6 distance of 1.339 (8) Å for molecule A and 1.359 (9) Å for molecule B is significantly shorter than the sp3 single bond value of 1.533Å[13]. It is difficult to form any general conclusions about the differences in molecular dimensions because of several factors: the conjugation of the lone electron pair on N1 with C2 = O, S7 or with C5=C6, electron delocalisation of different sorts, and hydrogen bonding. But a remarkable shortening of C4=O8 in saturated pyrimidines[12-15] was observed in the present dimeric structure. The C2=S7 distances are 1.657 (8) and 1.664 (8) Å for the molecules A and B respectively. The thiocarbonyl bond length abserved is shorter than the similar bonds in the thione form of thiopyrimidine[8,10,12]. The valence angles at N1 and N3 are larger than 120 deg and these N atoms have extra-annular H atoms in accordance with the observations cited elsewhere[16]. The least square plane calculation for the morpholine ring shows that N10 and O13 are displaced opposite side i.e., O13 and N10 are in endocyclic and exocyclic positions respectively in molecule 'A', whereas in molecule 'B' O13 and N10 are in exocyclic and endocyclic positions respectively.In both the molecules S7, O8 and C9 of thiouracil moiety significantly deviate from the mean plane of N1-C2-N3-C4-C5-C6. The thiouracil and morpholine rings are not in the same plane. The total puckering amplitude for thiouracil and morpholine was found to be 0.0375 and 0.5849 for molecule A and 0.0420 and 0.5818 for molecule B.The heterocyclic exists in the diketo form: C2-S7 and C2'-S7' are 1.657(7) Å and 1.664(7) Å respectively, and C4-O8 and C4'-O8' are 1.190 (8) and 1.247 (7) showing a double-bond character. Structural studies of nucleobases and nuclosides have been shown to have certain characteristic patterns exhibitted by pyrimidine analogs according to Voet et al.[17] and Bugg et al.[18].However, in this structure we have a different type of hydrogen pattern, mainly attributable to the morpholine ring substitution at C5. The molecules are connected by hydrogen bonds C11-H11B…O8'and C15'-H15A…O8 of 2.527 Å and 2.523 Å respectively forming random HB arrays. Two intermolecular contacts H6…S7 of 2.744 Å and H9A…S7 of 2.964 Å are seen which is lower than the H…S van der Waals distance of 3.05 Å[19]. The other two contacts of S7 with H11B and H14B are 3.102 Å and 3.005 Å respectively. The pyrimidine oxygen atom (O8) is involved in only C-H…O type of interaction. References 1.Delft Instruments (1990) MolEn structure determination system. (Delft Instruments, X-ray diffraction, Roentgenweg, B. V., 1, 2624, BD Delft, The Netherlands). 2.Stout, G.H. and Jenson, L.H. (1989) X-ray Structure Determination, A Practical Guide. John Wiley & Sons, New York. 3.Sheldrick,G.M., SHELXS 97, Programme for automatic structure solution and for refinement of crystal structure of crystal structure, Univ. of Gottingen, Germany, 1997. 4.Nardelli M P (1983) Computer and Chemistry 7 : 95-98. 5.Nardelli M P (1995) J Appl Cryst 28 : 659. 6.Speck A L (1999) PLATON, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan, The Netherlands, USA. 7.Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA. 8.Kojic-Prodic B, Ruzic-Toros Z, Coffou E (1976) Acta Cryst B32 : 1099-1102. 9.Rohrer D C, Sundaralingam M (1970) Acta Cryst B26 : 546-553. 10.Shefter E, Mautner G, (1967) J Am Chem Soc 89 : 1249-1253. 11.Stewart R F, Jensen L H (1967) Acta Cryst 23 : 1102-1105 12.Swaminathan S, Chacko K K (1978) Acta Cryst B34 : 3108-3110. 13.Bartell L S (1959) J Am Chem Soc 81 : 3497-3498. 14.Banerjee A, Dattagupta J K, Saenger W, Rabczenko A (1977) Acta Cryst B33 : 90-94. 15.Lin G H Y, Sundaralingam M, Arora S K (1971) J Am Chem Soc 93 : 1235-1241. 16.Singh C (1965) Acta Cryst 19 : 861-864. 17.Voet D, Rich A (1970) Prog Nucleic Acid Res Mol Biol 10 : 183-265. 18.Bugg C E, Thomas J M, Sundaralingam M, Rao S T (1971) Biopolymers 10 : 175-219. 19.Pauling L (1960) The nature of the chemical bond. Cornell Univ. Press, Ithaca. ; #==END