Electronic Supplementary Information

Title : Palladium(II) Allyl Complexes of Chiral Diphosphazane Ligands:

Ambident Coordination Behaviour and Stereodynamic Studies in Solution

Authors : Swadhin K.Mandal,^a G. A. Naganagowda,^b Setharampattu. S.

Krishnamurthy*,^a and Munirathinam Nethaji^a

^aDepartment of Inorganic and physical Chemistry, ^bSophisticated Instruments Facility,

Indian Institute of Science, Bangalore-560012, India.

*To whom correspondence to be addressed, Fax : +91-80-3600683, 3601552

e-mail: sskrish@ipc.iisc.ernet.in

Journal to which manuscript submitted : J. Chem. Soc. Dalton Trans.

Paper Ref: B207447H

NMR data for η^3 -allyl palladium complexes (4-13)

The ¹H and ¹³C NMR data for the allyl moiety are given in Table E S 1 and Table E S 2 respectively. The remaining NMR data are listed below under each complex.

Endo- (4a) ¹H NMR (400 MHz, CDCl₃): δ 7.70 – 6.93 (m, aryl protons); 6.28 (br.s, CH-N₂C₃HMe₂-3,5); 3.79 (m, CH-CHMe₂); 2.65 (s, 5-CH₃-N₂C₃HMe₂-3,5); 2.05 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.25 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂); 1.15 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 158.5 – 129.7 (aryl carbons); 110.4 (s, *CH*-N₂C₃HMe₂-3,5); 53.2 (dd, ²J(C,P) = 27.6 and 5.9 Hz, CH-CHMe₂); 26.1 (d, ³J(C,P) = 9.2 Hz, CH₃-CHMe₂); 24.9 (d, ³J(C,P) = 18.2 Hz, CH₃-CHMe₂); 16.2 (s, CH₃-N₂C₃HMe₂-3,5); 13.8 (s, CH₃-N₂C₃HMe₂-3,5).

Exo- (**4b**) ¹H NMR (400 MHz, CDCl₃): δ 6.34 (br.s, CH-N₂C₃HMe₂-3,5); 3.79 (merged with CH-CHMe₂ signal arising from isomer **4a**, CH-CHMe₂); 2.61 (s, 5-CH₃-N₂C₃HMe₂-3,5); 2.30 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.37 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂); 0.97 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 110.4 (merged with CH-N₂C₃HMe₂-3,5 signal arising from isomer **4a**, CH-N₂C₃HMe₂-3,5); 53.2 (merged with CH-CHMe₂ signal arising from isomer **4a**, CH-N₂C₃HMe₂-3,5); 53.2 (merged with CH-CHMe₂); 24.6 (d, ³J(C,P) = 16.2 Hz, CH₃-CHMe₂); 16.1 (s, *CH*₃-N₂C₃HMe₂-3,5); 13.9 (d, ³J(C,P) = 6.5, CH₃-N₂C₃HMe₂-3,5).

Endo- (**5a**) ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 6.65 (m, aryl protons); 6.24 (d, ⁴J(H,P) = 2.2 Hz, CH-N₂C₃HMe₂-3,5); 4.66 (m, CH-*CHMePh); 2.77 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.84 (d,

 ${}^{3}J(H,H) = 6.3$ Hz, CH₃-*CHMePh); 1.78 (s, 3-CH₃-N₂C₃HMe₂-3,5). ${}^{13}C$ NMR (100.6 MHz, CDCl₃): δ 158.4 – 127.2 (m, aryl carbons); 110.5 (s, *CH*-N₂C₃HMe₂-3,5); 61.1 (dd, ${}^{2}J(C,P) =$ 24.0 and 6.8 Hz, CH-*CHMePh); 25.1 (d, ${}^{3}J(C,P) =$ 21.6 Hz, CH₃-*CHMePh); 15.8 (s, *CH*₃-N₂C₃HMe₂-3,5); 14.0 (d, ${}^{3}J(C,P) =$ 18.1 Hz, *CH*₃-N₂C₃HMe₂-3,5).

Exo- (**5b**) ¹H NMR (400 MHz, CDCl₃): δ 6.31 (d, ⁴J(H,P) = 2.5 Hz, CH-N₂C₃HMe₂-3,5); 4.66 (merged with CH-*CHMePh signal arising from isomer **5a**, CH-*CHMePh); 2.73 (s, 5-CH₃-N₂C₃HMe₂-3,5); 2.03 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.69 (d, ³J(H,H) = 6.1 Hz, CH₃-*CHMePh). ¹³C NMR (100.6 MHz, CDCl₃): δ 110.6 (s, CH-N₂C₃HMe₂-3,5); 60.7 (dd, ²J(C,P) = 23.4 and 6.8 Hz, CH-*CHMePh); 25.0 (d, ³J(C,P) = 20.9 Hz, CH₃-*CHMePh); 15.8 (merged with CH₃-N₂C₃HMe₂-3,5 signal arising from isomer **5a**, CH₃-N₂C₃HMe₂-3,5); 14.0 (merged with CH₃-N₂C₃HMe₂-3,5 signal arising from isomer **5a**, CH₃-N₂C₃HMe₂-3,5).

Endo, syn/syn- (**6a**) ¹H NMR (400 MHz, CD₃COCD₃): δ 7.90 – 7.01 (m, aryl protons); 6.52 (br.d, CH-N₂C₃HMe₂-3,5); 3.89 (m, CH-CHMe₂); 2.90 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.89 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.58 (d, ³J(H,H) = 6.6 Hz, CH₃-CHMe₂); 0.96 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂). ¹³C NMR (100.6 MHz, 1:1 mixture of CDCl₃ and CH₂Cl₂): δ 158.5 – 129.7 (m, aryl carbons); 110.4 (s, CH-N₂C₃HMe₂-3,5); 64.9 (br.s, CH-CHMe₂); 25.6 – 13.1 (methyl carbon resonances).

Exo, *syn/syn-* (**6b**) ¹H NMR (400 MHz, CD₃COCD₃): δ 6.38 (br.d, CH-N₂C₃HMe₂-3,5); 3.89 (merged with CH-CHMe₂ signal arising from isomer **6a**, CH-CHMe₂); 2.71 (s, 5-CH₃-

 $N_2C_3HMe_2-3,5)$; 2.61 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.69 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂); 0.82 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂).

Exo, *anti/syn*- (6c) ¹H NMR (400 MHz, CD₃COCD₃): δ 6.53 (br.s, CH- N₂C₃HMe₂-3,5); 3.89 (merged with CH-CHMe₂ signal arising from isomer 6a, CH-CHMe₂); 2.92 (s, 5-CH₃-N₂C₃HMe₂-3,5); 2.61 (s, 3-CH₃- N₂C₃HMe₂-3,5); 1.80 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂); 0.63 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂).

Endo, anti/syn- (**6d**) ¹H NMR (400 MHz, CD₃COCD₃): δ 6.43 (br.s, CH-N₂C₃HMe₂-3,5); 3.89 (merged with CH-CHMe₂ signal arising from isomer **6a**, CH-CHMe₂); 2.68 (s, 5-CH₃-N₂C₃HMe₂-3,5); 2.53 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.42 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂); 1.05 (d, ³J(H,H) = 6.3 Hz, CH₃-CHMe₂).

Endo, *syn/syn-* (**7a**) ¹H NMR (500 MHz, CDCl₃): δ 7.70 – 6.60 (m, aryl protons); 6.20 (br.s, CH-N₂C₃HMe₂-3,5); 4.65 (m, CH-*CHMePh); 2.80 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.94 (d, ³J(H,H) = 6.8 Hz, CH₃-*CHMePh); 1.69 (s, 3-CH₃-N₂C₃HMe₂-3,5). ¹³C NMR (125.7 MHz, CDCl₃): δ 160.0 – 125.1 (aryl carbons); 110.4 (s, CH-N₂C₃HMe₂-3,5); 60.6 (dd, ²J(C,P) = 24.8 and 6.7 Hz, CH-*CHMePh); 25.4 (d, ³J(C,P) = 22.6 Hz, *CH₃*-*CHMePh); 18.5 (d, ³J(C,P) = 4.0 Hz, CH₃-allyl *trans* to the coordinated phosphorus centre); 17.9 (s, CH₃-allyl *cis* to the coordinated phosphorus centre); 17.9 (a, ³J(C,P) = 17.6 Hz, CH₃-N₂C₃HMe₂-3,5); 13.7 (d, ³J(C,P) = 17.6 Hz, CH₃-N₂C₃HMe₂-3,5).

Exo, *syn/syn-* (**7b**) ¹H NMR (500 MHz, CDCl₃): δ 6.31 (br.s, CH-N₂C₃HMe₂-3,5); 4.65 (merged with CH-*CHMePh signal arising from isomer **7a**, CH-*CHMePh); 2.67 (s, 5-CH₃-N₂C₃HMe₂-

3,5); 2.30 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.45 (merged with CH₃-*CHMePh signal arising from isomer **7a**, CH₃-*CHMePh). ¹³C NMR (125.7 MHz, CDCl₃): δ 110.7 (s, CH-N₂C₃HMe₂-3,5); 61.3 (dd, CH-*CHMePh); 25.3 (merged with CH₃-*CHMePh signal arising from isomer **7a**, CH₃-*CHMePh); 17.9 (br.s, CH₃-allyl *trans* to the coordinated phosphorus centre); 16.1 (s, CH₃- allyl *cis* to the coordinated phosphorus centre); 15.1 (s, *CH*₃-N₂C₃HMe₂-3,5).

Exo, anti/syn- (**7c**) ¹H NMR (500 MHz, CDCl₃): δ 6.31 (merged with CH-N₂C₃HMe₂-3,5 signal arising from isomer **7b**, CH-N₂C₃HMe₂-3,5); 4.65 (merged with CH-*CHMePh signal arising from isomer **7a**, CH-*CHMePh); 2.76 (s, 5-CH₃-N₂C₃HMe₂-3,5); 2.05 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.80 (d, ³J(H,H) = 6.9 Hz, CH₃-*CHMePh).

Endo, *anti/syn*- (7d) ¹H NMR (500 MHz, CDCl₃): δ 6.42 (br.s, CH-N₂C₃HMe₂-3,5); 4.65 (merged with CH-*CHMePh signal arising from isomer 7a, CH-*CHMePh); 2.67 (merged with 5-CH₃-N₂C₃HMe₂-3,5 signal arising from isomer 7b, 5-CH₃-N₂C₃HMe₂-3,5); 2.33 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.80 (merged with CH₃-*CHMePh signal arising from isomer 7c, CH₃-*CHMePh).

Endo, *syn/syn-* (**8a**) ¹H NMR (400 MHz, CDCl₃): δ 8.08 – 6.58 (m, aryl protons); 6.00 (d, ⁴J(H,P) = 1.7 Hz, CH-N₂C₃HMe₂-3,5); 3.55 (m, CH-CHMe₂); 2.61 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.28 (d, ³J(H,H) = 6.5 Hz, CH₃-CHMe₂); 0.99 (s, 3-CH₃-N₂C₃HMe₂-3,5); 0.92 (d, ³J(H,H) = 6.4 Hz, CH₃-CHMe₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 159.0 – 125.6 (aryl carbons); 110.0 (s, CH-N₂C₃HMe₂-3,5); 53.6 (dd, ²J(C,P) = 28.6 and 6.1 Hz, CH-CHMe₂); 25.9 (d, ³J(C,P) = 7.4 Hz,

CH₃-CHMe₂); 25.1 (d, ${}^{3}J(C,P) = 20.5$ Hz, CH₃-CHMe₂); 13.9 (s, CH₃-N₂C₃HMe₂-3,5); 13.7 (s, CH₃-N₂C₃HMe₂-3,5).

Endo, *syn/syn-* (**8b**) ¹H NMR (400 MHz, CDCl₃): δ 5.89 (br.s, CH-N₂C₃HMe₂-3,5); 3.99 (m, CH-CHMe₂); 2.32 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.22 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.00 (merged with 3-CH₃-N₂C₃HMe₂-3,5 signal arising from isomer **8a**, CH₃-CHMe₂); 0.12 (d, ³J(H,H) = 6.8 Hz, CH₃-CHMe₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 110.9 (s, CH-N₂C₃HMe₂-3,5); 56.7 (d, ²J(C,P) = 20.9 Hz, CH-CHMe₂); 23.3 (br.s, CH₃-CHMe₂); 14.5 (d, ³J(C,P) = 13.8 Hz, CH₃-N₂C₃HMe₂-3,5); 11.7 (d, ⁴J(C,P) = 6.9 Hz, CH₃-N₂C₃HMe₂-3,5).

Exo, *syn/syn-* (**8c**) ¹H NMR (400 MHz, CDCl₃): δ 6.10 (br.s, CH-N₂C₃HMe₂-3,5); 3.89 (m, CH-CHMe₂); 2.43 (s, 5-CH₃-N₂C₃HMe₂-3,5); 2.27 (s, 3-CH₃-N₂C₃HMe₂-3,5); 0.84 (d, ³J(H,H) = 6.7 Hz, CH₃-CHMe₂); 0.32 (d, ³J(H,H) = 6.6 Hz, CH₃-CHMe₂).

Endo, *syn/syn-* (**9**) ¹H NMR (400 MHz, CDCl₃): δ 7.68 – 6.46 (m, aryl protons); 6.01 (br.s, CH-N₂C₃HMe₂-3,5); 4.45 (m, CH-*CHMePh); 2.76 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.81 (d, ³J(H,H) = 6.8 Hz, CH₃-*CHMePh); 0.79 (s, 3-CH₃-N₂C₃HMe₂-3,5). ¹³C NMR (100.6 MHz, CDCl₃): δ 159.1 – 124.3 (aryl carbons); 110.8 (s, CH-N₂C₃HMe₂-3,5); 60.9 (dd, ²J(C,P) = 24.6 and 6.7 Hz, CH-*CHMePh); 25.4 (d, ³J(C,P) = 22.4 Hz, CH₃-*CHMePh); 14.1 (d, ³J(C,P) = 18.2 Hz, CH₃-N₂C₃HMe₂-3,5); 13.5 (s, CH₃-N₂C₃HMe₂-3,5).

Endo, syn/syn- (**10**) ¹H NMR (400 MHz, CDCl₃): δ 7.90 – 6.94 (m, aryl protons); 5.77 (d, ⁴J(H,P) = 2.2 Hz, CH-N₂C₃HMe₂-3,5); 4.46 (m, CH-*CHMePh); 1.91 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.22 (d, ³J(H,H) = 6.8 Hz, CH₃-*CHMePh); 0.65 (s, 3-CH₃-N₂C₃HMe₂-3,5). ¹³C NMR (100.6

MHz, CDCl₃): δ 158.5 – 127.5 (aryl carbons); 109.7 (br.s, CH-N₂C₃HMe₂-3,5); 60.4 (dd, ²J(C,P) = 28.2 and 6.0 Hz, CH-*CHMePh); 23.8 (d, ³J(C,P) = 10.0 Hz, CH₃-*CHMePh); 13.1 (s, CH₃-N₂C₃HMe₂-3,5); 12.4 (d, ³J(C,P) = 16.1 Hz, CH₃-N₂C₃HMe₂-3,5).

Endo (**11a**) ¹H NMR (400 MHz, CDCl₃): δ 7.99 – 7.24 (m, aryl protons); 6.15 (br.s, CH-N₂C₃HMe₂-3,5); 4.70 (m, CH-CHMe₂); 2.40 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.87 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.13 (d, ³J(H,H) = 6.7 Hz, CH₃-CHMe₂); 0.44 (d, ³J(H,H) = 6.9 Hz, CH₃-CHMe₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 157.7 – 126.9 (aryl carbons); 110.8 (s, CH-N₂C₃HMe₂-3,5); 57.6 (s, CH-CHMe₂), 23.3 (s, CH₃-CHMe₂), 23.1 (s, CH₃-CHMe₂); 13.8 (s, CH₃-N₂C₃HMe₂-3,5); 13.7 (s, CH₃- N₂C₃HMe₂-3,5).

Exo- (11b): ¹H NMR (400 MHz, CDCl₃): δ 6.15 (merged with CH-N₂C₃HMe₂-3,5 signal arising from isomer 11a, CH-N₂C₃HMe₂-3,5); 4.70 (merged with CH-CHMe₂ signal arising from isomer 11a, CH-CHMe₂); 2.40 (merged with 3-CH₃-N₂C₃HMe₂-3,5 signal arising from isomer 11a, 3-CH₃-N₂C₃HMe₂-3,5); 2.19 (br.s, 5-CH₃-N₂C₃HMe₂-3,5); 1.07 (br.d, CH₃-CHMe₂); 0.44 (merged with CH₃-CHMe₂ signal arising from isomer 11a, CH₃-CHMe₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 110.8 (merged with CH-N₂C₃HMe₂-3,5 signal arising from isomer 11a, CH-N₂C₃HMe₂-3,5); 57.6 (merged with CH-CHMe₂ signal arising from isomer 11a, CH₃-CHMe₂); 23.1 (s, CH₃-CHMe₂); 13.8 (merged with CH₃-N₂C₃HMe₂-3,5 signal arising from isomer 11a, CH₃-N₂C₃HMe₂-3,5 signal arising from isomer 11a, CH₃-N₂C₃HMe₂-3,5 signal arising from isomer 11a, CH₃-N₂C₃HMe₂-3,5).

Exo, syn/syn- (**12a**) ¹H NMR (500 MHz, CDCl₃): δ 8.11 – 7.05 (m, aryl protons), 6.21 (br.s, CH-N₂C₃HMe₂-3,5); 5 4.65 (m, CH-CHMe₂); 2.40 (s, 3-CH₃-N₂C₃HMe₂-3,5); 2.12 (s, 5-CH₃-N₂C₃HMe₂-3,5); 2.12 (s, 5-CH₃-N₂C₃HMe₃-3,5); 2.12 (s, 5-CH₃-N₂C₃HMe₃-3,5); 2.12 (s, 5-CH₃-N₂C₃HMe₃-3,5); 2.12 (s, 5-CH₃-N₃-N₃-3,5); 2.12 (s, 5-CH₃-N₃-3,5); 2.12 (s, 5-CH₃-N₃-3,5); 2.12 (s, 5-CH₃-3,5); 2.12 (s, 5-CH

 $N_2C_3HMe_2-3,5$); 1.12 (d, ³J(H,H) = 6.1 Hz, CH₃-CHMe₂); 0.45 (d, ³J(H,H) = 6.9 Hz, CH₃-CHMe₂). ¹³C NMR (125.7 MHz, CDCl₃): δ 156.1-129.3 (aryl carbons); 110.7 (br.s, CH- $N_2C_3HMe_2-3,5$); 57.8 (dd, ²J(C,P) = 20.1 and 4.0 Hz, CH-CHMe₂); 23.6 (s, CH₃-CHMe₂), 23.3 (s, CH₃-CHMe₂); 18.3 (d, ³J(C,P) = 13.3 Hz, CH₃-allyl *trans* to the coordinated phosphorus centre); 17.5 (s, CH₃-allyl *cis* to the coordinated phosphorus centre); 14.0 (s, CH₃-N₂C₃HMe₂-3,5).

Endo, syn/syn- (**12b**) ¹H NMR (500 MHz, CDCl₃): δ 6.19 (br.d, CH-N₂C₃HMe₂-3,5); 4.65 (merged with CH-CHMe₂ signal arising from isomer **12a**, CH-CHMe₂); 2.38 (s, 3-CH₃-N₂C₃HMe₂-3,5); 2.16 (s, 5-CH₃- N₂C₃HMe₂-3,5); 1.11 (d, ³J(H,H) = 6.1 Hz, CH₃-CHMe₂); 0.37 (d, ³J(H,H) = 6.9 Hz, CH₃-CHMe₂). ¹³C NMR (125.7 MHz, CDCl₃): δ 18.3 (d, ³J(C,P) = 13.8 Hz, CH₃-allyl *trans* to the coordinated phosphorus centre); 17.4 (s, CH₃-allyl *cis* to the coordinated phosphorus centre).

Endo, anti/syn- (12c) ¹H NMR (500 MHz, CDCl₃): δ 6.19 (merged with CH-N₂C₃HMe₂-3,5 signal arising from isomer 12b, CH-N₂C₃HMe₂-3,5); 4.65 (merged with CH-CHMe₂ signal arising from isomer 12a, CH-CHMe₂); 2.37 (s, 3-CH₃-N₂C₃HMe₂-3,5); 1.89 (s, 5-CH₃-N₂C₃HMe₂-3,5); 1.12 (merged with CH₃-CHMe₂ signal arising from isomer 12a, CH₃-CHMe₂); 0.51 (d, ³J(H,H) = 7.0 Hz, CH₃-CHMe₂).

Exo, syn/syn- (**13a**) ¹H NMR (400 MHz, CDCl₃): δ 6.16 (d, ⁴J(H,P) = 2.6 Hz, CH-N₂C₃HMe₂-3,5); 4.41 (m, CH-CHMe₂); 2.44 (s, 3-CH₃-N₂C₃HMe₂-3,5); 2.31 (s, 5-CH₃-N₂C₃HMe₂-3,5); 0.98 (d, ³J(H,H) = 6.8 Hz, CH₃-CHMe₂); 0.29 (d, ³J(H,H) = 6.6 Hz, CH₃-CHMe₂). ¹³C NMR

(100.6 MHz, 1:1 mixture of CDCl₃ and CH₂Cl₂): δ 110.9 (br.s, CH-N₂C₃HMe₂-3,5); 58.3 (br.d, CH-CHMe₂, ²J(C,P) = 20.1 and 4.0 Hz); 22.8 (s, CH₃-CHMe₂); 22.6 (s, CH₃-CHMe₂); 14.2 (s, CH₃-N₂C₃HMe₂-3,5); 13.5 (s, CH₃-N₂C₃HMe₂-3,5).

Endo, syn/syn- (**13b**) ¹H NMR (400 MHz, CDCl₃): δ 8.05 – 6.70 (m, aryl protons); 5.88 (d, ⁴J(H,P) = 2.8 Hz, CH-N₂C₃HMe₂-3,5); 4.41(merged with CH-CHMe₂ signal arising from isomer **13a**, CH-CHMe₂); 2.28 (s, 3-CH₃-N₂C₃HMe₂-3,5); 2.11 (s, 5-CH₃-N₂C₃HMe₂-3,5); 0.98 (merged with CH₃-CHMe₂ signal arising from isomer **13a**, CH₃-CHMe₂); 0.29 (merged with CH₃-CHMe₂ signal arising from isomer **13a**, CH₃-CHMe₂); 0.29 (merged with CH₃-CHMe₂ signal arising from isomer **13a**, CH₃-CHMe₂). ¹³C NMR (100.6 MHz, 1:1 mixture of CDCl₃ and CH₂Cl₂): δ 148.3 – 126.2 (aryl carbons); 110.1 (br.s, CH-N₂C₃HMe₂-3,5); 57.6 (br.d, CH-CHMe₂); 23.0 (s, CH₃-CHMe₂); 22.9 (s, CH₃-CHMe₂); 14.4 (s, CH₃-N₂C₃HMe₂-3,5); 13.6 (s, CH₃-N₂C₃HMe₂-3,5).

Complex	H _s	Ha	H _s '	H _a '	H _c	CH ₃ ^b	CH ₃ ^c
4 a	4.73 br t (7.3) ^d (7.3) ^e	2.16 dd (13.8) ^d (11.0) ^e	$3.25 \text{ br d} (6.5)^{d}$	1.63 ^f	5.58 m	_	-
4b	$\begin{array}{c} 4.30 \text{ br t} \\ (7.2)^{d} \\ (7.2)^{e} \end{array}$	3.55 dd (13.0) ^d (10.5) ^e	2.76 br	2.79 br	4.09 m	_	_
5a	4.60 ^f	2.07 dd (13.6) ^d (10.5) ^e	3.26d (6.5) ^d	1.59 ^f	5.48 m	_	_
5b	$\begin{array}{c} 4.15 \text{ br t} \\ (7.1)^{d} \\ (7.1)^{e} \end{array}$	3.41dd (13.3) ^d (10.8) ^e	2.99d (6.7) ^d	2.68 d $(12.4)^{d}$	4.06 m	_	_
6a	-	2.95 m	-	2.7 m	5.57 dd (12.7) ^d (10.8) ^d	1.55 dd (11.2) ^e (6.4) ^d	0.94 dd (10.2) ^e (6.5) ^d
6b	_	4.83 m	_	3.45 m	3.89 t (11.1) ^d	1.51 dd (11.1) ^e (6.4) ^d	0.20 dd (8.3) ^e (6.3) ^d
6с	_	5.02 m	3.79 m	-	4.18 ^f	1.50 ^f	$(7.3)^{d}$ $(7.3)^{e}$
6d	_	(–) ^g	3.55	_	5.60 m	(–) ^g	-0.34 t (7.3) ^d (7.3) ^e
7a	-	2.65 m	-	2.50 m	5.22 dd (12.7) ^d (10.7) ^d	1.45 ^f	0.85 dd (10.3) ^e (6.3) ^d
7b	-	4.43	_	3.25 m	3.86 t (11.5) ^d	1.46 dd (10.5) ^e (6.5) ^d	0.29 dd (8.3) ^e (6.3) ^d

Table E. S .1 : Selected ¹H NMR data^a for complexes **4** -13

7c	_	4.70 m	3.74 m	_	3.93 dd $(13.5)^d$ $(8.0)^d$	1.45 ^f	0.73 t (7.1) ^d (7.1) ^e
7d	_	3.80 m	3.30 m	_	5.33 dd (12.2) ^d (7.8) ^d	1.74 dd (11.0) ^e (6.3) ^d	-0.39 t (7.2) ^d (7.2) ^e
8a	_	$\begin{array}{c} 4.28 \text{ t} \\ (13.5)^{\text{d}} \\ (13.5)^{\text{e}} \end{array}$	_	3.46 d (10.8) ^d	$6.29 ext{ dd} (13.5)^{d} (10.8)^{d}$	_	-
8b	_	6.11 ^f	_	5.57 dt (13.3) ^d (13.3) ^e (5.1) ^e	6.48 t (13.3) ^d	_	_
8c	-	5.28 dt (9.2) ^d (9.2) ^e (5.4) ^e	_	5.38 dt (12.9) ^d (13.0) ^e (5.3) ^e	$6.79 \text{ dd} (12.9)^{d} (9.2)^{d}$	-	_
9	_	4.16 t $(12.8)^{d}$ $(12.8)^{e}$	_	3.33 d (9.6) ^d	6.26 dd (13.4) ^d (10.8) ^d	_	_
10	_	4.19 t $(12.0)^{d}$ $(12.0)^{e}$	_	3.56 d (10.8) ^d	6.30 dd (12.0) ^d (10.8) ^d	_	_
11 a	4.78 t (6.2) ^{d,e}	(12.0) 3.57 t $(12.7)^{d,e}$	4.23 d (6.6) ^d	2.56 d $(12.9)^d$	(10.8) 5.50 m	_	_
11b	4.88 br s	3.57^{f}	3.79 br s	3.15 br d	5.50 ^f	_	_
12a	_	4.36 m	_	3.84 m	5.29 t $(12.0)^{d}$	1.95 dd (12.1) ^e (6.2) ^d	$\begin{array}{c} 0.93 \text{ dd} \\ (9.8)^{\text{e}} \\ (6.5)^{\text{d}} \end{array}$
12b	_	4.41 m	_	3.49 m	5.39 t (12.0) ^d	1.90 dd (12.1) ^e (6.2) ^d	$1.30 \text{ dd} (10.2)^{\text{e}} (6.5)^{\text{d}}$
12c	_	4.75 m	4.75 ^f	_	5.22 dd	1.99 ^f	$(7.5)^{d,e}$

5		5		5			
1 3 a	_	5.80 t (12.4) ^{d,e}	-	4.97 t $(11.8)^{d,e}$	6.62 t (12.4) ^d	_	_
13b	_	5.65 t (12.4) ^{d,e}	-	5.12 t (12.4) ^{d,e}	6.45 t (12.4) ^d	_	_

Abbreviations: s, singlet; br, broad; br s, broad singlet; d, doublet; t, triplet; dd, doublet of doublets; dt, doublet of triplets; m, multiplet.

^a Solvent CDCl₃ for all the complexes except for complex **6** for which acetone-d₆ was used as solvent. Coupling constants in Hz are given in parenthesis. ^b Allyl CH₃ *trans* to the coordinated phosphorus centre. ^c CH₃-allyl *cis* to the coordinated phosphorus centre. ^d J(H,H). ^e J(P,H). ^f Overlapped with signals arising from other allyl or ligand protons. ^g The signal could not be assigned unequivocally.

Complex	$\delta(C_t)$	$\delta(C_t')$	$\delta(C_t)$ - $\delta(C_t')$	δC_c
4 a	80.3 d (31.7) ^b	59.1 d (3.2) ^c	21.2	119.9 d (6.3)
4 b	76.1 d (30.8) ^b	61.5 d (3.1) ^c	14.6	122.1 d (5.9)
5a	80.0 d (32.3) ^b	58.8 d (3.6) ^c	21.2	119.5 d (6.5)
5b	75.1 d (31.5) ^b	61.4 d (3.6) ^c	13.7	121.7 d (6.1)
6a	103.3 d (26.2) ^b	65.0 d (6.0) ^c	38.3	119.6 d (6.0)
6b	92.8 d (27.1) ^b	68.8 d (4.0) ^c	24.0	122.5 d (6.0)
7a	103.3 d (27.4) ^b	$66.0 d (5.3)^{c}$	37.3	120.0 d (5.9)
7b	92.4 d (26.8) ^b	69.9 d (5.2) ^c	22.5	122.0 d (5.8)
7c	90.5 d (26.2) ^b	$69.6 d (5.2)^{c}$	20.9	116.8 d (5.9)
8 a	102.1 d (25.5) ^b	72.2 d (6.2) ^c	29.9	110.1 d (6.1)
8b ^d	85.7 dd	95.0 dd	9.3	112.2 t (11.8)
8c ^d	(33.3) (10.6) 92.0 dd	(29.7) (11.2) 89.3 dd	2.7	113.8 t (11.0)
9	$(31.9)^{6}(10.4)^{c}$ 101.6 d (25.9) ^b	$(33.7)^{6}(9.7)^{c}$ 73.1 d (6.2) ^c	28.5	111.0 d (5.9)
10	101.6 d (24.1) ^b	72.1 d (7.0) ^c	29.5	110.6 d (5.0)
11 a	74.3 d (32.9) ^b	70.3 br s	4.0	120.2 d (7.0)
11b	76.6 d (30.8) ^b	70.3 ^e	6.3	121.2 br s
12a	92.4 d (30.5) ^b	84.0 d $(5.4)^{c}$	8.4	121.2 d (6.9)
12b	90.4 d (30.7) ^b	86.5 d (6.0) ^c	3.9	120.9 d (8.2)
13 a	93.7 d (28.4) ^b	86.9 d (6.9) ^c	6.8	108.1 d (6.9)
13b	91.1 d (27.8) ^b	89.7 d (6.0) ^c	1.4	108.5 d (7.0)

Table E. S .2: The ${}^{13}C$ NMR data^a for the allyl carbon nuclei of η^3 -allyl palladium complexes(**4-13**)

Abbreviations: d, doublet; dd, doublet of doublets; t, triplet; br s, broad singlet.

^a The ¹³C NMR spectra were recorded in CDCl₃ at 298 K except for **6** and **13** in which cases a 1:1 mixture of CDCl₃ and CH₂Cl₂ was used. The ¹³C–³¹P coupling constants are given in parenthesis. C_t is terminal allyl carbon *trans* to the coordinated phosphorus atom. C_t' is terminal allyl carbon *cis* to the coordinated phosphorus centre. C_c is central allyl carbon. ^b J(P,C)_{trans}. ^c J(P,C)_{cis}. ^d For the isomers **8b** and **8c**, C_t and C_t' are the terminal allyl carbon *trans* to –PPh₂ and *trans* to –PPh(N₂C₃HMe₂-3,5) groups respectively. ^e Overlapped with signal arising from the terminal allyl carbon resonance of major isomer, **11a**.

Stereodynamic Behaviour of Allyl Complexes 11-13 in Solution

The selective exchanges observed between the two diastereomers of **11** are summarised in Scheme E.S.1.

Scheme E. S. 1

The exchange cross-peaks in the phase sensitive ${}^{1}H - {}^{1}H$ NOESY spectrum are identified as negative phase cross-peaks (appear as dis-continuous cross-peaks) while the positive phase cross-peaks (appear as continuous cross-peaks) which usually arise because of proximal relationships of the interacting protons. There are various positive phase NOE cross-peaks between the two isomers **11a** and **11b**. This type of unusual positive NOE between the two diastereomers arises as a result of a fast dynamic process. The exchange observations are summarised in Scheme E.S. 2.

The ${}^{1}\text{H}-{}^{1}\text{H}$ NOESY spectrum of **12** (illustrated in Fig. E.S.1) shows positive NOE cross-peaks between the isomers **12a** and **12b** (see Scheme E.S.3) and the pattern of this interaction is similar to that observed for isomers **11a** and **11b** (shown in Scheme E.S. 2) indicating that similar mechanistic pathways operate in both the cases.

Scheme E.S.3

Fig. E.S.1 The 1 H- 1 H NOESY spectrum of complex **12** showing positive phase NOE crosspeaks between the isomers **12a** and **12b**.

