Supplementary Information

Coordination polymers based on octacyanometalates (IV,V) and aliphatic polyamine cooper(II) tectons with $[\rm N_3]$ donor atom sets

R. Podgajny, T. Korzeniak, K. Stadnicka, Y. Dromzée, N. W. Alcock, W. Errington, K. Kruczała, M. Bałanda, T. J. Kemp, M. Verdaguer and B. Sieklucka

Contents

- **Table S1.** The selected donor(D)-H)····H-acceptor(A) distances (Å) of possible hydrogen bonds in **3**
- Table S2. Selected Bond Lengths (Å) and Angles (deg) for $[Cu^{II}(tetrenH_2)]_2[W^{IV}(CN)_8]_2$ $\cdot 5H_2O~1$
- **Table S3.** Selected Bond Lengths (Å) and Angles (deg) for $[Cu^{II}(tetrenH_2)][Cu^{II}(tetrenH)]$ $[W^{V}(CN)_8][W^{IV}(CN)_8] \cdot 2.5H_2O$ **2**
- Table S4. Selected distances and angles for $[Cu(dien)]_2[W(CN)_8] \cdot 4H_2O 3$
- Table S5. Selected distances and angles for [Cu(dien)]₂[Mo(CN)₈]·4H₂O 4
- Table S6. The selected donor(D)-acceptor(A) distances (Å) of possible hydrogen bonds in 1
- **Fig. S1.** Electronic spectra of $[Cu^{II}(tetren)]^{2+}$ at different pH.
- Fig. S2. The dependence of the intensities of v(CN) stretching frequencies on the oxidation state of $[W(CN)_8]^{n}$.
- **Fig. S3.** $\chi vs.T$ of **2** and the best fit of Curie-Weiss law. Inset: $\chi \cdot T vs.T$.
- **Fig. S4.** The ESR spectra of $1.3H_2O$ and $2.10.5H_2O$ at 77 K.

D···A		D····A		
O1····N3 ^a	2.930	N6 ^a …O1	2.964	
O1…N2 ^a	2.868	N6 ^a ····N1	3.313	
O2…N2	3.125	N6 ^a ···O2	3.277	
O2…N1 ^a	3.055	N9A ^a …N1	3.105	
		N9B ^a ····N1	3.031	
		N12…O2	3.066	

Table S1. The selected donor(D)-H)····H-acceptor(A) distances (Å) of possible hydrogen bonds in **3**

^aAtoms obtained by symmetry equivalent operations imposed by P2₁2₁2 space group.

$[W(1)(CN)_8]^{4-}$ and	d [W(2)(CN) ₈] ⁴⁻						
W1-C11 W1-C12	2.16(1) 2.17(1)	C11–N11 C12–N12	1.13(1) 1.15(1)	W1-C11- W1-C12-	-N11 -N12	178.3(9) 176.6(8)	
W1-C13	2.161(9)	C13–N13	1.15(1)	W1-C13-	-N13	178.7(9)	
W1-C14a	2.172(9)	C14a–N14a	1.13(1)	W1-C14a	u–N14a	177.6(9)	
W1-C15	2.17(1)	C15-N15	1.10(2)	W1-C15-	-N15	178.4(18)	
W1-C16	2.15(1)	C16-N16	1.17(2)	W1C16-	-N16	177.7(10)	
W1-C17	2.19(1)	C17–N17	1.12(1)	W1-C17-	-N17	178.0(10)	
W1-C18	2.17(1)	C18–N18	1.14(1)	W1–C18-	-N18	178.1(10)	
W2-C21	2.167(9)	C21-N21	1.13(1)	W2-C21-	-N21	176.3(8)	
W2-C22	2.17(1)	C22–N22	1.14(2)	W2-C22-	-N22	179.6(12)	
W2-C23	2.17(1)	C23–N23	1.11(2)	W2-C23-	-N23	176.9(13)	
W2-C24	2.18(1)	C24–N24	1.12(2)	W2-C24-	-N24	178.8(11)	
W2-C25	2.15(1)	C25–N25	1.15(2)	W2-C25-	-N25	175.4(14)	
W2-C26	2.17(1)	C26–N26	1.13(1)	W2-C26-	-N26	179.1(9)	
W2-C27	2.19(1)	C2/-N2/	1.13(1)	W2-C27-	-N27	1/9.3(10)	
W2-C28	2.18(1)	C28-IN28	1.11(1)	W2-C28-	-IN20	178.4(12)	
$[Cu(1)(tetrenH_2)(s)]$	$NC)_2 J^{2+}$						
Cu1–N14	1.977(9)	Cu1-N14-C14	171.1(8)				
Cu1–N11	2.183(9)	Cu1-N11-C11	154.3(8)				
Cu1-N32	2.080(8)	N32-Cu1-N34	161.6(4)	N33-Cu1-N34	83.9(4)	N11-Cu1-N34	96.6(4)
Cu1-N33	1.998(8)	N33-Cu1-N14	159.5(4)	N34-Cu1-N14	95.2(4)	N11-Cu1-N14	101.8(4)
Cu1–N34	2.082(9)	N32-Cu1-N14	92.5(4)	N11-Cu1-N32	98.2(3)		
		N32-Cu1-N33	83.0(4)	N11-Cu1-N33	98.6(4)		
mer-[Cu(2)(tetren	$(MC)_{3}^{+}$						
Cu2-N21	1.960(8)	Cu2-N21-C21	175.8(9)				
Cu2-N12	2.266(9)	Cu2-N12-C12	146.5(8)				
Cu2–N28a	2.82	Cu2–N28a–C28a	148.6				
Cu2-N42	2.069(8)	N12-Cu2-N28a	176.5	N12-Cu2-N44	97.4(3)	N28a-Cu2-N44	82.7
Cu2-N43	2.016(9)	N21-Cu2-N43	176.0(4)	N21-Cu2-N42	94.1(4)	N28a-Cu2-N21	88.7
Cu2-N44	2.070(9)	N42-Cu2-N44	154.2(3)	N21-Cu2-N44	96.9(4)	N43-Cu2-N42	83.4(4)
		N12-Cu2-N42	104.8(3)	N28a-Cu2-N42	74.2	N43-Cu2-N44	84.1(4)
		N12-Cu2-N43	89.1(3)	N28a-Cu2-N43	87.5	N12-Cu2-N21	94.7(3)
Symmetry equival	lent operation: (a)	-x, -y, -z+2; the 1	numbers given v	without the esd value	s have been rea	d directly from ORTEP	

Table S2 Selected Bond Lengths (Å) and Angles (deg) for $[Cu^{II}(tetrenH_2)]_2[W^{IV}(CN)_8]_2$ ·5H₂O 1

<i>W</i> (1) and <i>W</i> (2)					
W1-C11	2.134(16)	C11-N11	1.17(2)	W1-C11-N11	176.9(14)
W1-C12	2.14(2)	C12-N12	1.10(3)	WI-CI2-NI2	1/8.8(19)
W1-C13	2.184(19)	C13-N13	1.11(2)	WI-CI3-NI3	1/6.0(1/)
W1-C14	2.11(2)	C14-N14	1.1/(3)	W1-C14-N14	178.1(19)
WI-CIS	2.14(2)	CIS-NIS	1.13(3)	WI-CIS-NIS	1//(2)
W1-C16	2.138(18)	C16-N16	1.14(3)	WI-CI6-NI6	177.3(18)
WI-CI/	2.194(19)	C1/-N1/	1.13(2)	WI-CI/-NI/	1/8.2(1/)
WI-C18	2.184(19)	C18-N18	1.10(2)	WI-C18-N18	1/3.4(19)
W2-C21	2.16(2)	C21-N21	1.13(3)	W2-C21-N21	179(2)
W2-C22	2.18(2)	C22-N22	1.11(2)	W2-C22-N22	174.5(18)
W2-C23	2.18(2)	C23–N23	1.13(3)	W2-C23-N23	177.2(18)
W2-C24	2.143(18)	C24–N24	1.15(2)	W2-C24-N24	178.7(17)
W2-C25	2.16(3)	C25–N25	1.13(3)	W2-C25-N25	177(2)
W2-C26	2.18(3)	C26–N26	1.13(3)	W2-C26-N26	179(2)
W2-C27	2.16(2)	C27–N27	1.11(3)	W2-C27-N27	176(2)
W2-C28	2.18(2)	C28-N28	1.14(3)	W2-C28-N28	179(2)
<i>Cu(3)</i>					
Cu3-N33	2.021(16)	Cu1-N11	1.971(17)	Cu1-N11-C11	167.1(14)
Cu3-N34	2.036(19)	Cu1–N16a	2.431(18)	Cu1–N16a–C16a	149.6(16)
Cu3–N32	2.08(2)	Cu1–N18b	2.446(16)	Cu1-N18b-C18b	175.2(19)
	(_)		()		
N11-Cu3-N33	176.1(7)	N11-Cu3-N32	97.1(8)	N18b-Cu3-N32	89.7(8)
N16a-Cu3-N18b	175.6(7)	N11-Cu3-N34	94.3(7)	N18b-Cu3-N33	88.9(7)
N32-Cu3-N34	167.3(8)	N16a-Cu3-N32	87.8(8)	N18b-Cu3-N34	84.0(7)
N11–Cu3–N16a	90.5(6)	N16a-Cu3-N33	87.3(6)	N32–Cu3–N33	86.0(9)
N11-Cu3-N18b	93.5(6)	N16a-Cu3-N34	97.7(8)	N33-Cu3-N34	82.8(8)
<i>Cu(4)</i>					
Cu4-N42	2.060(16)	Cu4-N12	1.944(19)	Cu4-N12-C12	172.1(17)
Cu4-N43	2.019(17)	Cu4–N22	2.287(16)	Cu4-N22-C22	149.9(18)
Cu4–N44	2.032(20)	Cu4–N28c	3.114(19)	Cu4-N28c-C28c	148.4
N12-Cu4-N43	172.7(7)	N12-Cu4-N44	94,5(8)	N28c-Cu4-N43	90.7(7)
N22-Cu4-N28c	174.6(7)	N22-Cu4-N43	90.1(7)	N28c-Cu4-N44	92.4(8)
N42-Cu4-N44	158.3(8)	N22-Cu4-N44	94.9(8)	N43-Cu4-N44	86.7(9)
N12-Cu4-N42	93.1(7)	N22-Cu4-N42	106.3(6)	N42-Cu4-N43	83.3(8)
N12-Cu4-N28c	82.0(8)	N28c-Cu4-N42	68.5(8)	N12-Cu4-N22	97.0(7)
Symmetry equivalent op been read directly from C	erations: (a) $1 - x, -y, 1$ ORTEP	1 - z; (b) $x - 1, -y, -z + 1$; ((c) $x - 1, y, z$; the numbe	rs given without the esd va	alues have

Table S3 Selected Bond Lengths (Å) and Angles (deg) for [Cu^{II}(tetrenH₂)][Cu^{II}(tetrenH)][W^V(CN)₈][W^{IV}(CN)₈]·2.5H₂O **2**

Table 54. Selec	cted distances and	angles for [Cu(dien)]	$2[W(CN)_8] \cdot 4\Pi_2 O$	3.		
W1-C1	2.161(3)	C1-N1	1.151(4)	N1-C1-W1	177.3(3)	
W1-C2	2.162(3)	C2-N2	1.149(5)	N2-C2-W1	177.3(4)	
W1-C3	2.162(3)	C3-N3	1.146(5)	N3-C3-W1	177.7(3)	
W1-C4	2.143(3)	C4-N4	1.153(4)	N4-C4-W1	174.9(3)	
Cu1-N4	1.947(3)	C4-N4-Cu1	161.2(4)			
Cu1-N1a	2.290(3)	Cla-Nla-Cul	140.7(3)			
Cu1-N6	2.037(5)	N4-Cu1-N9B	167.3(3)	N1a-Cu1-N9A	91.6(3)	
Cu1-N9A	2.033(11)	N4-Cu1-N9A	166.6(3)	N1a-Cu1-N9B	89.1(3)	
Cu1-N9B	2.020(10)	N12-Cu1-N6	160.9(3)	N6-Cu1-N9A	75.5(4)	
Cu1-N12	2.027(6)	N4-Cu1-N12	92.6(2)	N6-Cu1-N9B	93.1(4)	
		N4-Cu1-N6	94.88(19)	N12-Cu1-N9B	76.9(3)	
		N4-Cu1-N1a	99.28(14)	N12-Cu1-N9A	93.9(3)	
		N6-Cu1-N1a	99.71(18)			
		N12-Cu1-N1a	96.4(2)			
a		10 1 10				

1 abit 5 . Selected distances and diffies for $[\mathbf{C}\mathbf{u}(\mathbf{u}(\mathbf{c}))]$, $\mathbf{v}(\mathbf{C})$, $\mathbf{v}(\mathbf{c})$	Table S4.	Selected	distances	and angles	for [Cu(dien)]/[W	(CN) ₈]·4H ₂ O	3.
--	-----------	----------	-----------	------------	----------	-----------	---------------------------------------	----

Symmetry equivalent operation: (a) -x + 1/2, y + 1/2, -z.

Table S5. Selected distances and angles for [Cu(dien)]₂[Mo(CN)₈]·4H₂O 4.

Mo1-C1 Mo1-C2 Mo1-C3 Mo1-C4	2.157(2) 2.161(3) 2.162(3) 2.149(2)	C1-N1 C2-N2 C3-N3 C4-N4	1.151(3) 1.149(4) 1.155(4) 1.147(3)	N1-C1-Mo1 N2-C2-Mo1 N3-C3-Mo1 N4-C4-Mo1	177.3(3) 177.3(4) 177.7(3) 174.9(3)
Cu1-N4 Cu1-N1a	1.949(2) 2.291(2)	C4-N4-Cu1 C1a-N1a-Cu1	161.5(3) 140.7(2)		
Cu1-N6A Cu1-N6B Cu1-N9A Cu1-N9B Cu1-N12A Cu1-N12B	2.165(6) 1.841(7) 2.021(5) 2.017(5) 1.885(7) 2.174(7)	N6A-Cu1-N12B N6A-Cu1-N12A N6B-Cu1-N12A N6B-Cu1-N12B N6A-Cu1-N9A N6A-Cu1-N9B N6B-Cu1-N9A N6B-Cu1-N9B N9A-Cu1-N12A N9A-Cu1-N12B N9B-Cu1-N12B N9B-Cu1-N12B	$169.8(2) \\156.0(3) \\146.6(3) \\161.0(3) \\80.2(2) \\97.9(2) \\69.2(3) \\86.9(3) \\87.0(3) \\97.0(2) \\70.6(3) \\79.6(2) \\99.26(10)$	N1a-Cu1-N6A N1a-Cu1-N6B N1a-Cu1-N12A N1a-Cu1-N12B N1a-Cu1-N9A N1a-Cu1-N9B N4a-Cu1-N6A N4a-Cu1-N6B N4a-Cu1-N12B N4a-Cu1-N12B N4a-Cu1-N9A N4a-Cu1-N9B	$\begin{array}{c} 98.23(16)\\ 101.6(2)\\ 102.5(3)\\ 91.7(2)\\ 92.18(14)\\ 89.27(15)\\ 90.87(17)\\ 101.1(2)\\ 97.6(2)\\ 90.0(2)\\ 166.41(16)\\ 166.81(16) \end{array}$

Symmetry equivalent operation: (a) -x + 1/2, y + 1/2, -z.

				5 0		
D····A		D····A		D····A		
O1…N16 ^a	2.948	N31…N13	2.925	N41…N17 ^a	3.015	
O1…N24 ^a	3.202	N31…N26	3.045	N41…N22	2.926	
O1…N27 ^a	3.160	N31…N27	3.202	N41…N26 ^a	2.920	
O2…N11	3.303	N31…N27 ^a	2.884	N41…O3	3.132	
O2…N18	3.219	N31…O1	3.097	N42…N28 ^a	3.010	
O2…N18 ^a	2.868	N32…O1	2.922	N43…N12	3.009	
O3…N17 ^a	3.322	N33…O2	2.969	N44…N12	3.261	
$O4 \cdot \cdot \cdot N25^{a}$	3.102	N35…N22 ^a	3.290	N44…N25 ^a	3.258	
O4…N28	2.807	N35…N23	3.005	N44…N28 ^a	3.281	
O5…N16	2.899	N35…N26 ^a	3.211	N45…N15 ^a	2.923	
O5…N24	2.759			N45…N25 ^a	3.021	
				N45…O4	2.823	
				N45…O5	3.036	
a		. 1	· 11 D	N4504 N4505	2.823 3.036	

Table S6. The selected donor(D)-acceptor(A) distances (Å) of possible hydrogen bonds in 1

^aAtoms obtained by symmetry equivalent operations imposed by P-1 space group

Fig. S1. Electronic spectra of $[Cu^{II}(tetren)]^{2+}$ at different pH: (a) $[Cu^{II}(tetren)]^{2+}$ at pH > 6, (b) [N₃] chelation forms ($[Cu^{II}(tetrenH_2)]^{4+}$ and/or $[Cu^{II}(tetrenH)]^{3+}$) at pH 3–5, and (c) $[Cu(OH_2)_6]^{2+}$ (pH < 2).

Fig. S2. The dependence of the intensities of v(CN) stretching frequencies on the oxidation state of octacyanotungstate moiety. A comparison of relative absorbance of v(CN) bands (2200-2000 cm⁻¹) *vs* $\delta(NH)$, $\delta(CH_2)$, v(CN), v(CC), $\delta(CH_2)$ and $\gamma(CH)$ bands characteristic of dien ligand (1700-850 cm⁻¹) in [Cu^{II}(dien)(NC)2] units in cyano-bridged compounds of W(IV) and W(V): [Cu^{II}(dien)]₂[W^{IV}(CN)₈]·4H₂O **3** (red, this work) and K[Cu^{II}(dien)]₄[W^V(CN)₈]₃·8H₂O (blue, ref. 6 in this work).

Fig. S3. The temperature dependence of molar magnetic susceptibility of **2** and the best fit of Curie-Weiss law. Inset: the temprature dependence of product $\chi \cdot T$.

Fig. S4. The ESR spectra of $1.3H_2O$ (left) and $2.10.5H_2O$ (right) at 77 K; (—) – the experimental line, $(\cdot \cdot \cdot)$ – the simulated line.