Electronic Supplementary Information for:

Semi-vacant Wells-Dawson anions. Synthesis of tritungsten-vacant derivatives and crystallographic studies of $[\alpha\beta\beta\alpha-(Cu^{\parallel}OH_{2})_{2}(Cu^{\parallel})_{2}(AsW_{15}(OH_{2})_{3}-(OH)O_{52})_{2}]^{12}$

Israel Martyr Mbomekalle,^a Bineta Keita,^a Louis Nadjo,*^a Kenneth I. Hardcastle,^b Craig L. Hill,*^b and Travis M. Anderson^b

^a Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris-Sud, 91405 Orsay Cedex, France Email: nadjo@lcp.u-psud.fr

Table of Contents:

Figure S1. Thermal ellipsoid plot of **2** (50% probability surfaces). The slight disorder (4%) in the W_3O_{13} "cap" units is shown (each cap is 96% α-isomer and 4% β-isomer).

Table S1. W(VI)-based reduction potentials for 1, 1Zn, and 1Cu.

^b Department of Chemistry, Emory University, Atlanta, Georgia, 30322 Email: chill@emory.edu

Figure S1.

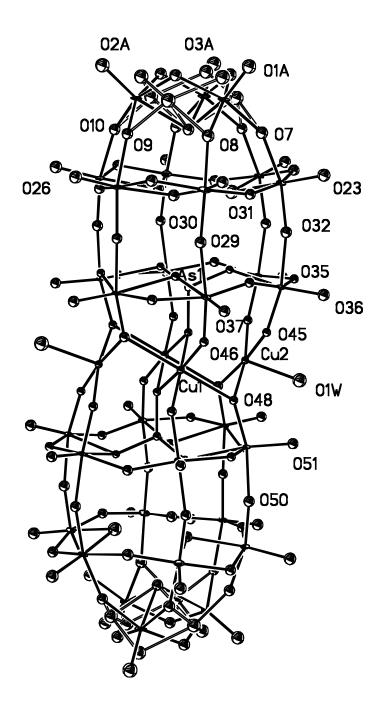


Table S1. W(VI)-based reduction potentials for 1, 1Zn, and 1Cu.^a

complex	-E _{pc1} (V)	-E _{pc2} (V)	-E _{pc3} (V)
1	0.528	0.644	0.876
1Zn	0.576	0.736	0.924
1Cu	0.588 ^b	0.648	0.820

^aConditions: POM concentration: $2 \times 10^{-4} \text{ M}$ in 0.4 M CH₃COOLi/CH₃COOH (pH 5) solution; scan rate: 10 mV s^{-1} ; working electrode: glassy carbon; reference electrode: SCE; ^bThis wave appears as a shoulder following a copper deposition wave with a cathodic peak potential $E_{pc} = -0.320 \text{ V}$ and a characteristic desorptive oxidation peak potential located at $E_{pa} = -0.10 \text{ V}$.