Supplementary information for

Aluminum alkyl complexes supported by [OSSO] type bisphenolato ligands: synthesis, characterization and living polymerization of *rac*-lactide

Haiyan Ma,^a Gianluca Melillo,^b Leone Oliva,^b Thomas P. Spaniol,^a Ulli Englert^a and Jun Okuda^{a,}*

^a Institute of Inorganic Chemistry, Aachen University of Technology (RWTH),
Professor-Pirlet-Straße 1, Aachen 52056, Germany. E-mail: <u>jun.okuda@ac.rwth-aachen.de</u>
^bDipartimento di Chimica, Universitá di Salerno, Via S. Allede, I-84081 Baronissi (SA), Italy.

Results and Discussion about Aluminum Complex 1a

The isolation of pure complex [(etbmp)AlMe] (1) was accompanied by the precipitation of a white powder 1a (~5% of the theoretical yield) even under extremely strict exclusion of air and moisture. **1a** showed a complicated resonance pattern in the ¹H NMR spectrum including 6 signals for the 4-methyl group and no Al-methyl resonance. Needle-like single crystals of 1a were obtained from the mother liquor upon standing at room temperature, which immediately lost transparency when taken out of the solution. From the ¹H NMR spectrum, we speculated **1a** to be a derivative of "[(etbmp)₃Al₂]". In order to obtain 1a on the preparative scale, we attempted the reactions of AlMe₃ or complex 1 with excess etbmpH₂, but no reaction occurred to produce **1a**. Thus, most likely **1a** was formed by the rearrangement of complex **1** in solution. ¹H NMR spectroscopic data of **1a**, $\delta_{\rm H}$ (200 MHz, CDCl₃): 7.10 (d, 1H, ⁴J = 2 Hz, Ar-H), 7.01 (d, 1H, ⁴*J* = 2 Hz, Ar-*H*), 6.97 (s, 2 H, Ar-*H*), 6.96 (d, 1H, Ar-*H*), 6.94 (s, 2 H, Ar-*H*), 6.91 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.89 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.85 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, ${}^{4}J = 2$ Hz, Ar-H), 6.62 (d, 1 H, {}^{4}J = 2 2 Hz, Ar-H), 3.00-2.80 (m, 12 H, SCH₂), 2.20 (s, 3 H, 4-CH₃), 2.19 (s, 3 H, 4-CH₃), 2.16 (s, 3 H, 4-CH₃), 2.14 (s, 3 H, 4-CH₃), 2.08 (s, 3 H, 4-CH₃), 1.97 (s, 3 H, 4-CH₃), 1.36 [s, 9 H, 6-C(CH₃)], 1.24 [s, 9 H, 6-C(CH₃)], 1.17 [s, 18 H, 6-C(CH₃)], 1.13 [s, 9 H, 6-C(CH₃)], 1.05 [s, 9 H, 6-C(CH₃)].

Ring-Opening Polymerization of *rac*-Lactide *Kinetic analysis*

Figure S1. Semilogarithmic plots of *rac*-lactide conversion with time using (a) complex $1/i^{i}$ PrOH; (b) complex $2/i^{i}$ PrOH; (c) complex $3/i^{i}$ PrOH in toluene at 70°C, [LA]₀: [Al]₀: [i^{i} PrOH]₀ = 100:1:1; [LA]_{eq} = 0.02 mol L⁻¹

Figure S2. Plots of number molecular weight M_n of PLA versus monomer conversion using (a) complex $1 / {}^{i}$ PrOH; (b) complex $3 / {}^{i}$ PrOH in toluene at 70°C, $[LA]_0 : [AI]_0 : [{}^{i}$ PrOH]_0 = 100:1:1.

Microstructure analysis of Polylactides

Figure S3. ¹H NMR(CDCl₃, 500 MHz) spectrum of polylactide using complex $\mathbf{1}$ / ⁱPrOH in toluene at 70°C, [LA]₀: [Al]₀: [ⁱPrOH]₀ = 100:1:1, 95% conversion.

Figure S4. (a) Methine region in homonuclear decoupled ¹H NMR; (b) Methine region in ¹³C NMR (CDCl₃, 500 MHz) of polylactide using complex 1/ ⁱPrOH in toluene at 70°C, [LA]₀: [Al]₀ : [ⁱPrOH]₀ = 100:1:1, 95% conversion. Atactic polymer, no transesterification.

Figure S5. ¹H NMR (CDCl₃, 500 MHz) spectrum of polylactide using complex **3** / ⁱPrOH in toluene at 70°C, $[LA]_0$: $[AI]_0$: $[^iPrOH]_0 = 100:1:1, 33\%$ conversion.

Figure S6. (a) Methine region in homonuclear decoupled ¹H NMR; (b) Methine region in ¹³C NMR (CDCl₃, 500 MHz) of polylactide using complex 3/ ⁱPrOH in toluene at 70°C, [LA]₀: [Al]₀: [ⁱPrOH]₀ = 100:1:1, 93% conversion. Heterotactic-enriched polymer, no transesterification.