ELECTRONIC SUPPORTING INFORMATION

for

Structural studies of Group 1 metal 4-azapentalenyl complexes

Michael J. Bermingham,^a F. Geoffrey N. Cloke,^b Michael G. Gardiner, *^a Peter B. Hitchcock,^b Lynsey E. Maher,^a Lauren E. Wise^a and Brian F. Yates^a

- a School of Chemistry, University of Tasmania, Private Bag 75, Hobart TAS 7001, Australia.
- b Department of Chemistry, School of Life Sciences, The University of Sussex, Brighton BN1 9QJ, UK.

* To whom correspondence should be addressed. Phone: 61 (0)3 62262404. Fax: 61 (0)3 62262858.E-mail: Michael.Gardiner@utas.edu.au.

Synthesis of 5.

Potassium metal (0.50 g, 13 mmol) was added to **4** (1.0 g, 6.4 mmol) in thf (50 mL) and stirred at 25 °C for 3 hours. The red solution was filtered, to remove excess potassium metal and other impurities, and then concentrated *in vacuo* to *ca*. 10 mL. Upon cooling to -25 °C for a week red, crystals of **5** formed (1.36 g, 93%). Anal. Calcd. for $C_{11}H_8NK(C_4H_8O)_{1/2}$: C, 67.71; H, 5.25; N, 6.08. Found: C, 67.68; H, 5.29; N, 6.08 %. ¹H NMR (thf-d⁸, 299.898 MHz, 298K, ppm): δ 1.78 (m, 2H, CH₂), 3.62 (m, 2H, OCH₂), 5.85 (m, 1H, CH), 5.97 (m, 1H, CH), 6.27 (m, b, 1H, C), 6.58 (m, 1H, CH), 6.71 (m, 1H, CH), 6.76 (m, 1H, CH), 6.71 (m, 1H, CH), 13C{¹H} NMR (thf-d⁸, 75.4 MHz, 298K, ppm): δ 83.3 (CH), 83.9 (CH), 98.1 (CH), 105.0 (CH), 109.6 (CH), 110.9 (C), 111.2 (CH), 118.9 (CH), 120.5 (CH), 131.3 (C), 132.2 (C). (resonances for thf not detected by ¹³C {¹H} NMR due to overlap with thf-d⁸ resonances).

Synthesis of 6.

Potassium metal (0.25 g, 6.4 mmol) was added to 4 (0.52 g, 3.3 mmol) in thf (50 mL) and stirred 25 °C at for 12 hours. The red solution was filtered, to remove excess potassium metal and other impurities, and the solvent was removed *in vacuo*. Neat tmen (20 mL) was added and the mixture stirred at ambient temperature for 2 hours, after which time the red solution was filtered from impurities and concentrated *in vacuo* to *ca*. 15 mL. Upon cooling to – 25 °C for a week, red crystals of **6** formed. Anal. Calcd. for $C_{11}H_8NK(C_6H_{16}N_2)$: C, 65.97; H, 7.82; N, 13.58. Found: C, 66.08; H, 7.58; N, 13.24%. ¹H NMR (py-d⁵, 300.132 MHz, 300K, ppm): δ 2.16 (s, 12H, CH₃), 2.35 (s, 4H, CH₂), 6.56 (m, 1H, CH), 6.62 (m, 1H, CH), 6.93 (m, 1H, CH), 7.16 (m, 1H, CH), 7.44 (m, 2H, CH), 7.46 (m, 1H, CH), 8.00 (m, 1H, CH). ¹³C{¹H} NMR (py-d⁵, 75.4677 MHz, 300K, ppm): δ 46.0 (CH₃), 58.2 (CH₂), 84.32 (CH), 85.0 (CH), 99.0 (CH), 105.1 (CH), 109.9 (CH), 110.2 (C), 111.4 (CH), 119.4 (CH), 120.6 (CH), 131.5 (C), 132.0 (C).

Computational details

Full geometry optimisations were carried out with the use of the B3LYP density functional level of theory combined with the 6-31+G(d) basis set. Vibrational frequency calculations at this level of theory confirmed that all the species studied were true minima. Single-point energies on these optimised geometries were calculated at the B3LYP level with the 6-311+G(d,p) basis set. The energies quoted in this paper refer to this final level of theory. All calculations were carried out with the Gaussian 98^1 program.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; C, S. M.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Otcherski, J.; Petersson, G. A.; Ayala, P. J.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuk, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomberts, R.; Martin, R. L.; Fox, D. J.; Kieth, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98 A.1, Revision A.1*; Gaussian, Inc.: Pittsburgh, PA, 1998.

Compound	$B3LYP/6-31+G(d)^{a}$	B3LYP/6-311+G(d,p) ^b
$C_7H_6NLi(7a)$	-332.623446	-332.6994
C ₇ H ₆ NLi (8a)	-332.616210	-332.6914
C ₇ H ₆ NNa (8b)	-487.383003	-487.4619
C ₇ H ₆ NK (8c)	-925.004198	-925.1183
C ₁₁ H ₈ NLi (9a)	-486.271562	-486.3768
C ₁₁ H ₈ NLi (11a)	-486.271610	-486.3764
C ₁₁ H ₈ NLi (12a)	-486.269481	-486.3751
C ₁₁ H ₈ NNa (10b)	-641.035319	-641.1433
C ₁₁ H ₈ NNa (12b)	-641.031037	-641.1398
C ₁₁ H ₈ NK (10c)	-1078.656833	-1078.7994

Total Energies (Hartree) for structures 7-12

^a Geometry optimised at this level of theory.

^b Single point energy on geometry optimised at B3LYP/6-31+G(d).

Optimised B3LYP/6-31+G(d) Gas-Phase Geometries (Å) for structures 7-12

7a

- C 0.065394 0.757168 -0.107318
- N 0.062476 -0.661486 -0.092161
- C -1.260165 -1.147176 -0.096394
- C 1.366458 -1.134369 -0.037228
- C -2.096552 -0.016780 -0.183986
- C 2.195038 -0.014658 -0.003488
- C -1.312844 1.165612 -0.131879
- C 1.412290 1.166660 -0.029665
- Н -1.479076 -2.197436 -0.218209
- Н 1.587433 -2.191528 -0.043657
- Н -3.177259 -0.060313 -0.250852
- Н 3.277437 -0.055021 0.029534
- Н -1.674834 2.181882 -0.205061
- Н 1.772053 2.186397 -0.028413
- Li -0.986933 0.035893 1.633841

8a

С	0.509355	-0.617281	0.000000
N	0.000000	0.706276	0.000000
С	-0.360135	1.079241	1.306460
С	-0.360135	1.079241	-1.306460
С	-0.016190	0.001851	2.132870
С	-0.016190	0.001851	-2.132870
С	0.497962	-1.062668	1.353481
С	0.497962	-1.062668	-1.353481
Η	-0.670961	2.086398	1.542085
Η	-0.670961	2.086398	-1.542085
Η	-0.113818	0.005661	3.212375
Η	-0.113818	0.005661	-3.212375
Η	0.834972	-2.025920	1.710864
	0.024072	0.005000	1 710074

- Η 0.834972 -2.025920 -1.710864
- Li -1.538718 -0.531202 0.000000

8b

С	0.844043	-0.310583	0.000000	
N	0.000000	0.823571	0.000000	
С	-0.420382	1.108847	1.305963	
С	-0.420382	1.108847	-1.305963	
С	0.205062	0.171454	2.137246	
С	0.205062	0.171454	-2.137246	
С	0.969329	-0.732568	1.354636	
С	0.969329	-0.732568	-1.354636	
Η	-0.974426	2.006727	1.539712	
Η	-0.974426	2.006727	-1.539712	
Η	0.140590	0.174410	3.219650	

- Н 0.140590 0.174410 -3.219650
- Н 1.582950 -1.546247 1.717921
- Н 1.582950 -1.546247 -1.717921
- Na -1.419144 -1.067643 0.000000

8c

С	1.067926	0.075802	0.000000	
N	0.000000	0.996778	0.000000	
С	-0.453468	1.205891	1.306902	
С	-0.453468	1.205891	-1.306902	
С	0.376795	0.445171	2.140909	
С	0.376795	0.445171	-2.140909	
С	1.306253	-0.283755	1.356089	
С	1.306253	-0.283755	-1.356089	
Η	-1.175307	1.976049	1.540633	
Η	-1.175307	1.976049	-1.540633	
Н	0.330913	0.455096	3.224438	
Н	0.330913	0.455096	-3.224438	
Н	2.092924	-0.932397	1.719088	

- Н 2.092924 -0.932397 -1.719088
- K -1.245241 -1.412497 0.000000

9a

С	0.000000	0.000000	0.000000
N	0.000000	0.000000	1.414374
С	1.296041	0.000000	1.920299
С	2.157023	-0.004442	0.809461
С	1.365305	0.010328	-0.407655
С	-1.365450	0.057007	-0.419348
С	-2.159234	0.051855	0.755327
С	-1.314945	0.062427	1.888304
С	3.574570	-0.015978	0.696023
С	4.155698	-0.008097	-0.557980
С	3.372435	0.009051	-1.744956
С	1.988457	0.014914	-1.671337
Η	-1.722728	0.023573	-1.439376
Η	-3.241573	0.046613	0.794951
Η	-1.544964	-0.029716	2.939346
Η	1.488440	-0.046227	2.981470
Η	4.194238	-0.033707	1.590075
Η	5.240273	-0.018794	-0.642568
Η	3.865985	0.009718	-2.713242
Η	1.388792	0.016317	-2.579758
Li	-0.922215	1.800974	0.728711

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2005

11a

С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.408021
С	1.355852	0.000000	-0.402368
С	2.173908	-0.023844	0.730919
С	-0.808842	-0.013015	2.605312
С	1.443014	-0.176178	3.246307
С	0.107350	-0.050641	3.732577
С	-2.202192	0.021044	2.816910
С	-2.696225	0.032035	4.114783
С	-1.807650	0.011448	5.219083
С	-0.433489	-0.033502	5.046615
N	1.344534	-0.028527	1.830396
Η	2.370528	0.047278	3.753581
Η	3.249486	-0.030046	0.832502
Η	1.716811	0.024509	-1.423309
Η	-0.869750	0.029289	-0.642053
Η	-3.768305	0.068941	4.287220
Η	-2.880964	0.059072	1.967664
Η	0.230003	-0.041042	5.908525
Η	-2.215416	0.037637	6.227030
Li	0.442488	-1.833461	2.521645

12a

С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.412467
С	1.324860	0.000000	-0.455126
С	1.347154	0.000584	1.810507
N	2.131866	0.000880	0.649090
С	2.252275	0.005062	2.917154
С	3.502439	-0.008372	0.948612
С	3.622003	0.004849	2.327388
С	2.080082	0.007343	4.305269
С	3.201689	-0.040057	5.167929
С	4.515752	-0.033667	4.613816
С	4.733876	-0.031147	3.233581
Η	1.729482	0.004382	-1.457080
Η	-0.874330	0.004046	-0.639232
Η	-0.865384	0.008894	2.061722
Η	4.251877	-0.000316	0.171336
Η	1.077773	0.014316	4.728262
Η	5.750596	-0.040016	2.848352
Η	5.371475	-0.055762	5.283869
Η	3.064434	-0.033116	6.244010

Li 3.376576 -1.711750 3.818670

10b

0.000000	0.000000	0.000000
0.000000	0.000000	1.401789
1.334476	0.000000	1.918255
2.166784	0.239085	0.781039
1.364346	0.192353	-0.421724
-1.275595	-0.425705	-0.425504
-2.050939	-0.619033	0.751086
-1.250873	-0.360489	1.867379
3.559348	0.467661	0.654840
4.121473	0.584994	-0.609571
3.336228	0.490281	-1.782908
1.959783	0.299784	-1.688862
-1.619662	-0.507832	-1.447995
-3.103243	-0.874858	0.786108
-1.476596	-0.384358	2.924145
1.505485	0.348480	2.929474
4.184132	0.545064	1.542409
5.191579	0.758981	-0.701089
3.807482	0.585631	-2.757482
1.347708	0.256761	-2.587904
	0.000000 0.000000 1.334476 2.166784 1.364346 -1.275595 -2.050939 -1.250873 3.559348 4.121473 3.336228 1.959783 -1.619662 -3.103243 -1.619662 -3.103243 -1.476596 1.505485 4.184132 5.191579 3.807482 1.347708	0.0000000.0000001.00000000.0000001.3344760.0000002.1667840.2390851.3643460.192353-1.275595-0.425705-2.050939-0.619033-1.250873-0.3604893.5593480.4676614.1214730.5849943.3362280.4902811.9597830.299784-1.619662-0.507832-3.103243-0.8748581.5054850.3484804.1841320.5450645.1915790.7589813.8074820.256761

Na 0.723137 -2.219870 0.894003

12b

С	0 000000	0 000000	0 000000
C	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.413654
С	1.324051	0.000000	-0.455483
С	1.348759	0.007170	1.812710
N	2.132659	0.001832	0.650848
С	2.254956	-0.012380	2.920753
С	3.503410	-0.044913	0.951101
С	3.619169	-0.021204	2.338208
С	2.079157	-0.085294	4.307946
С	3.195872	-0.187308	5.163074
С	4.509298	-0.144451	4.614704
С	4.731297	-0.055588	3.240656
Η	4.253405	0.021887	0.176608
Η	1.729097	0.004710	-1.457345
Н	-0.874586	0.010743	-0.639205
Η	-0.865425	0.018327	2.062943
Н	5.748214	-0.008359	2.855916
Н	1.075445	-0.070555	4.729893
Н	3.057853	-0.218093	6.239853
Η	5.363603	-0.164545	5.288324

Na 3.298826 -2.253942 3.465584

10c

С	0.000000	0.000000	0.000000
N	0.000000	0.000000	1.401644
С	1.318408	0.000000	1.918950
С	2.169727	0.142528	0.795056
С	1.370975	0.100246	-0.416494
С	-1.307663	-0.325380	-0.427419
С	-2.089147	-0.481133	0.746291
С	-1.269570	-0.295073	1.867777
С	3.577343	0.285956	0.669671
С	4.151587	0.332876	-0.591940
С	3.367908	0.250818	-1.770389
С	1.982901	0.141991	-1.681229
Η	-1.658661	-0.369562	-1.450136
Η	-3.157053	-0.662617	0.783107
Η	-1.506228	-0.273925	2.922555
Η	1.499296	0.283977	2.947224
Η	4.200939	0.356496	1.558969
Η	5.230618	0.442334	-0.681003
Η	3.849917	0.293530	-2.743601
Η	1.375632	0.111217	-2.584567

К 0.502124 -2.623443 0.838456

Atom labelling diagram for the crystal structure of 5

PLATON-Dec 08 16:21.

Atom labelling diagram for the crystal structure of 6

0 cal-NOTAl9